Articles | Volume 29, issue 17
https://doi.org/10.5194/hess-29-4055-2025
https://doi.org/10.5194/hess-29-4055-2025
Research article
 | 
03 Sep 2025
Research article |  | 03 Sep 2025

Trends in hydroclimate extremes: how changes in winter affect water storage and baseflow

Tejshree Tiwari and Hjalmar Laudon

Related authors

Beyond two water worlds: dynamic transpiration sourcing in a mixed-species boreal forest
John Marshall, Jose Gutierrez-Lopez, Daniel Metcalfe, Nataliia Kozii, and Hjalmar Laudon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3328,https://doi.org/10.5194/egusphere-2025-3328, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Assessing the drought resilience of different land management scenarios using a tracer-aided ecohydrological model with variable root uptake distributions
Cong Jiang, Doerthe Tetzlaff, Songjun Wu, Christian Birkel, Hjalmar Laudon, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2533,https://doi.org/10.5194/egusphere-2025-2533, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Does peatland rewetting mitigate flooding from extreme rainfall events?
Shirin Karimi, Virginia Mosquera, Eliza Maher Hasselquist, Järvi Järveoja, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 29, 2599–2614, https://doi.org/10.5194/hess-29-2599-2025,https://doi.org/10.5194/hess-29-2599-2025, 2025
Short summary
Groundwater flow paths drive longitudinal patterns of stream dissolved organic carbon (DOC) concentrations in boreal landscapes
Anna Lupon, Stefan Willem Ploum, Jason Andrew Leach, Lenka Kuglerová, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 27, 613–625, https://doi.org/10.5194/hess-27-613-2023,https://doi.org/10.5194/hess-27-613-2023, 2023
Short summary
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022,https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary

Cited articles

Ali, S., Basit, A., Umair, M., and Ni, J.: Impacts of climate and land coverage changes on potential evapotranspiration and its sensitivity on drought phenomena over South Asia, Int. J. Climatol., 44, 812–830, https://doi.org/10.1002/joc.8357, 2024. 
Allen, J., von Freyberg, M., Weiler, G., Goldsmith, G. R., & Kirchner, J. W.: The seasonal origins of streamwater in Switzerland, Geophys. Res. Lett., 46, 10425–10434, https://doi.org/10.1029/2019GL084552, 2019. 
Allen, J., and Sheridan, S. C.: Evaluating changes in season length, onset, and end dates across the United States (1948–2012), Int. J. Climatol., 36, 1268–1277, https://doi.org/10.1002/joc.4422, 2015. 
Arheimer, B. and Lindström, G.: Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015. 
Download
Short summary
In the boreal Krycklan Catchment, 40 years of warming has notably altered hydrological patterns, with increases in winter runoff and decreases in summer flows. Winter climate indices effectively predicted minimum winter flows, while summer runoff variability was influenced by temperature extremes across seasons. Isotope data revealed a growing contribution of precipitation to winter runoff, indicating potential challenges for catchment water storage under continued warming.
Share