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Abstract. Alluvial aquifers serve as vital groundwater re-
sources worldwide. Due to their complex heterogeneity, ac-
curate characterization requires the integration of multiple
data types. This study presents a systematic framework to
address aquifer heterogeneity through hydrofacies analysis,
combining borehole data, electrical resistivity tomography
(ERT) and stochastic modeling. The approach was tested in
the Varaždin aquifer, where geostatistical and stochastic tools
were used to simulate the spatial distribution of four hydro-
facies: gravel (G), gravel, sandy to clayey (Gsc), sand with
gravel, clayey to silty (Sgcs), and clay to silt, sandy (CSs).
As the thin and electrically conductive lenses of Sgcs-CSs
material below 20 m depth limited the ERT resolution, syn-
thetic models were used to infer their possible geometry and
resistivity magnitudes, estimating a model of the hydrofacies
distribution up to 35 m depth, consistent with field-data based
model. The resulting dimensions of the lens-shaped struc-
tures revealed the horizontal extent of the hydrofacies, and
were incorporated into horizontal Markov chain models. The
3D Markov chain models were used to generate 10 stochastic
realizations of the hydrofacies distribution. Validation iden-
tified the representative hydrofacies model for the Varaždin
aquifer with a prediction accuracy of 63 %. Results from
simulations focused on the Vinokovščak wellfield area show
that incorporating ERT-derived lens lengths into the model
development slightly improved hydrofacies prediction accu-
racy by 0.3 % to 5.0 %, depending on hydrofacies model grid
resolution. The analysis of different grid resolutions demon-
strates that increasing model detail beyond the characteris-
tic lens dimensions provided no accuracy improvement, sug-
gesting that the optimal cell size is closely related to the
estimated lens lengths. In contrast, coarser grids provide a

simplified hydrofacies model, potentially increasing predic-
tion accuracy but losing spatial resolution. This methodol-
ogy forms a basis for integrating spatial heterogeneity into
groundwater models, providing a useful tool for sustainable
management in alluvial and similar sedimentary environ-
ments.

1 Introduction

Alluvial plains, geological formations created by sediment
deposition from rivers and streams, often contain complex
aquifer systems due to the variability of sedimentary con-
ditions over space and time. This heterogeneity in alluvial
aquifers is defined by the spatial distribution of characteristic
sediments with distinct hydrogeological properties, i.e., hy-
drofacies units (Carle, 1999). The accurate characterization
of subsurface heterogeneity is essential for successful mod-
eling of groundwater flow and contaminant transport (Zhao
and Illman, 2017; Rambourg et al., 2022), controlling the re-
liability of these models for effective groundwater manage-
ment (Guo et al., 2019; Janža, 2009). This accuracy is typi-
cally limited by sparse datasets, as simulations are highly de-
pendent on the completeness and accuracy of the data (Gong
et al., 2023). To overcome the major challenges in character-
izing geological heterogeneity – facies delineation and hy-
draulic property assignment (Savoy et al., 2017), it is im-
portant to integrate different methods for acquiring relevant
datasets for modeling, commonly referred to as “hard” and
“soft” data. Hard data are typically obtained through direct
observation of outcrops or borehole logs, providing relatively
accurate information on the vertical sequence of hydrofacies.
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However, acquiring these data is expensive and often limited
to well-studied locations, resulting in insufficient spatial cov-
erage to capture the horizontal heterogeneity and determine
the lateral hydrofacies dimensions.

Consequently, soft data, such as inferred geological infor-
mations and qualitative insights from geophysical surveys or
conceptual models, are used to provide complementary in-
formation on the studied system (Turner, 2021). The use of
geophysics has proven to be effective in analyzing aquifer
materials (Slater, 2007). In particular, the electrical resis-
tivity tomography (ERT) has been used effectively in sed-
imentary basins for a variety of applications. Examples in-
clude the detection of waste-filled gravel pits (Breg Valjavec
et al., 2018), the delineation of landfill leachate plumes (Ac-
worth and Jorstad, 2006), mapping of buried paleochannels
(Green et al., 2005) and floodplain fluvial sediments (Ward
et al., 2012), and the identification of spatial heterogeneities
to parameterize hydraulic conductivity and permeability re-
constructions (De Clercq et al., 2020). Furthermore, previ-
ous studies have demonstrated a close relationship between
electrical resistivity and hydraulic conductivity in alluvial
aquifers (e.g., Mastrocicco et al., 2010; Gernez et al., 2019;
Vogelgesang et al., 2020). In recent decades, the modeling
and characterization of aquifer heterogeneity, such as struc-
tural geometry and hydrofacies tendencies, have advanced
significantly through the use of geostatistical and stochas-
tic methods. Similarly, alternative approaches for solving the
inverse problem of electrical resistivity measurements based
on stochastic techniques have been suggested, for exam-
ple, the Markov chain Monte Carlo method (Kaipio et al.,
2000; Andersen et al., 2003; Ramirez et al., 2005, and refer-
ences therein), or the conditional probability approach using
Bayesian framework, recently applied to discriminate hydro-
facies from ERT images (Hermans and Irving, 2017).

In contrast to deterministic models that produce a sin-
gle, consistent output for a given set of initial conditions,
stochastic simulations generate multiple equally probable
geostatistical realizations of the subsurface to better capture
smaller-scale phenomena (e.g., facies within stratigraphic
units) that cannot be adequately modeled using determinis-
tic methods (Hermans and Irving, 2017; Turner, 2021). Well-
known stochastic methods for generating realizations of fa-
cies distributions include object-based techniques (e.g., Geel
and Donselaar, 2007), multiple point statistics (MPS) that
rely on training images to capture complex spatial patterns
(e.g., Hermans et al., 2015; Gottschalk et al., 2017; Zhou
et al., 2018;), and other pixel-based simulation methods such
as sequential Gaussian simulation (SGS), sequential indica-
tor simulation (SIS), and transition probability geostatisti-
cal simulation (T-PROGS) (e.g., Lee et al., 2007; He et al.,
2009; Gong et al., 2023). In addition, several studies have
performed comparative analyses to evaluate the ability of
different stochastic modeling techniques to characterize het-
erogeneity (Falivene et al., 2006; dell’Arciprete et al., 2011;
Deveugle et al., 2014). The choice of simulation method de-

pends on both the geological structure and the intended pre-
dictions (Scheibe and Murray, 1998).

This study focuses on an alluvial aquifer located in the
Varaždin area in northwestern Croatia. As the main water
source for approximately 170 000 inhabitants, this aquifer
has experienced nitrate contamination in the last decades due
to the unregulated use of organic fertilizers in agriculture and
an underdeveloped sewage network (Marković et al., 2022).
Thus, understanding nitrate transport is essential for its sus-
tainable water management. However, previous numerical
models simulating groundwater flow and nitrate dynamics in
this aquifer were deterministic (Karlović et al., 2022; Šrajbek
et al., 2022; Brkić et al., 2021), constrained by hard data and
interpolations between boreholes, resulting in a layered rep-
resentation of the aquifer. In this study, the T-PROGS simula-
tion method (Carle and Fogg, 1996, 1997; Carle et al., 1998;
Carle, 1999) was used to generate more realistic 3D repre-
sentations of subsurface heterogeneity. This method, based
on Markov chain models and transition probability matrices
as random functions, was chosen for its proven effectiveness
in modeling heterogeneity in alluvial environments and other
sedimentary environments (Zhang et al., 2006; Frei et al.,
2009; Janža, 2009; Engdahl et al., 2010; Koch et al., 2014;
Bianchi et al. 2015; Guo et al., 2019). Hydrofacies charac-
terization of alluvial environments based on ERT imaging,
supported by geological data from boreholes, has been suc-
cessfully demonstrated (Bersezio et al., 2007; Mele et al.,
2012). This approach can enhance stochastic geological re-
alizations, particularly because the geostatistical characteris-
tics in the T-PROGS method are derived from borehole data,
which offer limited geological information in the horizontal
direction (He et al., 2014). In the present work, ERT data is
not directly integrated into the stochastic T-PROGS simula-
tions as conditioning data, nor inverted based on stochastic
regularization approach as proposed in works like Hermans
and Irving (2017), and Hermans et al. (2015). Instead, we
used classical deterministic smoothness constraint inversion
of ERT data to estimate hydrogeological features such as the
mean horizontal lengths of identified hydrofacies, which are
then incorporated as key input parameters in the T-PROGS
simulation process.

The main objective of this research is to develop an effec-
tive approach that utilizes both hard and soft data to charac-
terize heterogeneity in alluvial aquifers. This comprehensive
approach consists of four steps: (1) identification of hydrofa-
cies using borehole data; (2) estimation of the lateral extent
of hydrofacies based on ERT measurements based on classi-
cal deterministic-based smoothness constraint inversion ap-
proach; (3) stochastic modeling to generate the spatial dis-
tribution of hydrofacies; (4) selection of the most plausible
realization of hydrofacies distribution. Other important ob-
jectives of this work are to test whether the inclusion of ERT-
derived lens lengths into model development improves pre-
diction accuracy of hydrofacies spatial distribution, and to
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Figure 1. Distribution of boreholes and ERT profiles in the study area used for T-PROGS modeling (blue boreholes are used for model
development, while orange boreholes represent validation points in Model Area 1). Data reliability classes: highly reliable – original logs
and reports available for checking procedures and hydraulic conductivity (K) determination; reliable – original logs and reports available,
but lack details on lithology or information for K determination; less reliable – original logs not available, but consistent with nearby reliable
data (modified from Ross et al., 2005).

evaluate the influence of grid resolution on prediction accu-
racy.

2 Materials and methods

2.1 Site description and hydrofacies characterization

The study was conducted in northwestern Croatia, within
the Varaždin alluvial aquifer located in the western part of
the Drava River valley (Fig. 1). The aquifer covers an area
of about 264 km2, at an altitude ranging from 155 to 200 m
above sea level. Detailed descriptions of the geological and
hydrogeological settings are available in previous publica-
tions (e.g., Karlović et al., 2022; Marković et al., 2022; Brkić
et al., 2021). The following text provides a brief overview
of the main stratigraphic and hydrogeological characteristics
relevant to this study. The aquifer consists mainly of gravel
and sand, with varying amounts of silt and clay (Urumović
et al., 1990). The changes in the flow patterns and sedi-
ment deposition of the Drava River during the Pleistocene
and Holocene have resulted in the heterogeneous stratigra-
phy of the aquifer. According to the layer-based conceptual
model, which simplifies the distribution of hydrogeological
properties, a low-permeability interlayer divides the aquifer

into two layers (Karlović et al., 2021). The overlying semi-
permeable layer of the aquifer is thin or non-existent, indi-
cating a high infiltration potential and an increased vulnera-
bility of groundwater to contamination from surface sources.
A very low permeable layer consisting of marl, silt, and clay
lies beneath the aquifer.

The dataset used in this study to identify hydrofacies con-
sists of 180 boreholes collected from the Croatian Geological
Survey database (Fig. 1). Depending on the quality and con-
sistency of the driller’s descriptions, the dataset reflects vary-
ing levels of reliability, as the borehole logs were collected
over decades by multiple investigators. Based on the litholog-
ical descriptions from the boreholes, four distinct hydrofa-
cies were defined: gravel (G), gravel, sandy to clayey (Gsc),
sand with gravel, clayey to silty (Sgcs), and clay to silt,
sandy (CSs) (Table 1). Each lithological unit identified in
the borehole logs was assigned to one of these hydrofacies
(Fig. 2). All spatial data were organized in ArcGIS software.
All maps are presented in the official coordinate system of
the Republic of Croatia (HTRS96/TM).
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Figure 2. Distribution of hydrofacies units in boreholes within the study area.

Table 1. Attributes of the hydrofacies

Hydrofacies G Gsc Sgcs CSs

Common descriptions Gravel, sandy, medium- Gravel, sandy-clayey, Sand with gravel, Clay to silt,
coarse grained fine-medium grained clayey-silty sandy

Electrical resistivity (�m) > 500 200–500 100–200 < 100

Model Area 1

Mean thickness (m)a 11.81 4.42 1.97 1.54
Mean length (m)b (nd) 230 (6) background material 77 (20) 91 (14)
Mean width (m)c (nd) 213 (6) background material 93 (17) 111 (12)
Volumetric proportion (–) 0.73 0.11 0.07 0.09

Model Area 2

Mean thickness (m)a 7.45 5.62 1.89 1.63
Mean length (m)b (nd) 230 (6) background material 34 (11) 20 (5)
Mean width (m)c (nd) 213 (6) background material 33 (10) 24 (5)
Volumetric proportion (–) 0.50 0.26 0.16 0.08

a Mean thickness determined from diagonal entries in the vertical transition rate matrix (Carle, 1999). b Mean length estimated according to ERT
profiles in the direction of the Drava River flow (x-axis). c Mean width estimated according to ERT profiles perpendicular to the Drava River flow
(y-axis). d number of lenses (n) analyzed for each parameter.

2.2 Application of ERT data to improve
characterization of heterogeneity

For modeling heterogeneity, data along the vertical axis are
typically obtained from borehole logs at a finer resolution,
while horizontal data are limited, with coarser resolutions up
to the kilometer-scale, depending on the distance between
boreholes. The ERT method was used to better character-
ize the horizontal extent of hydrofacies. Specifically, a set
of 10 ERT profiles was measured in the Vinokovščak well-
field catchment area to visualize and estimate the lateral di-
mensions of hydrofacies, with 5 profiles along (x-axis) and
5 profiles perpendicular to the direction of the Drava River
flow (y-axis) (Model Area 2 in Fig. 1). The field measure-

ments were performed in March 2024, using the POLARES
2.0 electrical imaging system. The measurements were taken
at a frequency of 20 Hz. Each profile was 315 m long and
equipped with 64 electrodes spaced 5 m apart. To collect
data, Wenner–Schlumberger (W-S) electrode configuration
was used, obtaining a pseudo section of 1250 data points and
reaching a maximum depth of investigation of approximately
40 m. Apparent resistivity was inverted using the R2 code,
on the ResIPy standalone platform (Blanchy et al., 2020).
Lithological information from the SPV-5 and SPV-8 obser-
vation wells, located few meters from the nearest ERT pro-
files VIN-1, VIN-4, and VIN-10 provided hard data to sup-
port the interpretation of the resistivity models. In particular,
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the projection of the boreholes onto the ERT profiles allowed
matching the depths and thicknesses of the hydrofacies ob-
served in the boreholes with an iso-resistivity value (ρhf) de-
rived from overlapping the boreholes with contour resistivity
maps (as explained below), thereby delineating their resis-
tivity boundaries. This procedure was used to define the re-
sistivity range of the four hydrofacies across the study area
using the three ERT profiles (VIN-1, VIN-4, and VIN-10)
as references. Then, by simple delineation of the ρhf bound-
ary values using the contour resistivity maps, the lateral and
vertical extents of each hydrofacies in the other ERT profiles
were determined. However, artifacts and a high degree of un-
certainty in the inverted ERT images may occur due to the
complexity of structural geometries (e.g., lenses), emplace-
ment, depth, thickness, and resistivity contrast among differ-
ent geologic materials, as well as associated with the limita-
tions inherent to the solution of the inversion problem. The
former are linked to the measurement error, whereas the lat-
ter result of parameters settings (in this case the constraint of
parameters by smoothness regularization scheme), both hav-
ing a direct impact in the reliability of estimated ρhf values.
In the study area, ERT sensitivity was affected by very low
resistivity values at approximately 20 m depth, resulting in
a loss of resolution and limited depth of investigation, thus
preventing to delineate with certainty the extent of ρhf for
such conductive material. To improve our interpretation of
ERT data and better estimate the possible geometric charac-
teristics of hydrofacies below 20 m depth and their effects in
the inversion process, a series of ERT measurement simula-
tions were performed using synthetic models. These models
tested different possible structures such as a continuous, lay-
ered lens or discrete, smaller lens-shaped conductive mate-
rial. The simulations replicated the electrode array (W-S) and
sequence from the field. The thickness (vertical extent) of hy-
drofacies in the synthetic models was constrained using ob-
servations from nearby wells (SPV-5 and SPV-8), while the
lateral extent of hydrofacies above 20 m depth was approx-
imated based on length estimates from the field-data based
model.

2.3 Modeling the spatial distribution of the hydrofacies

The spatial distribution of the hydrofacies at the site was
modeled using a combination of geostatistical and stochastic
methods using T-PROGS software (Carle, 1999) within the
Aquaveo Groundwater Modeling System 10.4 platform. This
approach uses transition probabilities derived from boreholes
and a three-dimensional Markov chain model to integrate
conceptual geological information, forming a realistic model
of subsurface heterogeneity (Carle and Fogg, 1996, 1997;
Carle et al., 1998). In this study, borehole depth intervals
were classified into four hydrofacies based on the borehole
log descriptions (Table 1). The hydrofacies models were con-
structed at different scales, regional and local. The regional
model, referred to as Model Area 1 (MA1), represents the

entire aquifer, while the local model, referred to as Model
Area 2 (MA2), focuses on the Vinokovščak wellfield (Fig. 1).

2.3.1 Model Area 1

Of the 180 boreholes in MA1, 80 % were used for model de-
velopment (n= 144), while the remaining 20 % were used
for validation (n= 36). Transition probability curves were
calculated using a lag interval of 0.3 m, which is less than
the minimum hydrofacies thickness in 144 boreholes. These
curves were used to construct a Markov chain models in the
vertical (z) direction. The maximum entropy approach was
used to fit the vertical Markov chain models to the mea-
sured transition probabilities. The maximum entropy factors
represent the ratio between the observed and maximum en-
tropy transition rates. A factor of 1 indicates a random dis-
tribution of hydrofacies, depending only on their propor-
tions (Table 1). Values greater than 1 indicate transitions be-
tween hydrofacies that are more frequent than random and
vice versa. The probabilistic constraints of the Markov chain
model eliminate the need to specify transition rates for the
background category, as they are automatically adjusted to
balance the equations (Carle, 1999). Based on the ERT in-
terpretation, the Gsc hydrofacies was selected as the back-
ground material, filling areas not occupied by other hydro-
facies. Mean lengths and widths for non-background hy-
drofacies were assigned based on ERT profile interpreta-
tions (Table 1). The x, y, and z Markov chain models were
then combined into a 3D Markov chain model that pro-
vided input to a conditional simulation that resulted in multi-
ple (n= 10), equally probable 3D realizations of the spatial
distribution of the hydrofacies. The grid was configured as
100 cells× 100 cells× 100 cells in the x, y and z directions,
resulting in 1 000 000 cells. The selection of validation bore-
holes (n= 36) considered their spatial distribution as well
as their depth and was performed in four steps: (i) bore-
holes were grouped into three depth categories; (ii) bore-
hole proportions were calculated for each depth category;
(iii) boreholes were randomly selected within each depth cat-
egory; (iv) validation boreholes were compiled proportion-
ately from each depth category. Finally, 10 stochastic 3D re-
alizations of the hydrofacies spatial distribution were com-
pared with the corresponding borehole data in each cell at
1 m vertical resolution. This validation process allowed the
identification of the most plausible realization of the spatial
distribution of the hydrofacies, with accuracy expressed as
the percentage of correct predictions.

2.3.2 Model Area 2

The hydrofacies models in MA2 were constructed using the
same procedure as in MA1, based on data from 10 highly
reliable boreholes in the Vinokovščak wellfield. The model
depth was limited to the top 20 m to manage the compu-
tational load and to test: (i) whether the inclusion of soft
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Figure 3. Pseudo 3D ERT model for the 10 profiles measured in the Vinokovščak wellfield.

data, specifically ERT-derived lens lengths, improves model
prediction accuracy compared to the model developed us-
ing only borehole data, and (ii) the effect of grid resolution
on prediction accuracy. Accordingly, mean lens lengths for
non-background hydrofacies, derived from ERT profile in-
terpretations, were adjusted to include only lenses within the
first 20 m (Table 1). A leave-one-out validation procedure
was applied across 10 boreholes, checking 10 realizations for
both ERT-derived and default lens lengths in T-PROGS (i.e.,
10 times the hydrofacies thickness), resulting in 200 simula-
tions per grid resolution. In total, 1200 simulations were con-
ducted in MA2, using grid resolutions of 10 m× 10 m× 1 m,
20 m× 20 m× 1 m, 40 m× 40 m× 1 m, 60 m× 60 m× 1 m,
80 m× 80 m× 1 m, and 100 m× 100 m× 1 m.

3 Results and discussion

3.1 Implementation of ERT data to improve
characterization of hydrofacies

The entire ensemble of the 10 ERT profiles resulted in a
pseudo 3D resistivity model that allowed visualization of
the subsurface electrical resistivity distribution up to about
40 m depth throughout the study area (Fig. 3). The model
shows a broad range of resistivity values from 60 to 4677�m
from the surface to about 20 m depth, reflecting the degree of
heterogeneity characteristic for alluvial environments. How-
ever, at greater depths, from 20 to 40 m, we observe low re-
sistivity values (≤ 100�m), which limit the depth of inves-
tigation and reduce the resolution of ERT measurements. At
shallow depths, a clear transition from a low to intermedi-
ate resistivity zone in the north to a high resistivity zone in
the south is observed, suggesting a progression from fine-
medium size to coarser material, consistent with the litholog-
ical information provided from boreholes. However, a very
high resistivity anomaly in the western part of VIN-1 profile
suggests the presence of coarser material in this area. High

resistivity anomalies linked to coarse materials mostly ap-
pear as elongated, lens-shaped bodies with a flat top surface.
Their thickness varies over a depth range from 5 to 20 m, al-
though they are often distinguished near the surface, resulting
in a well-defined lateral resistivity contrast with surrounding
intermediate and low resistivity values within the first 5 m,
particularly towards the southern part of the study area. Inter-
mediate resistivity values are consistently observed across all
profiles, representing the background material within which
the high and low resistivities are embedded.

There is a satisfactory consistency of resistivity in the in-
tersections between profiles, providing a good 3D approxi-
mation of the shape and extent of high and low resistivity
anomalies at the scale of the study area, i.e., a rough esti-
mate of the lateral and vertical extent of hydrofacies. From
a depth of about 20 m, the observed low resistivity anomaly
coincides with the presence of thin layers of fine material
observed in the boreholes, i.e., hydrofacies CSs and Sgcs.
However, the bottom of this layer is not resolved in the ERT
imaging, preventing to delineate the lateral and vertical ex-
tent of these hydrofacies by the electrical signature, which
is explained by the high conductivity values of these mate-
rials. Consequently, all the materials underneath is masked
with underestimated resistivity values. This interpretation is
corroborated by borehole data, which consistently show that
Gsc hydrofacies occurs below the CSs and Sgcs units.

The pseudo 3D model based on ERT data was not suffi-
cient to obtain detailed lateral and vertical extent of hydro-
facies below 20 m depth, which presents input information
for stochastic modelling and predicting spatial distribution
of hydrofacies. Therefore, we modified our strategy to in-
terpret the ERT inverted data for each profile by generating
contour maps of iso-resistivity values (1.26�m resolution)
through kriging interpolation over a refined grid mesh of four
cells between electrodes. As a result, we obtained ERT im-
ages for each profile, as illustrated by the VIN-1 example
in Fig. 4, which demonstrates our interpretation approach
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Figure 4. ERT profile VIN-1 (RMS misfit= 1.23 %) showing the distribution of hydrofacies, built from: (a) joint interpretation of field ERT
imaging and lithological information observed in borehole SPV-5; (b) coupled with ERT imaging results (RMS misfit= 1.01 %) from a
synthetic model; (c) based on lens-shaped geometries of hydrofacies and associated resistivity values.

and serves as the basis for our final analysis. By correlating
lithological information from boreholes with iso-resistivity
contour maps, we determined the characteristic resistivity
values (ρhf) for each hydrofacies at every vertical litholog-
ical change (Table 1). For example, the depth boundaries of
gravel (G) in boreholes SPV-5 and SPV-8 corresponded to
the 500�m iso-resistivity contour in profiles VIN-1, VIN-
4, and VIN-10, establishing this value as the lower resis-
tivity threshold for hydrofacies G. Following the same pro-
cedure, intermediate-high resistivity values (200–500�m)
are associated with Gsc, low-intermediate resistivity range
(100–200�m) is linked to Sgcs, and low resistivity values
(< 100�m) correspond to CSs. We note that the ρhf bound-
ary values for the CSs and Sgcs materials were determined by
matching their depth intervals (20–23 and 0–3 m in SPV-5,
and 25–29 and 0–3.4 m in SPV-8), with the 100 and 150�m
in the nearby VIN-1, VIN-4, and VIN-10 profiles, respec-
tively.

The refined field data-based geoelectrical model for VIN-
1 (Fig. 4a) indicates that the CSs material, found at 0–
2 and 20.7–22 m depth in borehole SPV-5, is delineated
by the continuous and undulated conductivity line contour
at ρhf= 100 and 125�m, respectively. However, the line

contour at ρhf= 80�m suggests a separated conductivity
anomalies at 60 and 160 m distance, with the latter located
very close to the projection distance of SPV-5. Another well-
defined and separated conductive anomaly is observed from
220 to 280 m distance with ρhf= 125–160�m (Fig. 4a).

These results led us to conduct synthetic models to assess
whether the lateral extent of CSs and Sgcs materials in the
study area could be better characterized as either a single
continuous layer or discontinuous lenses. Given that the con-
tour lines at ρhf= 80�m and ρhf= 160�m in VIN-1 sug-
gest separated continuous lenses below 20 m depth, we fo-
cused our synthetic modelling on two co-existing lenses with
both CSs and Sgcs materials emplaced together (Fig. 4c),
systematically varying the length, separation distance and
resistivity contrast (true resistivity values) relative to the
other hydrofacies. The proposed lens-shaped geometry is
supported by borehole data, with the incomplete presence of
this layer indicating its discontinuous nature across the study
area.

After evaluating over 20 geological scenarios, including a
single continuous layer at 20 m depth, the model in Fig. 4c
demonstrated the closest match (the geoelectrical model in
Fig. 4b) to the field data-based model shown in Fig. 4a. The
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ResIPy software based on R2 was very useful to draw the
rounded geometry of hydrofacies in synthetic models, using
the same triangular mesh as for the inversion of field data.
The acceptance criteria of synthetic simulations were based
on the similarities in the shape of the conductive anomaly ap-
pearing at 20 m depth in the synthetic model and the equiva-
lent anomaly in the field-data inversion model, i.e., the very
similar resistivity distribution provided by the inversion from
synthetic model with that obtained from the inversion of field
data, suggest that the emplacement of geologic materials (hy-
drofacies) proposed by the synthetic model is very likely to
occur in the field with such contrast in their bulk resistivity.
In the synthetic models, the geometries of the materials and
their resistivity values within the first 20 m of depth were set
according to the ranges suggested by the field ERT model.
The optimal synthetic model configuration was achieved by
reducing CSs and Sgcs resistivities at 20 m depth to 20�m,
which are values more representative of clay-silt materials.
This implies that estimated resistivity values from field data
inversion are likely overestimated for these hydrofacies be-
low 20 m depth.

The combined ERT results at VIN-1 show a hetero-
geneous subsurface configured by resistive and conduc-
tive lens-shaped structures. Within the first 20 m, the ERT
methodology provides an excellent characterization of hy-
drofacies. Although the resistivity values are overestimated,
the lateral and vertical extent of the hydrofacies are well
resolved and consistent with the field ERT results. Specifi-
cally, the first 20 m of depth in VIN-1 consist of two highly
resistive hydrofacies G lenses with average values of 1500
and 800�m, embedded in less resistive hydrofacies Gsc
(Fig. 4a). It is important to note a discrepancy between hy-
drofacies G and the associated ρhf values at the projected po-
sition of borehole SPV-5, suggesting that the borehole does
not intersect the VIN-1 profile at its actual location. How-
ever, approximately 15 m from the projected borehole, the
thickness of hydrofacies G in SPV-5 aligns perfectly with
the high-resistivity anomaly towards the western part of the
profile, further highlighting the lateral heterogeneity at the
site. Moreover, given that the ERT profile endpoints were
recorded with a pocket GPS, potential inaccuracies in hor-
izontal positioning may have contributed to this discrepancy.
Below 20 m depth, gradual decrease in resistivity is observed,
from 200 to 63�m at the maximum depth. The iso-resistivity
contour lines, which outline the shape and extent of the con-
ductive anomalies, reveal the presence of two lens-shaped
conductive bodies in the VIN-1 profile, as suggested by ERT
results from synthetic modeling (Fig. 4b and c). Hydrofacies
CSs and Sgcs, observed in borehole SPV-5 between 20.7 and
23 m, align well with the top of the conductive anomaly be-
tween the iso-resistivity lines at 160�m (20 m depth) and
100�m (25 m depth). Using the same procedure, the con-
ductive anomaly at the end of profile VIN-1 corresponds to
a CSs-Sgcs lens, bounded by the iso-resistivity values of 160
and 125�m between 28 and 32 m depth. The same approach

was systematically applied across all 10 ERT profiles, allow-
ing comprehensive estimation of mean hydrofacies dimen-
sions in both horizontal directions, derived from all identified
lenses (Table 1). The synthetic modeling results improved the
procedure for constructing hydrofacies models using ERT
data by suggesting reliable estimates of hydrofacies dimen-
sions below 20 m depth, which serve as critical input param-
eters for the T-PROGS model.

3.2 Transition probability geostatistical simulation

3.2.1 Model Area 1

The Markov chain model identified the vertical tendencies
of the hydrofacies in the borehole data (Fig. 5a). The volu-
metric proportion and mean thickness of each hydrofacies
are shown in Table 1. The mean thickness is determined
along the diagonal elements of the matrix, representing auto-
transitions. Hydrofacies G is the thickest, followed by GSc,
Sgcs, and CSs. Since GSc is assigned as a background hydro-
facies, its transition rates are computed in relation to the tran-
sition rates of other hydrofacies. The entropy factors (EF) ob-
served between hydrofacies pairs show similar, near-random,
or below random vertical tendencies (Fig. 5a). The only sig-
nificant difference is between CSs and Sgcs, with a prefer-
ence for CSs to transition into Sgcs (EF 1.65) rather than vice
versa (EF 0.59). Hydrofacies Sgcs tends to occur above G
(EF 1.26), although less frequently than the reverse sequence
(EF 1.53). The occurrence of G over CSs (EF 0.89) and the
reverse sequence (EF 0.35) are less probable than random.
The lack of consistent vertical transition patterns between
hydrofacies suggests that their relative proportions play an
important role in determining their spatial distribution.

The incorporation of lens lengths derived from ERT imag-
ing into the model facilitated the development of horizon-
tal Markov chain models. Lateral continuity of hydrofacies
is observed, with similar mean lengths in both horizontal
directions, ranging from 18 times (G in the y-direction) to
72 times (CSs in the y-direction) greater than the vertical
thickness recorded in the borehole data, depending on the hy-
drofacies (Table 1). The 3D Markov chain models were used
to generate 10 stochastic realizations of the hydrofacies dis-
tribution. The validation results identified the most plausible
realization of the hydrofacies distribution, i.e., the represen-
tative hydrofacies model of the Varaždin aquifer (Fig. 5b).
The percentage of correct predictions across 10 realizations
ranges from 53 % to 63 % (mean 57.3 %, standard devia-
tion 2.5 %), with realization 8 (R8) being the most accurate
(Fig. 6a). These values are consistent with those observed
in heterogeneous environments, as reported by Bianchi et al.
(2015), where prediction accuracy ranges from 47 % to 57 %,
and by He et al. (2014), with values between 33 % and 77 %,
depending on the inclusion of soft data in model develop-
ment. Furthermore, mismatches between hydrofacies G and
Gsc contribute to 16 % of discrepancies. This difference has
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Figure 5. T-PROGS results in MA1: (a) Entropy factors in the vertical direction generated by a Markov chain model from borehole logs – di-
agonal boxes represent unobservable auto-transitions, gray boxes display values computed for the background material; (b) the representative
stochastic hydrofacies model of the Varaždin aquifer (vertical exaggeration is 50-fold).

Figure 6. Validation test results: (a) percentage of correct predictions in 10 stochastic realizations; (b) percentage of correct predictions in
boreholes for representative realization R8 (dashed lines indicate the mean percentage of correct predictions).

no significant impact on the assignment of hydraulic conduc-
tivities for the groundwater flow model, as both hydrofacies
are highly conductive. Validation boreholes in R8 show vari-
able prediction accuracies (Fig. 6b), without a clear spatial
pattern, with lower prediction accuracy occurring in central
areas, as well as near the western and southern edge of the
aquifer.

A detailed R8 analysis revealed that the model reproduces
spatial distribution of the G hydrofacies most accurately, with
an 86 % match between the model and the validation bore-
holes. The matches of the other hydrofacies are considerably
lower, with 18 %, 15 %, 13 % for CSs, Sgcs, and Gsc, respec-
tively. The significantly higher accuracy in the case of hydro-
facies G can be attributed to its high volumetric proportion
(73 %) and consequently its high reproducibility when us-
ing a coarse grid (which exceeds the dimensions of the other
hydrofacies). Estimation of the volumetric proportions of hy-
drofacies is based on borehole data of varying reliability. The
purpose of many boreholes used in the study, classified as
either reliable or less reliable, was originally to determine
aquifer boundaries and not to delineate intervals of deposits
with different sand and gravel ratios, such as Sgcs and Gsc.

3.2.2 Model Area 2

The simulations in MA2 were performed to evaluate whether
incorporating ERT-derived lens lengths improves model pre-
diction accuracy, compared to models developed using only
borehole data and default lens lengths. To ensure that the re-
sults are not influenced by data reliability, the simulations
were conducted in the Vinokovščak wellfield area, using only
highly reliable borehole data available in this area. In addi-
tion, the model depth was limited to the upper 20 m, corre-
sponding to the depth interval where the ERT methodology
provided high-quality characterization of hydrofacies, thus
avoiding the effects of low resistivity anomalies. The lim-
ited area of MA2 also allowed testing the impact of differ-
ent grid resolutions on model prediction accuracy, as the T-
PROGS software supports simulations with up to 3.5 mil-
lion cells (https://www.xmswiki.com/wiki/GMS:T-PROGS,
last access: 21 January 2025). The Markov chain model iden-
tified the vertical tendencies of hydrofacies in 10 boreholes
within MA2 (Fig. 7a). As in MA1, the entropy factors in
MA2 indicate an absence of vertical patterns, pointing to the
relative proportions of hydrofacies as the main driver of their
spatial distribution.

After combining vertical and horizontal Markov chain
models, developed using both ERT-derived (Table 1) and
default lens lengths (i.e., 10 times the hydrofacies thick-
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Figure 7. T-PROGS results in MA2: (a) Entropy factors in the vertical direction generated by a Markov chain model from borehole logs;
(b) one of the geostatistical realizations of the spatial distribution of hydrofacies in the Vinokovščak wellfield area, constructed using ERT-
derived lens lengths with a grid resolution of 20 m× 20 m× 1 m (vertical exaggeration is 20-fold).

Figure 8. Comparison of prediction accuracy of models in the
Vinokovščak area based on ERT-derived lens lengths (white box-
whisker plots) and default lens lengths (gray plots) at different grid
resolutions. Note: The edges of the box represent the standard devi-
ation, the whiskers represent the minimum and maximum, and the
central line represents the mean of the data.

ness), the 3D Markov chain models were used to gener-
ate 10 stochastic realizations of hydrofacies distribution by
leaving one borehole out of each simulation. This process
was repeated for all 10 boreholes, resulting in 200 sim-
ulations per grid resolution. Figure 8 displays a compar-
ison of the MA2 simulation results, showing the predic-
tion accuracy for horizontal grid resolutions of 10 m× 10 m,
20 m× 20 m, 40 m× 40 m, 60 m× 60 m, 80 m× 80 m, and
100 m× 100 m.

The mean values of the correct predictions for simulations
based on ERT-derived lens lengths are consistently higher for
all grid resolutions compared to models using default data.
However, the differences are not significant and range from
0.3 % to 5.0 % depending on the grid resolution. The standard

deviations indicate that models based on both datasets ex-
hibit wide variability across all grid resolutions. In addition,
the min-max ranges are relatively consistent, suggesting that
both models handle prediction extremes similarly, regardless
of grid resolution. The similar prediction outcomes between
the two approaches may be attributed to the comparable lens
lengths derived from ERT and default data, with ERT-to-
default length ratios varying by hydrofacies: 2.9–3.1 for G,
1.8 for Sgcs, and 1.2–1.5 for CSs (calculated according to the
data in Table 1). The relationship between model prediction
accuracy and grid resolution reveals a distinct pattern that re-
quires further exploration. To better understand this pattern,
it is important to highlight that the ERT-derived lens lengths
used in the MA2 simulations are 20 and 24 m for CSs, and
33 and 34 m for Sgcs (Table 1). The prediction accuracy of
the models using 10× 10 grid is the lowest, despite its high
spatial resolution. This suggests that increasing model detail
beyond the characteristic lens dimensions produced subdivi-
sions that did not enhance model performance, reducing the
potential benefits of using fine resolution grids. In contrast,
the 20 m× 20 m horizontal cell size closely matches the lens
lengths and better captures the spatial patterns of the ERT
data. It seems that the 20× 20 grid resolution resolves the
lens features (Fig. 7b), avoids excessive segmentation and
provides the most reliable simulation results, and is therefore
the optimal configuration. As the grid resolution increases
to 40× 40 and 60× 60, a decrease in mean prediction accu-
racy is observed for both data sets. The coarser grid resolu-
tion leads to a decrease in the spatial representation of hy-
drofacies, as larger grid cells cannot adequately resolve the
lens lengths. Interestingly, the trend changes for the 80× 80
and 100× 100 grid resolutions. Contrary to intuitive expec-
tations, these grids show better prediction accuracy than the
60× 60 grid resolution. A possible explanation for this is that
larger grid cells provide a more homogeneous representation
that better matches validation borehole data. This smoothing
effect may help to mitigate inaccuracies caused by incom-
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plete representation of lens lengths, resulting in better per-
formance despite compromising the spatial resolution of the
hydrofacies representation.

4 Summary and conclusions

The characterization of aquifer heterogeneity in alluvial
plains requires the integration of geological, geophysical,
geostatistical, and modeling tools. Advancing these meth-
ods and improving data integration is crucial for better un-
derstanding and management of these vital groundwater re-
sources. The presented hydrofacies model is the first hy-
drogeological representation of the studied aquifer devel-
oped using geostatistical processing and stochastic modeling.
Its advantages lie in the transparency and reproducibility of
scientifically based procedures. The hydrofacies distribution
can be used as a basis for defining hydraulic conductivity
fields, a critical input for groundwater flow and contaminant
transport modeling, which will support future aquifer man-
agement in the study area. The four-step approach summa-
rized below is straightforward, and adaptable to other alluvial
or similar sedimentological environments.

4.1 Identification of hydrofacies using borehole data

The ability to model aquifer heterogeneity depends on the
quality and spatial distribution of hard data, such as bore-
holes. Due to the varying quality and consistency of borehole
logs, the dataset may reflect different levels of reliability, as
borehole logs are often compiled over decades by different
investigators. Interpreting borehole descriptions and classi-
fying them into hydrofacies is challenging, as well as subjec-
tive. It is recommended to use no more than five hydrofacies,
as additional categories rarely justify the increased detail and
time required.

4.2 Delineation of lateral extent of hydrofacies using
ERT

Complex heterogeneous environments, such as alluvial
aquifers, can be difficult to characterize using simple resis-
tivity data analysis. Therefore, more rigorous ERT data anal-
ysis such as the one proposed in this study are needed. A joint
interpretation of ERT, borehole data, and synthetic ERT mod-
eling resulted in a more reliable delineation of the hydrofa-
cies below 20 m. This approach helped to overcome some of
the limitations of the ERT method, in particular the presence
of a thin, electrically conductive layer at 20 m depth. This
layer prevented the current from penetrating deeper, which
affected the ERT resolution and limited its ability to accu-
rately resolve lens lengths below this depth. While synthetic
modeling has addressed this issue to some extent, additional
techniques such as cross-borehole induced polarization and
GPR measurements should be considered in future research
to strengthen hydrofacies characterization below 20 m. Sub-

sequent research could also benefit from using stochastic-
probabilistic inversion methods for geophysical data inter-
pretation.

4.3 Stochastic modeling to define the spatial
distribution of hydrofacies

Developing vertical Markov chain models from borehole
data requires accurate fitting of Markov chain curves to
measured transition probabilities and assignment of lag dis-
tances that reflect all hydrofacies occurrences in boreholes.
In addition to the maximum entropy approach used in this
study, the modeler can choose between four alternative fit-
ting approaches (Carle, 1999). The entropy factor analysis
indicates a lack of consistent vertical transition patterns be-
tween hydrofacies, highlighting the importance of relative
proportions in shaping their spatial distribution. Hydrofa-
cies lengths from the ERT interpretation showed dominant
horizontal continuity relative to thickness and supported the
development of horizontal Markov chain models. The pre-
sented approach demonstrated effective integration of bore-
hole and ERT data into a geologically meaningful 3D rep-
resentation of the subsurface heterogeneity. Although this
study used T-PROGS software, other stochastic approaches
that integrate borehole and geophysical data for hydrofacies
distribution modeling can be considered.

4.4 Selection of the representative realization of the
hydrofacies distribution

The validation procedure ensures that different parts of the
study area are represented by dividing the boreholes into
depth ranges, as used here, or alternatively into zones, bore-
hole clusters, etc., based on their spatial distribution and
site characteristics. An independent set of boreholes or a
split of the borehole data into two subsets (for model de-
velopment and validation) can be used, with random selec-
tion to reduce bias. Despite the use of a coarse grid reso-
lution in the MA1 simulations, the prediction accuracy re-
mains within an acceptable range, comparable to previous
studies in similar heterogeneous settings. In addition, the
MA2 simulation analysis revealed that integration of soft
data, i.e., ERT-derived hydrofacies lens lengths, provides a
slight improvement in model prediction accuracy compared
to models based on borehole data alone. To understand the
balance between model performance and computational ef-
ficiency, model prediction accuracy was analyzed as a func-
tion of grid resolution. The results show that the optimal cell
size is the one that closely matches the lengths of the hy-
drofacies lenses. High-resolution grids failed to improve pre-
dictions despite capturing finer details, while coarser grids
provide a simplified hydrofacies representation that may im-
prove model prediction accuracy, but at the expense of the
spatial resolution of the hydrofacies representation. At first
impression, if the performance differences between models
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4980 I. Karlović et al.: Integrated approach for characterizing aquifer heterogeneity in alluvial plains

using different grids are small, a coarser grid could be con-
sidered to reduce computational requirements. However, the
obvious disadvantage is the potential loss of the ability to
resolve specific geological features of interest, which could
limit their use in developing reliable hydrofacies models.
Therefore, grid selection should ultimately prioritize resolv-
ing key heterogeneities while balancing computational de-
mands, so future research efforts should focus on using hy-
drofacies models developed with different grid resolutions
and evaluating their reliability through numerical groundwa-
ter flow simulations.
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