Articles | Volume 29, issue 19
https://doi.org/10.5194/hess-29-4893-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-4893-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Storyline analytical framework for understanding future severe low-water episodes and their consequences
Gabriel Rondeau-Genesse
CORRESPONDING AUTHOR
Ouranos inc., 550 Rue Sherbrooke W., West Tower, 19th floor, Montréal (QC), H3A 1B9, Canada
Louis-Philippe Caron
Ouranos inc., 550 Rue Sherbrooke W., West Tower, 19th floor, Montréal (QC), H3A 1B9, Canada
Kristelle Audet
Groupe AGÉCO, 25 Mozart Avenue East, office 310, Montréal (QC), H2S 1B1, Canada
Laurent Da Silva
Nada Conseils, Montréal (QC), Canada
Daniel Tarte
T² Environnement, 91 boul. Constable, McMasterville (QC), J3G 1M8, Canada
Rachel Parent
T² Environnement, 91 boul. Constable, McMasterville (QC), J3G 1M8, Canada
Élise Comeau
Université du Québec à Montréal (UQÀM), Department of Earth and Atmospheric Sciences, Montréal (QC), Canada
Dominic Matte
Ouranos inc., 550 Rue Sherbrooke W., West Tower, 19th floor, Montréal (QC), H3A 1B9, Canada
Université du Québec à Montréal (UQÀM), Department of Earth and Atmospheric Sciences, Montréal (QC), Canada
Related authors
Behmard Sabzipour, Philippe Lucas-Picher, Richard Turcotte, and Gabriel Rondeau-Genesse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3436, https://doi.org/10.5194/egusphere-2025-3436, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Quebec, Canada is experiencing more frequent and intense rainfall events during the warm seasons, a trend expected to increase due to climate change. This raises the risk of more frequent and severe flooding in urban areas. To better understand extreme rainfall and the resulting floods, this study evaluates, for the first time in Canada, the advantages of using high-resolution climate model outputs. We then assess whether these data can improve peak flow simulations using a hydrological model.
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025, https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Short summary
This study compares long short-term memory (LSTM) neural networks with traditional hydrological models to predict future streamflow under climate change. Using data from 148 catchments, it finds that LSTM models, which learn from extensive data sequences, perform differently and often better than traditional hydrological models. The continental LSTM model, which includes data from diverse climate zones, is particularly effective for understanding climate impacts on water resources.
Jean-Luc Martel, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, François Brissette, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Simon Lachance-Cloutier, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2134, https://doi.org/10.5194/egusphere-2024-2134, 2024
Short summary
Short summary
This study explores six methods to improve the ability of Long Short-Term Memory (LSTM) neural networks to predict peak streamflows, crucial for flood analysis. By enhancing data inputs and model techniques, the research shows LSTM models can match or surpass traditional hydrological models in simulating peak flows. Tested on 88 catchments in Quebec, Canada, these methods offer promising strategies for better flood prediction.
Behmard Sabzipour, Philippe Lucas-Picher, Richard Turcotte, and Gabriel Rondeau-Genesse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3436, https://doi.org/10.5194/egusphere-2025-3436, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Quebec, Canada is experiencing more frequent and intense rainfall events during the warm seasons, a trend expected to increase due to climate change. This raises the risk of more frequent and severe flooding in urban areas. To better understand extreme rainfall and the resulting floods, this study evaluates, for the first time in Canada, the advantages of using high-resolution climate model outputs. We then assess whether these data can improve peak flow simulations using a hydrological model.
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025, https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Short summary
This study compares long short-term memory (LSTM) neural networks with traditional hydrological models to predict future streamflow under climate change. Using data from 148 catchments, it finds that LSTM models, which learn from extensive data sequences, perform differently and often better than traditional hydrological models. The continental LSTM model, which includes data from diverse climate zones, is particularly effective for understanding climate impacts on water resources.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jean-Luc Martel, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, François Brissette, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Simon Lachance-Cloutier, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
EGUsphere, https://doi.org/10.5194/egusphere-2024-2134, https://doi.org/10.5194/egusphere-2024-2134, 2024
Short summary
Short summary
This study explores six methods to improve the ability of Long Short-Term Memory (LSTM) neural networks to predict peak streamflows, crucial for flood analysis. By enhancing data inputs and model techniques, the research shows LSTM models can match or surpass traditional hydrological models in simulating peak flows. Tested on 88 catchments in Quebec, Canada, these methods offer promising strategies for better flood prediction.
Cited articles
Achkar, M.-B.: Développement d'un modèle conceptuel pour l'évaluation de la demande en eau urbaine future: application à une ville québécoise, Master's thesis, Polytechnique Montréal, 2023. a
Assani, A. A.: Extreme Hydrological Drought in Southern Quebec (Canada): Natural and Anthropogenic Factors Interactions on its Spatio-Temporal Variability, International Journal of Environmental Sciences and Natural Resources, 32, 556348, https://doi.org/10.19080/ijesnr.2023.32.556348, 2023. a
Audet, K., Montel, B., Crespel, D., Tarte, D., Parent, R., Silva, L. D., Paccard, M., Rondeau-Genesse, G., and Roques, J.: Conséquences Attendues Survenant en Contexte d’Aggravation des Déficits d’Eau Sévères au Québec (CASCADES), Tech. rep., Groupe AGÉCO, Nada Conseils, T2 Environnement, Ouranos, Montreal (QC), Canada, 2024. a, b, c, d, e
Aygün, O., Kinnard, C., and Campeau, S.: Impacts of climate change on the hydrology of northern midlatitude cold regions, Prog. Phys. Geogr.-Earth and Environment, 44, 338–375, https://doi.org/10.1177/0309133319878123, 2019. a
Baulenas, E., Versteeg, G., Terrado, M., Mindlin, J., and Bojovic, D.: Assembling the climate story: use of storyline approaches in climate‐related science, Global Challenges, 7, 2200183, https://doi.org/10.1002/gch2.202200183, 2023. a
Berthot, L., St-Hilaire, A., Caissie, D., El-Jabi, N., Kirby, J., and Ouellet-Proulx, S.: Environmental flow assessment in the context of climate change: a case study in Southern Quebec (Canada), J. Water Clim. Change, 12, 3617–3633, https://doi.org/10.2166/wcc.2021.254, 2021. a, b, c
Bond, N. R., Burrows, R. M., Kennard, M. J., and Bunn, S. E.: Water Scarcity as a Driver of Multiple Stressor Effects, 111–129, Elsevier, ISBN 9780128117132, https://doi.org/10.1016/b978-0-12-811713-2.00006-6, 2019. a
Boulanger, Y., Arseneault, D., Bélisle, A. C., Bergeron, Y., Boucher, J., Boucher, Y., Danneyrolles, V., Erni, S., Gachon, P., Girardin, M. P., Grant, E., Grondin, P., Jetté, J.-P., Labadie, G., Leblond, M., Leduc, A., Puigdevall, J. P., St-Laurent, M.-H., Tremblay, J., and Waldron, K.: The 2023 wildfire season in Québec: an overview of extreme conditions, impacts, lessons learned and considerations for the future, Can. J. Forest Res., 55, 1–21, https://doi.org/10.1139/cjfr-2023-0298, 2024. a
Boyer, C., Verhaar, P. M., Roy, A. G., Biron, P. M., and Morin, J.: Impacts of environmental changes on the hydrology and sedimentary processes at the confluence of St. Lawrence tributaries: potential effects on fluvial ecosystems, Hydrobiologia, 647, 163–183, https://doi.org/10.1007/s10750-009-9927-1, 2009. a
Cannon, A. J.: The Impact of “Hot Models” on a CMIP6 Ensemble Used by Climate Service Providers in Canada: Do Global Constraints Lead to Appreciable Differences in Regional Projections?, J. Climate, 37, 2141–2154, https://doi.org/10.1175/jcli-d-23-0459.1, 2024. a
Carrier, M., Lefebvre, R., Rivard, C., Parent, M., Ballard, J., Benoit, N., Vigneault, H., Beaudry, C., Malet, X., Laurencelle, M., Gosselin, J., Ladevèze, P., Thériault, R., Beaudin, I., Michaud, A., Pugin, A., Morin, R., Crow, H., Gloaguen, E., Bleser, J., Martin, A., and Lavoie, D.: Portrait des ressources en eau souterraine en Montérégie Est, Government report, Government of Quebec (MELCCFP), Quebec City (QC), Canada, 2013. a
Castaneda-Gonzalez, M., Poulin, A., Romero-Lopez, R., Turcotte, R., and Chaumont, D.: Uncertainty sources in flood projections over contrasting hydrometeorological regimes, Hydrol. Sci. J., 67, 2232–2253, https://doi.org/10.1080/02626667.2022.2137415, 2022. a
Caviedes-Voullième, D. and Shepherd, T. G.: Climate storylines as a way of bridging the gap between information and decision-making in hydrological risk, PLOS Climate, 2, e0000270, https://doi.org/10.1371/journal.pclm.0000270, 2023. a, b
Chan, W. C., Arnell, N. W., Darch, G., Facer-Childs, K., Shepherd, T. G., Tanguy, M., and van der Wiel, K.: Current and future risk of unprecedented hydrological droughts in Great Britain, J. Hydrol., 625, 130074, https://doi.org/10.1016/j.jhydrol.2023.130074, 2023. a, b
Chan, W. C. H., Shepherd, T. G., Facer-Childs, K., Darch, G., and Arnell, N. W.: Storylines of UK drought based on the 2010–2012 event, Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, 2022. a
Charron, C., St-Hilaire, A., Ouarda, T. B., and van den Heuvel, M. R.: Water Temperature and Hydrological Modelling in the Context of Environmental Flows and Future Climate Change: Case Study of the Wilmot River (Canada), Water, 13, 2101, https://doi.org/10.3390/w13152101, 2021. a
Charron, I., Beauchemin, A., Blais-Gagnon, A., Delmotte, S., Ducruc, S., Dugré, D., Landry, F., Jego, G., Michaud, A., Morrissette, R., and St-Arnaud, R.-M.: Recherche participative d’alternatives durables pour la gestion de l’eau en milieu agricole dans un contexte de changement climatique (RADEAU1), Government report, MAPAQ, Quebec City (QC), Canada, 2019. a, b, c, d, e
Charron, I., Beauchemin, A., Blais-Gagnon, A., Boivin, C., Delmotte, S., Ducruc, S., Dugré, D., Landry, F., Lefebvre, R., Jego, G., Gosselin, J.-S., Michaud, A., Morrissette, R., Raynauld, M., St-Arnauld, R.-M., Vallée, J., and Valleros, A.: Recherche participative d’alternatives durables pour la gestion de l’eau en milieu agricole dans un contexte de changement climatique (RADEAU2), Government report, MAPAQ, Quebec City (QC), Canada, 2020. a, b, c, d
Chilima, J. S., Blakley, J., Diaz, H. P., and Bharadwaj, L.: Understanding Water Use Conflicts to Advance Collaborative Planning: Lessons Learned from Lake Diefenbaker, Canada, Water, 13, 1756, https://doi.org/10.3390/w13131756, 2021. a, b
Copernicus Climate Change Service (C3S): ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac (last access: 22 December 2022), 2019. a
Da Silva, L., Pineault, K., and Rondeau-Genesse, G.: Vulnérabilité des sources d’approvisionnement en eau potable du territoire de la CMQ face aux changements climatiques, Technical report, Ouranos, Montreal (QC), Canada, 2020. a
Derksen, C., Burgess, D., Duguay, C., Howell, S., Mudryk, L., Smith, S., Thackeray, C., and Kirchmeier-Young, M.: Changes in snow, ice, and permafrost across Canada; Chapter 5 in Canada's Changing Climate Report, Government report, Government of Canada, Ottawa (ON), Canada, 2019. a
Dubois, E., Larocque, M., Gagné, S., and Meyzonnat, G.: Simulation of long-term spatiotemporal variations in regional-scale groundwater recharge: contributions of a water budget approach in cold and humid climates, Hydrol. Earth Syst. Sci., 25, 6567–6589, https://doi.org/10.5194/hess-25-6567-2021, 2021. a, b
Dubois, E., Larocque, M., Gagné, S., and Braun, M.: Climate Change Impacts on Groundwater Recharge in Cold and Humid Climates: Controlling Processes and Thresholds, Climate, 10, 6, https://doi.org/10.3390/cli10010006, 2022. a
Faranda, D., Pascale, S., and Bulut, B.: Persistent anticyclonic conditions and climate change exacerbated the exceptional 2022 European-Mediterranean drought, Environ. Res. Lett., 18, 034030, https://doi.org/10.1088/1748-9326/acbc37, 2023. a
Fortin, J.-P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., and Villeneuve, J.-P.: Distributed Watershed Model Compatible with Remote Sensing and GIS Data. I: Description of Model, J. Hydrol. Eng., 6, 91–99, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(91), 2001. a
Fossa Riglos, M. F., Díaz, L. B., Hernández, V., Sörensson, A. A., Osman, M., Rivera, J., Robledo, F., and Prudente, C.: Climate storylines as a tool for interdisciplinary dialogue on risk decision-making: Analyzing a severe drought in southeastern South America, Environ. Sci. Policy, 160, 103848, https://doi.org/10.1016/j.envsci.2024.103848, 2024. a
Furber, A., Medema, W., Adamowski, J., Clamen, M., and Vijay, M.: Conflict Management in Participatory Approaches to Water Management: A Case Study of Lake Ontario and the St. Lawrence River Regulation, Water, 8, 280, https://doi.org/10.3390/w8070280, 2016. a, b
Fyfe, J. C., Derksen, C., Mudryk, L., Flato, G. M., Santer, B. D., Swart, N. C., Molotch, N. P., Zhang, X., Wan, H., Arora, V. K., Scinocca, J., and Jiao, Y.: Large near-term projected snowpack loss over the western United States, Nat. Commun., 8, 14996, https://doi.org/10.1038/ncomms14996, 2017. a
Gennaretti, F., Sangelantoni, L., and Grenier, P.: Toward daily climate scenarios for Canadian Arctic coastal zones with more realistic temperature-precipitation interdependence, J. Geophys. Res.-Atmos., 120, 11862–11877, https://doi.org/10.1002/2015JD023890, 2015. a
Gessner, C., Fischer, E. M., Beyerle, U., and Knutti, R.: Multi-year drought storylines for Europe and North America from an iteratively perturbed global climate model, Weather and Climate Extremes, 38, 100512, https://doi.org/10.1016/j.wace.2022.100512, 2022. a, b
Government of Quebec: Stratégie québécoise d'économie d'eau potable – Horizon 2019-2025, Government report, Government of Quebec, Quebec City (QC), Canada, 2019. a
Grenier, P., Firlej, A., Blondlot, A., Logan, T., and Ricard, M.-P.: The issue of properly ordering climate indices calculation and bias correction before identifying spatial analogs for agricultural applications, Climate Services, 16, 100122, https://doi.org/10.1016/j.cliser.2019.100122, 2019. a
Hazeleger, W., van den Hurk, B., Min, E., van Oldenborgh, G., Petersen, A., Stainforth, D., Vasileiadou, E., and Smith, L.: Tales of future weather, Nat. Clim. Change, 5, 107–113, https://doi.org/10.1038/nclimate2450, 2015. a
Houle, D., Lajoie, G., and Duchesne, L.: Major losses of nutrients following a severe drought in a boreal forest, Nature Plants, 2, 16187, https://doi.org/10.1038/nplants.2016.187, 2016. a
Hudon, C., Gagnon, P., Poirier Larabie, S., Gagnon, C., Lajeunesse, A., Lachapelle, M., and Quilliam, M.: Spatial and temporal variations of a saxitoxin analogue (LWTX-1) in Lyngbya wollei (Cyanobacteria) mats in the St. Lawrence River (Québec, Canada), Harmful Algae, 57, 69–77, https://doi.org/10.1016/j.hal.2016.06.001, 2016. a
Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E., and Papadopol, P.: Development and Testing of Canada-Wide Interpolated Spatial Models of Daily Minimum–Maximum Temperature and Precipitation for 1961–2003, J. Appl. Meteorol. Climatol., 48, 725–741, https://doi.org/10.1175/2008jamc1979.1, 2009. a
Institut de la Statistique du Québec: Mise à jour 2022 des perspectives démographiques du Québec et de ses régions, 2021-2066, Bulletin sociodémographique, 26, 1–11, 2022. a
Ismail, H., Rowshon, M. K., Shanono, N. J., Nasidi, N. M., and Umar, D. A.: Hydrological Modelling For Evaluating Climate Change Impacts On Streamflow Regime In The Bernam River Basin Malaysia, FUDMA J. Sci., 5, 219–230, https://doi.org/10.33003/fjs-2021-0503-707, 2021. a
Kinnard, C., Bzeouich, G., and Assani, A.: Impacts of summer and winter conditions on summer river low flows in low elevation, snow-affected catchments, J. Hydrol., 605, 127393, https://doi.org/10.1016/j.jhydrol.2021.127393, 2022. a, b, c, d
Knowles, N., Scott, D., and Steiger, R.: Sustainability of snowmaking as climate change (mal)adaptation: an assessment of water, energy, and emissions in Canada’s ski industry, Current Issues in Tourism, 27, 1613–1630, https://doi.org/10.1080/13683500.2023.2214358, 2023. a, b
Kovach, R. P., Dunham, J. B., Al-Chokhachy, R., Snyder, C. D., Letcher, B. H., Young, J. A., Beever, E. A., Pederson, G. T., Lynch, A. J., Hitt, N. P., Konrad, C. P., Jaeger, K. L., Rea, A. H., Sepulveda, A. J., Lambert, P. M., Stoker, J., Giersch, J. J., and Muhlfeld, C. C.: An Integrated Framework for Ecological Drought across Riverscapes of North America, BioScience, 69, 418–431, https://doi.org/10.1093/biosci/biz040, 2019. a, b
Lachance-Cloutier, S., Turcotte, R., and Cyr, J.-F.: Combining streamflow observations and hydrologic simulations for the retrospective estimation of daily streamflow for ungauged rivers in southern Quebec (Canada), J. Hydrol., 550, 294–306, https://doi.org/10.1016/j.jhydrol.2017.05.011, 2017. a
Larocque, M., Meyzonnat, G., Ouellet, M. A., Graveline, M. H., Gagné, S., Barnetche, D., and Dorner, S.: Projet de connaissance des eaux souterraines de la zone de Vaudreuil-Soulanges - Rapport scientifique, Government report, Government of Quebec (MELCCFP), Quebec City (QC), Canada, 2015. a
Lavoie, J., Caron, L.-P., Logan, T., and Barrow, E.: Canadian climate data portals: A comparative analysis from a user perspective, Climate Services, 34, 100471, https://doi.org/10.1016/j.cliser.2024.100471, 2024. a
Leduc, M., Mailhot, A., Frigon, A., Martel, J.-L., Ludwig, R., Brietzke, G. B., Giguère, M., Brissette, F., Turcotte, R., Braun, M., and Scinocca, J.: The ClimEx Project: A 50-Member Ensemble of Climate Change Projections at 12-km Resolution over Europe and Northeastern North America with the Canadian Regional Climate Model (CRCM5), J. Appl. Meteorol. Climatol., 58, 663–693, https://doi.org/10.1175/JAMC-D-18-0021.1, 2019. a, b, c
Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J., Engelbrecht, F., Fischer, E., Fyfe, J., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate: Scenario-Based Projections and Near-Term Information, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., 553–672, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.006, 2021. a, b, c, d
Leveque, B., Burnet, J.-B., Dorner, S., and Bichai, F.: Impact of climate change on the vulnerability of drinking water intakes in a northern region, Sustain. Cities Soc., 66, 102656, https://doi.org/10.1016/j.scs.2020.102656, 2021. a, b
Liao, Z., An, N., Chen, Y., and Zhai, P.: On the possibility of the 2022-like spatio-temporally compounding event across the Yangtze River Valley, Environ. Res. Lett., 19, 014063, https://doi.org/10.1088/1748-9326/ad178e, 2024. a, b
Martynov, A., Laprise, R., Sushama, L., Winger, K., Šeparović, L., and Dugas, B.: Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: model performance evaluation, Clim. Dynam., 41, 2973–3005, https://doi.org/10.1007/s00382-013-1778-9, 2013. a
Matte, D., Christensen, J. H., Feddersen, H., Vedel, H., Nielsen, N. W., Pedersen, R. A., and Zeitzen, R. M. K.: On the Potentials and Limitations of Attributing a Small‐Scale Climate Event, Geophys. Res. Lett., 49, e2022GL099481, https://doi.org/10.1029/2022gl099481, 2022. a, b
Mehdi, B., Lehner, B., Gombault, C., Michaud, A., Beaudin, I., Sottile, M.-F., and Blondlot, A.: Simulated impacts of climate change and agricultural land use change on surface water quality with and without adaptation management strategies, Agriculture, Ecosystems and Environment, 213, 47–60, https://doi.org/10.1016/j.agee.2015.07.019, 2015. a, b
Mejia, F. H., Ouellet, V., Briggs, M. A., Carlson, S. M., Casas‐Mulet, R., Chapman, M., Collins, M. J., Dugdale, S. J., Ebersole, J. L., Frechette, D. M., Fullerton, A. H., Gillis, C., Johnson, Z. C., Kelleher, C., Kurylyk, B. L., Lave, R., Letcher, B. H., Myrvold, K. M., Nadeau, T., Neville, H., Piégay, H., Smith, K. A., Tonolla, D., and Torgersen, C. E.: Closing the gap between science and management of cold‐water refuges in rivers and streams, Glob. Change Biol., 29, 5482–5508, https://doi.org/10.1111/gcb.16844, 2023. a
MELCCFP: Stratégie québécoise de l’eau 2018-2030, Government report, Government of Quebec, 2018. a
MELCCFP: Guide de l'Atlas hydroclimatique du Québec méridional, Government report, Direction principale de l'expertise hydrique (DPEH), Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Government of Quebec, Quebec City (QC), Canada, 2022a. a
MELCCFP: Rapport technique de l’Atlas hydroclimatique du Québec méridional, Government report, Direction principale de l'expertise hydrique (DPEH), Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Government of Quebec, Quebec City (QC), Canada, 2024. a, b, c, d
Morales-Marín, L., Rokaya, P., Sanyal, P., Sereda, J., and Lindenschmidt, K.: Changes in streamflow and water temperature affect fish habitat in the Athabasca River basin in the context of climate change, Ecol. Model., 407, 108718, https://doi.org/10.1016/j.ecolmodel.2019.108718, 2019. a, b
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a
Mudryk, L. R., Derksen, C., Howell, S., Laliberté, F., Thackeray, C., Sospedra-Alfonso, R., Vionnet, V., Kushner, P. J., and Brown, R.: Canadian snow and sea ice: historical trends and projections, The Cryosphere, 12, 1157–1176, https://doi.org/10.5194/tc-12-1157-2018, 2018. a
Ontario Ministry of Natural Resources, Ontario Ministry of the Environment, Ontario Ministry of Agriculture, Food and Rural Affairs, Ontario Ministry of Municipal Affairs and Housing, Ontario Ministry of Research and Innovation, Association of Municipalities of Ontario, and Conservation Ontario: Ontario Low Water Response, Tech. rep., Government of Ontario, Toronto (ON), Canada, 2010. a, b
Ouranos and Centre de Recherche Informatique de Montréal (CRIM): The ClimEx CRCM5 Large Ensemble, Power Analytics and Visualization for Climate Science (PAVICS) platform [data set], https://pavics.ouranos.ca/datasets.html#a (last access: 23 January 2023), 2023. a
Palmer, W. C.: Meteorological Drought, Government report, Office of Climatology, U.S. Weather Bureau, Washington, D.C., 1965. a
Parisi, A., Monno, V., and Fidelibus, M.: Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas, Int. J. Disast. Risk Re., 30, 292–305, https://doi.org/10.1016/j.ijdrr.2018.03.004, 2018. a
Plourde-Lavoie, P., Archer, M., Gagnon, K., and Sirois, P.: Les variations de niveau du lac Saint-Jean: effets sur la reproduction des poissons dans les habitats en milieux humides riverains, Milieux aquatiques, 142, 66–77, https://doi.org/10.7202/1042015ar, 2017. a, b
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.: RCP 8.5 – A scenario of comparatively high greenhouse gas emissions, Clim. Change, 109, 33–57, https://doi.org/10.1007/s10584-011-0149-y, 2011. a
Roy, P., Rondeau-Genesse, G., Jalbert, J., and Élyse Fournier: Climate scenarios of extreme precipitation using a combination of parametric and non-parametric bias correction methods in the province of Québec, Can. Water Resour. J., 49, 23–39, https://doi.org/10.1080/07011784.2023.2220682, 2023. a
Schaller, N., Sillmann, J., Müller, M., Haarsma, R., Hazeleger, W., Hegdahl, T. J., Kelder, T., van den Oord, G., Weerts, A., and Whan, K.: The role of spatial and temporal model resolution in a flood event storyline approach in western Norway, Weather and Climate Extremes, 29, 100259, https://doi.org/10.1016/j.wace.2020.100259, 2020. a
Shepherd, T. G.: Storyline approach to the construction of regional climate change information, P. Roy. Soc. A, 475, 20190013, https://doi.org/10.1098/rspa.2019.0013, 2019. a
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an alternative approach to representing uncertainty in physical aspects of climate change, Clim. Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018. a
Sillmann, J., Shepherd, T. G., van den Hurk, B., Hazeleger, W., Martius, O., Slingo, J., and Zscheischler, J.: Event‐Based Storylines to Address Climate Risk, Earth’s Future, 9, e2020EF001783, https://doi.org/10.1029/2020ef001783, 2021. a
Solaraju-Murali, B., Caron, L.-P., Gonzalez-Reviriego, N., and Doblas-Reyes, F. J.: Multi-year prediction of European summer drought conditions for the agricultural sector, Environ. Res. Lett., 14, 124014, https://doi.org/10.1088/1748-9326/ab5043, 2019. a
Solaraju-Murali, B., Gonzalez-Reviriego, N., Caron, L.-P., Ceglar, A., Toreti, A., Zampieri, M., Bretonnière, P.-A., Samsó Cabré, M., and Doblas-Reyes, F. J.: Multi-annual prediction of drought and heat stress to support decision making in the wheat sector, npj Climate and Atmospheric Science, 4, 34, https://doi.org/10.1038/s41612-021-00189-4, 2021. a
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., and Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI and SPEI), Int. J. Climatol., 35, 4027–4040, https://doi.org/10.1002/joc.4267, 2015. a, b
Staudinger, M., Stahl, K., and Seibert, J.: A drought index accounting for snow, Water Resour. Res., 50, 7861–7872, https://doi.org/10.1002/2013WR015143, 2014. a
Tam, B. Y., Szeto, K., Bonsal, B., Flato, G., Cannon, A. J., and Rong, R.: CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index, Can. Water Resour. J., 44, 90–107, https://doi.org/10.1080/07011784.2018.1537812, 2019. a
Tam, B. Y., Cannon, A. J., and Bonsal, B. R.: Standardized precipitation evapotranspiration index (SPEI) for Canada: assessment of probability distributions, Can. Water Resour. J., 48, 283–299, https://doi.org/10.1080/07011784.2023.2183143, 2023. a, b
Tanguy, M., Prudhomme, C., Smith, K., and Hannaford, J.: Historical gridded reconstruction of potential evapotranspiration for the UK, Earth Syst. Sci. Data, 10, 951–968, https://doi.org/10.5194/essd-10-951-2018, 2018. a
Thackeray, C. W., Derksen, C., Fletcher, C. G., and Hall, A.: Snow and Climate: Feedbacks, Drivers, and Indices of Change, Current Climate Change Reports, 5, 322–333, https://doi.org/10.1007/s40641-019-00143-w, 2019. a
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012. a
Van Loon, A. F., Ploum, S. W., Parajka, J., Fleig, A. K., Garnier, E., Laaha, G., and Van Lanen, H. A. J.: Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts, Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, 2015. a, b
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010. a, b
Wheaton, E. and Kulshreshtha, S.: Environmental Sustainability of Agriculture Stressed by Changing Extremes of Drought and Excess Moisture: A Conceptual Review, Sustainability, 9, 970, https://doi.org/10.3390/su9060970, 2017. a, b
Šeparović, L., Alexandru, A., Laprise, R., Martynov, A., Sushama, L., Winger, K., Tete, K., and Valin, M.: Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model, Clim. Dynam., 41, 3167–3201, https://doi.org/10.1007/s00382-013-1737-5, 2013. a
Short summary
The 2021 drought in Quebec showcased the province’s potential vulnerability. This study uses a storyline approach to explore the impacts of future extreme droughts under +2 °C and +3 °C global warming scenarios. Results show that future droughts similar to that of 2021 could worsen significantly, with water levels dropping for longer periods and impacting ecosystems and human activities.
The 2021 drought in Quebec showcased the province’s potential vulnerability. This study uses a...