Brkić, Ž., Larva, O., and Kuhta, M.: Groundwater Age as an Indicator of Nitrate Concentration Evolution in Aquifers Affected by Agricultural Activities, J. Hydrol., 602, 126799, https://doi.org/10.1016/j.jhydrol.2021.126799, 2021.
Carle, S. F.: T-PROGS: Transition Probability Geostatistical Software, Version 2.1, Hydrologic Sciences Graduate Group, University of California (Davis), 1–78, 1999.
Carle, S. F. and Fogg, G. E.: Transition probability-based indicator geostatistics, Math. Geol., 28, 453–477, https://doi.org/10.1007/BF02083656, 1996.
Carle, S. F. and Fogg, G. E.: Modeling spatial variability with one- and multi-dimensional continuous Markov chains, Math. Geol., 29, 891–918, https://doi.org/10.1023/A:1022303706942, 1997.
Carle, S. F., LaBolle, E. M., Weissmann, G. S., Brocklin, Van D., and Fogg, G. E.: Conditional simulation of hydrofacies architecture: a transition probability/Markov chain approach, in: Hydrogeologic models of sedimentary aquifers, edited by: Fraser, G. S. and Davis, J. M., Concepts Hydrogeol. Environ. Geol. Series 1, SSG, Tulsa, OK, 147–170, https://doi.org/10.2110/sepmcheg.01.147, 1998.
De Clercq, T., Jardani, A., Fischer, P., Thanberger, L., Vu, T. M., Pitaval, D., Côme, J.-M., and Begassat, P.: The use of electrical resistivity tomograms as a parameterization for the hydraulic characterization of a contaminated aquifer, J. Hydrol., 587, 124986, https://doi.org/10.1016/j.jhydrol.2020.124986, 2020.
Dell' Arciprete, D., Bersezio, R., Felletti, F., Giudici, M., Comunian, A., and Renard, P.: Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments, Hydrogeol. J., 20, 299–311, https://doi.org/10.1007/s10040-011-0808-0, 2011.
Deveugle, P. E. K., Jackson, M. D., Hampson, G. J., Stewart, J., Clough, M. D., Ehighebolo, T., Farrel, M. E., Calvert, C. S., and Miller, J. K.: A comparative study of reservoir modeling techniques and their impact on predicted performance of fluvial-dominated deltaic reservoirs, AAPG Bulletin, 98, 729–763, https://doi.org/10.1306/08281313035, 2014.
Falivene, O., Arbués, P., Gardiner, A., Pickup, G., Muñoz, J. A., and Cabrera, L.: Best practice stochastic facies modeling from a channel-fill turbidite sandstone analog (the Quarry outcrop, Eocene Ainsa basin, northeast Spain), AAPG Bulletin, 90, 1003–1029, https://doi.org/10.1306/02070605112, 2006.
Frei, S., Fleckenstein, J. H., Kollet, S. J., and Maxwell, R. M.: Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model, J. Hydrol., 375, 383–393, https://doi.org/10.1016/j.jhydrol.2009.06.038, 2009.
Geel, C. R. and Donselaar, M. E.: Reservoir modelling of heterolithic tidal deposits: sensitivity analysis of an object-based stochastic model, Neth. J. Geoscie., 86, 403–411, https://doi.org/10.1017/S0016774600023611, 2007.
Gernez, S., Bouchedda, A., Gloaguen, E., and Paradis, D.: Comparison Between Hydraulic Conductivity Anisotropy and Electrical Resistivity Anisotropy From Tomography Inverse Modeling, Front. Environ. Sci., 7, https://doi.org/10.3389/fenvs.2019.00067, 2019.
Gong, K., Wen, Z., Li, Q., and Zhu, Q.: Geostatistical simulations of the spatial variability of hydraulic conductivity in an alluvial-marine sedimentary system in Beihai City, China, J. Hydrol., 620, 129528, https://doi.org/10.1016/j.jhydrol.2023.129528, 2023.
Gottschalk, I. P., Hermans, T., Knight, R., Caers, J., Cameron, D. A., Regnery, J., and McCray, J. E.: Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site, J. Hydrol., 555, 407–419, https://doi.org/10.1016/j.jhydrol.2017.10.028, 2017.
Green, R., Klar, R., and Prikryl, J.: Use of Integrated Geophysics to Characterize Paleo-fluvial Environments, Geotechnical Special Publication 138: Site Characterization and Modeling. ASCE, New York, NY, https://doi.org/10.1061/40785(164)15, 2005.
Guo, Z., Fogg, G. E., Brusseau, M. L., LaBolle, E. M., and Lopez, J.: Modeling groundwater contaminant transport in the presence of large heterogeneity: a case study comparing MT3D and RWhet, Hydrogeol. J., https://doi.org/10.1007/s10040-019-01938-9, 2019.
He, X., Koch, J., Sonnenborg, T. O., Jørgensen, F., Schamper, C., and Refsgaard, J. C.: Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data, Water Resour. Res., 50, 3147–3169, https://doi.org/10.1002/2013WR014593, 2014.
He, Y., Hu, K., Li, B., Chen, D., Suter, H. C., and Huang, Y.: Comparison of sequential indicator simulation and transition probability indicator simulation used to model clay content in microscale surface soil, Soil Sci., 174, 395–402, https://doi.org/10.1097/SS.0b013e3181aea77c, 2009.
Hermans, T. and Irving, J.: Facies discrimination with ERT using a probabilistic methodology: effect of sensitivity and regularization, Near Surf. Geophys. 15, 13–25, https://doi.org/10.3997/1873-0604.2016047, 2017.
Hermans, T., Nguyen, F., and Caers, J.: Uncertainty in training image-based inversion of hydraulic head data constrained to ERT data: Workflow and case study, Water Resour. Res., 51, 5332–5352, https://doi.org/10.1002/2014WR016460, 2015.
Janža, M.: Modelling heterogeneity of Ljubljana Polje aquifer using Markov chain and geostatistics, Geologija, 52, 233–240, https://doi.org/10.5474/geologija.2009.023, 2009.
Kaipio, J. P., Kolehmainen, V., Somersalo, E., and Vauhkonen, M.: Statistical Inversion and Monte Carlo Sampling Methods in Electrical Impedance Tomography, Inverse Probl., 16, 1487–1522, https://doi.org/10.1088/0266-5611/16/5/321, 2000.
Karlović, I., Marković, T., Vujnović, T., and Larva, O.: Development of a Hydrogeological Conceptual Model of the Varaždin Alluvial Aquifer, Hydrology, 8, 19, https://doi.org/10.3390/hydrology8010019, 2021.
Karlović, I., Posavec, K., Larva, O., and Marković, T.: Numerical groundwater flow and nitrate transport assessment in alluvial aquifer of Varaždin region, NW Croatia, J. Hydrol. Reg. Stud., 41, 101084, https://doi.org/10.1016/j.ejrh.2022.101084, 2022.
Koch, J., He, X., Jensen, K. H., and Refsgaard, J. C.: Challenges in conditioning a stochastic geological model of a heterogeneous glacial aquifer to a comprehensive soft data set, Hydrol. Earth Syst. Sci., 18, 2907–2923, https://doi.org/10.5194/hess-18-2907-2014, 2014.
Lee, S. Y., Carle, S. F., and Fogg, G. E.: Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation, Adv. Water Resour., 30, 1914–1932, https://doi.org/10.1016/j.advwatres.2007.03.005, 2007.
Marković, T., Karlović, I., Orlić, S., Kajan, K., and Smith, A.: Tracking the nitrogen cycle in a vulnerable alluvial system using a multi proxy approach: Case study Varaždin alluvial aquifer, Croatia, Sci. Total Environ., 853, 158632, https://doi.org/10.1016/j.scitotenv.2022.158632, 2022.
Mastrocicco, M., Vignoli, G., Colombani, N., and Zeid, N. A.: Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy), Environ. Earth Sci., 61, 311–322, https://doi.org/10.1007/s12665-009-0344-6, 2010.
Mele, M., Bersezio, R., and Giudici, M.: Hydrogeophysical imaging of alluvial aquifers: electrostratigraphic units in the quaternary Po alluvial plain (Italy), Int. J. Earth Sci. (Geol. Rundsch.), 101, https://doi.org/10.1007/s00531-012-0754-7, 2012.
Rambourg, D., Di Chiara, R., and Ackerer, P.: Three-dimensional hydrogeological parametrization using spar
se piezometric data, Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022, 2022.
Ramirez, A. L., Nitao, J. J., Hanley, W. G., Aines, R. D., Glaser, R. E., Sengupta, S. K., Dyer, K. M., Hickling, T. L., and Daily, W. D.: Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach, J. Geophys. Res., 110, 1–18, https://doi.org/10.1029/2004JB003449, 2005.
Ross, M., Parent, M., and Lefebvre, R.: 3D geologic framework models for regional hydrogeology and land-use management: a case study from a quaternary basin of southwestern Quebec, Canada, Hydrogeol. J., 13, 690–707, https://doi.org/10.1007/s10040-004-0365-x, 2005.
Savoy, H., Kalbacher, T., Dietrich, P., and Rubin, Y.: Geological heterogeneity: Goal-oriented simplification of structure and characterization needs, Adv. Water Resour., 109, 1–13, https://doi.org/10.1016/j.advwatres.2017.08.017, 2017.
Scheibe, T. D. and Murray, C. J.: Simulation of geologic patterns: a comparison of stochastic simulation techniques for groundwater transport modeling, in: Hydrogeologic models of sedimentary aquifers, edited by: Fraser, G. S. and Davis, J. M., Concepts Hydrogeol. Environ. Geol. Series 1, SSG, Tulsa, OK, https://doi.org/10.2110/sepmcheg.01.107, 1107–118, 998.
Slater, L.: Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries – A Review, Surv. Geophys., 28, 169–197, https://doi.org/10.1007/s10712-007-9022-y, 2007.
Šrajbek, M., Kranjčević, L., Kovač, I., and Biondić, R.: Groundwater Nitrate Pollution Sources Assessment for Contaminated Wellfield, Water, 14, 255, https://doi.org/10.3390/w14020255, 2022.
Turner, K. A.: Discretization and Stochastic Modeling, in: Applied Multidimensional Geological Modeling: Informing sustainable human interactions with the shallow subsurface, edited by: Turner, K. A., Kessler, H., and van der Meulen, M. J., John Wiley & Sons, Ltd, https://doi.org/10.1002/9781119163091.ch13, 2021.
Urumović, K., Hlevnjak, B., Prelogović, E., and Mayer, D.: Hydrogeological conditions of Varaždin aquifer, Geol. Vjesn., 43, 149–158, 1990.
Vogelgesang, J. A., Holt, N., Schilling, K. E., Gannon, M., and Tassier-Surine, S.: Using High-Resolution Electrical Resistivity to Estimate Hydraulic Conductivity and Improve Characterization of Alluvial Aquifers, J. Hydrol., 123992, https://doi.org/10.1016/j.jhydrol.2019.123992, 2020.
Ward, A. S., Gooseff, M. N., and Singha, K.: How Does Subsurface Characterization Affect Simulations of Hyporheic Exchange?, Ground Water, 51, 14–28, https://doi.org/10.1111/j.1745-6584.2012.00911.x, 2012.
Zhang, H., Harter, T., and Sivakumar, B.: Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields, Water Resour. Res., 42, https://doi.org/10.1029/2004WR003808, 2006.
Zhao, Z. and Illman, W. A.: On the Importance of Geological Data for Three-dimensional Steady-State Hydraulic Tomography Analysis at a Highly Heterogeneous Aquifer-Aquitard System, J. Hydrol., 544, 640–657, https://doi.org/10.1016/j.jhydrol.2016.12.004, 2017.
Zhou, D., Zhang, Y., Gianni, G., Lichtner, P., and Engelhardt, I.: Numerical modelling of stream–aquifer interaction: Quantifying the impact of transient streambed permeability and aquifer heterogeneity, Hydrol. Process. 32, 2279–2292, https://doi.org/10.1002/hyp.13169, 2018.