Articles | Volume 29, issue 16
https://doi.org/10.5194/hess-29-3975-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3975-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revealing seasonal plasticity of whole-plant hydraulic properties using sap-flow and stem water-potential monitoring
Zhechen Zhang
National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
Erik Veneklaas
School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
Kamini Singha
Department of Geology and Geological Engineering, Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO, USA
Okke Batelaan
National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
Related authors
No articles found.
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhongli Liu, Dizhou Wang, Cicheng Zhang, Zhiguo Rao, Xinguang He, and Huade Guan
Atmos. Chem. Phys., 25, 6475–6496, https://doi.org/10.5194/acp-25-6475-2025, https://doi.org/10.5194/acp-25-6475-2025, 2025
Short summary
Short summary
Our study reveals how water vapor, directed by seasonal winds, shapes precipitation isotopes in China's Dongting Lake basin. We traced water vapor paths, showing their impact on water supply and climate. This insight is key for predicting future water resources and climate patterns, offering a clearer understanding of our interconnected environmental systems.
Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón
Biogeosciences, 20, 3353–3366, https://doi.org/10.5194/bg-20-3353-2023, https://doi.org/10.5194/bg-20-3353-2023, 2023
Short summary
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Brady A. Flinchum, Eddie Banks, Michael Hatch, Okke Batelaan, Luk J. M. Peeters, and Sylvain Pasquet
Hydrol. Earth Syst. Sci., 24, 4353–4368, https://doi.org/10.5194/hess-24-4353-2020, https://doi.org/10.5194/hess-24-4353-2020, 2020
Short summary
Short summary
Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection in a flat, semi-arid region north of Adelaide, Australia. We show that a combined geophysical approach can provide a unique perspective that can help shape the hydrogeological conceptualization.
Cited articles
Anderegg, W. R. L. and Callaway, E. S.: Infestation and Hydraulic Consequences of Induced Carbon Starvation, Plant Physiol., 159, 1866–1874, https://doi.org/10.1104/pp.112.198424, 2012.
Anderegg, W. R. L. and Meinzer, F. C.: Wood Anatomy and Plant Hydraulics in a Changing Climate, https://doi.org/10.1007/978-3-319-15783-2_9, 2015.
Baert, A., De Schepper, V., and Steppe, K.: Variable hydraulic resistances and their impact on plant drought response modelling, Tree Physiol., 35, 439–449, https://doi.org/10.1093/treephys/tpu078, 2014.
Baig, F., Sherif, M., and Faiz, M. A.: Quantification of Precipitation and Evapotranspiration Uncertainty in Rainfall-Runoff Modeling, Hydrology, 9, 51, https://doi.org/10.3390/hydrology903005, 2022.
Barros, F. d. V., Bittencourt, P. R. L., Brum, M., Restrepo-Coupe, N., Pereira, L., Teodoro, G. S., Saleska, S. R., Borma, L. S., Christoffersen, B. O., Penha, D., Alves, L. F., Lima, A. J. N., Carneiro, V. M. C., Gentine, P., Lee, J.-E., Aragão, L. E. O. C., Ivanov, V., Leal, L. S. M., Araujo, A. C., and Oliveira, R. S.: Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought, New Phytol., 223, 1253–1266, https://doi.org/10.1111/nph.15909, 2019.
Bohrer, G., Mourad, H., Laursen, T. A., Drewry, D., Avissar, R., Poggi, D., Oren, R., and Katul, G. G.: Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics, Water Resour. Res., 41, W11404, https://doi.org/10.1029/2005WR004181, 2005.
Buckley, T. N. and Roberts, D. W.: DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain, Tree Physiol., 26, 129–144, https://doi.org/10.1093/treephys/26.2.129, 2006.
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., Binks, O. J., Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., and Meir, P.: Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro), Geosci. Model Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, 2016.
Chuang, Y.-L., Oren, R., Bertozzi, A. L., Phillips, N., and Katul, G. G.: The porous media model for the hydraulic system of a conifer tree: Linking sap flux data to transpiration rate, Ecol. Model., 191, 447–468, https://doi.org/10.1016/j.ecolmodel.2005.03.027, 2006.
Cochard, H., Martin, R., Gross, P., and Bogeat-Triboulot, M. B.: Temperature effects on hydraulic conductance and water relations of Quercus robur L, J. Exp. Bot., 51, 1255–1259, https://doi.org/10.1093/jexbot/51.348.1255, 2000.
Cowan, I. R.: Transport of Water in the Soil-Plant-Atmosphere System, J. Appl. Ecol., 2, 221–239, https://doi.org/10.2307/2401706, 1965.
Deng, Z., Guan, H., Hutson, J., Forster, M. A., Wang, Y., and Simmons, C. T.: A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations, Water Resour. Res., 53, 4965–4983, https://doi.org/10.1002/2017WR020467, 2017.
Dingman, S. L.: Physical hydrology, Waveland Press, ISBN 10: 1-4786-1118-9, ISBN 13: 978-1-4786-1118-9, 2015.
Domec, J.-C., Lachenbruch, B., and Meinzer, F. C.: Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees, Am. J. Bot., 93, 1588–1600, https://doi.org/10.3732/ajb.93.11.1588, 2006.
Feng, F., Wagner, Y., Klein, T., and Hochberg, U.: Xylem resistance to cavitation increases during summer in Pinus halepensis, Plant Cell Environ., 46, 1849–1859, https://doi.org/10.1111/pce.14573, 2023.
Gelman, A. and Rubin, D. B.: Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457–472, 1992.
Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B., Bhaskar, R., Brodribb, T. J., Bucci, S. J., Cao, K.-F., Cochard, H., Delzon, S., Domec, J.-C., Fan, Z.-X., Feild, T. S., Jacobsen, A. L., Johnson, D. M., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., McCulloh, K. A., Mencuccini, M., Mitchell, P. J., Morris, H., Nardini, A., Pittermann, J., Plavcová, L., Schreiber, S. G., Sperry, J. S., Wright, I. J., and Zanne, A. E.: Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species, New Phytol., 209, 123–136, https://doi.org/10.1111/nph.13646, 2016.
Heggen, R. J.: Thermal Dependent Physical Properties of Water, J. Hydraul. Eng., 109, 298–302, https://doi.org/10.1061/(ASCE)0733-9429(1983)109:2(298), 1983.
Hölttä, T., Vesala, T., Sevanto, S., Perämäki, M., and Nikinmaa, E.: Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis, Trees, 20, 67–78, https://doi.org/10.1007/s00468-005-0014-6, 2006.
Huang, C.-W., Domec, J.-C., Ward, E. J., Duman, T., Manoli, G., Parolari, A. J., and Katul, G. G.: The effect of plant water storage on water fluxes within the coupled soil–plant system, New Phytol., 213, 1093–1106, https://doi.org/10.1111/nph.14273, 2017.
Hunt, E. R., Running, S. W., and Federer, C. A.: Extrapolating plant water flow resistances and capacitances to regional scales, Agr. Forest Meteorol., 54, 169–195, https://doi.org/10.1016/0168-1923(91)90005-B, 1991.
ICT International: Sap Flow Tool v1.5.1, ICT International Pty Ltd. [software], https://ictinternational.com/product/sap-flow-tool/, last access: 24 August 2025.
Jacobsen, A. L., Pratt, R. B., Davis, S. D., and Ewers, F. W.: Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities, Plant Cell Environ., 30, 1599–1609, https://doi.org/10.1111/j.1365-3040.2007.01729.x, 2007.
Jiménez-Rodríguez, C. D., Sulis, M., and Schymanski, S.: The Role of the Intraspecific Variability of Hydraulic Traits for Modeling the Plant Water Use in Different European Forest Ecosystems, J. Adv. Model. Earth Sy., 16, e2022MS003494, https://doi.org/10.1029/2022MS003494, 2024.
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola da Costa, A. C., and Gentine, P.: Implementing Plant Hydraulics in the Community Land Model, Version 5, J. Adv. Model. Earth Sy., 11, 485–513, https://doi.org/10.1029/2018MS001500, 2019.
Kolb, K. J. and Sperry, J. S.: Transport constraints on water use by the Great Basin shrub, Artemisia tridentata, Plant Cell Environ., 22, 925–935, https://doi.org/10.1046/j.1365-3040.1999.00458.x, 1999.
Li, L., Yang, Z.-L., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D. M., Barlage, M., Yan, B., McDowell, N. G., and Leung, L. R.: Representation of Plant Hydraulics in the Noah-MP Land Surface Model: Model Development and Multiscale Evaluation, J. Adv. Model. Earth Sy., 13, e2020MS002214, https://doi.org/10.1029/2020MS002214, 2021.
Li, Z., Wang, C., Luo, D., Hou, E., and Ibrahim, M. M.: Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species, Plant Physiol. Bioch., 197, 107658, https://doi.org/10.1016/j.plaphy.2023.107658, 2023.
Liu, N., Deng, Z., Wang, H., Luo, Z., Gutiérrez-Jurado, H. A., He, X., and Guan, H.: Thermal remote sensing of plant water stress in natural ecosystems, Forest Ecol. Manag., 476, 118433, https://doi.org/10.1016/j.foreco.2020.118433, 2020a.
Liu, Y., Parolari, A. J., Kumar, M., Huang, C.-W., Katul, G. G., and Porporato, A.: Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk, P. Natl. Acad. Sci. USA, 114, 9918–9923, https://doi.org/10.1073/pnas.1704811114, 2017.
Liu, Y., Kumar, M., Katul, G. G., Feng, X., and Konings, A. G.: Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration, Nat. Clim. Change, 10, 691–695, https://doi.org/10.1038/s41558-020-0781-5, 2020b.
Liu, Y., Holtzman, N. M., and Konings, A. G.: Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion, Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, 2021.
Loritz, R., Bassiouni, M., Hildebrandt, A., Hassler, S. K., and Zehe, E.: Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates, Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, 2022.
Loustau, D., Domec, J.-C., and Bosc, A.: Interpreting the variations in xylem sap flux density within the trunk of maritime pine (Pinus pinaster Ait.): application of a model for calculating water flows at tree and stand levels, Ann. Sci. Forest., 55, 29–46, 1998.
Lu, Y., Sloan, B., Thompson, S. E., Konings, A. G., Bohrer, G., Matheny, A., and Feng, X.: Intra-Specific Variability in Plant Hydraulic Parameters Inferred From Model Inversion of Sap Flux Data, J. Geophys. Res.-Biogeo., 127, e2021JG006777, https://doi.org/10.1029/2021JG006777, 2022.
Luo, Z., Deng, Z., Singha, K., Zhang, X., Liu, N., Zhou, Y., He, X., and Guan, H.: Temporal and spatial variation in water content within living tree stems determined by electrical resistivity tomography, Agr. Forest Meteorol., 291, 108058, https://doi.org/10.1016/j.agrformet.2020.108058, 2020.
Marshall, T. J., Holmes, J. W., and Rose, C. W.: Soil physics, Cambridge University Press, ISBN: 9781139170673, https://doi.org/10.1017/CBO9781139170673, 1996.
Matheny, A. M., Fiorella, R. P., Bohrer, G., Poulsen, C. J., Morin, T. H., Wunderlich, A., Vogel, C. S., and Curtis, P. S.: Contrasting strategies of hydraulic control in two codominant temperate tree species, Ecohydrology, 10, e1815, https://doi.org/10.1002/eco.1815, 2017a.
Matheny, A. M., Mirfenderesgi, G., and Bohrer, G.: Trait-based representation of hydrological functional properties of plants in weather and ecosystem models, Plant Diversity, 39, 1–12, https://doi.org/10.1016/j.pld.2016.10.001, 2017b.
MathWorks: MATLAB R2012b, The MathWorks Inc. [data set], https://au.mathworks.com/products/matlab.html, last access: 24 August 2025.
Meinzer, F. C., McCulloh, K. A., Lachenbruch, B., Woodruff, D. R., and Johnson, D. M.: The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency, Oecologia, 164, 287–296, https://doi.org/10.1007/s00442-010-1734-x, 2010.
Mencuccini, M.: Hydraulic constraints in the functional scaling of trees, Tree Physiol., 22, 553–565, https://doi.org/10.1093/treephys/22.8.553, 2002.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999, Science, 300, 1560–1563, https://doi.org/10.1126/science.1082750, 2003.
Novick, K. A., Ficklin, D. L., Baldocchi, D., Davis, K. J., Ghezzehei, T. A., Konings, A. G., MacBean, N., Raoult, N., Scott, R. L., Shi, Y., Sulman, B. N., and Wood, J. D.: Confronting the water potential information gap, Nat. Geosci., 15, 158–164, https://doi.org/10.1038/s41561-022-00909-2, 2022.
Ogle, K., Barber, J. J., Willson, C., and Thompson, B.: Hierarchical statistical modeling of xylem vulnerability to cavitation, New Phytol., 182, 541–554, https://doi.org/10.1111/j.1469-8137.2008.02760.x, 2009.
Paschalis, A., De Kauwe, M. G., Sabot, M., and Fatichi, S.: When do plant hydraulics matter in terrestrial biosphere modelling?, Glob. Change Biol., 30, e17022, https://doi.org/10.1111/gcb.17022, 2024.
Potkay, A., Trugman, A. T., Wang, Y., Venturas, M. D., Anderegg, W. R. L., Mattos, C. R. C., and Fan, Y.: Coupled whole-tree optimality and xylem hydraulics explain dynamic biomass partitioning, New Phytol., 230, 2226–2245, https://doi.org/10.1111/nph.17242, 2021.
Powell, T. L., Wheeler, J. K., de Oliveira, A. A. R., da Costa, A. C. L., Saleska, S. R., Meir, P., and Moorcroft, P. R.: Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees, Glob. Change Biol., 23, 4280–4293, https://doi.org/10.1111/gcb.13731, 2017.
Raghav, P., Kumar, M., and Liu, Y.: Structural Constraints in Current Stomatal Conductance Models Preclude Accurate Prediction of Evapotranspiration, Water Resour. Res., 60, e2024WR037652, https://doi.org/10.1029/2024WR037652, 2024.
Restrepo-Acevedo, A. M., Guo, J. S., Kannenberg, S. A., Benson, M. C., Beverly, D., Diaz, R., Anderegg, W. R. L., Johnson, D. M., Koch, G., Konings, A. G., Lowman, L. E. L., Martínez-Vilalta, J., Poyatos, R., Schenk, H. J., Matheny, A. M., McCulloh, K. A., Nippert, J. B., Oliveira, R. S., and Novick, K.: PSInet: a new global water potential network, Tree Physiol., 44, tpae110, https://doi.org/10.1093/treephys/tpae110, 2024.
Salomón, R. L., Limousin, J.-M., Ourcival, J.-M., Rodríguez-Calcerrada, J., and Steppe, K.: Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex, Plant Cell Environ., 40, 1379–1391, https://doi.org/10.1111/pce.12928, 2017.
Schenk, H. J., Espino, S., Rich-Cavazos, S. M., and Jansen, S.: From the sap's perspective: The nature of vessel surfaces in angiosperm xylem, Am. J. Bot., 105, 172–185, https://doi.org/10.1002/ajb2.1034, 2018.
Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., and Willis, K. J.: Sensitivity of global terrestrial ecosystems to climate variability, Nature, 531, 229–232, https://doi.org/10.1038/nature16986, 2016.
Silva, M., Matheny, A. M., Pauwels, V. R. N., Triadis, D., Missik, J. E., Bohrer, G., and Daly, E.: Tree hydrodynamic modelling of the soil–plant–atmosphere continuum using FETCH3, Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022, 2022.
Sorek, Y., Greenstein, S., and Hochberg, U.: Seasonal adjustment of leaf embolism resistance and its importance for hydraulic safety in deciduous trees, Physiol. Plantarum, 174, e13785, https://doi.org/10.1111/ppl.13785, 2022.
Sperry, J. S., Donnelly, J. R., and Tyree, M. T.: A method for measuring hydraulic conductivity and embolism in xylem, Plant Cell Environ., 11, 35–40, https://doi.org/10.1111/j.1365-3040.1988.tb01774.x, 1988.
Sperry, J. S., Adler, F. R., Campbell, G. S., and Comstock, J. P.: Limitation of plant water use by rhizosphere and xylem conductance: results from a model, Plant Cell Environ., 21, 347–359, https://doi.org/10.1046/j.1365-3040.1998.00287.x, 1998.
Sperry, J. S., Hacke, U. G., Oren, R., and Comstock, J. P.: Water deficits and hydraulic limits to leaf water supply, Plant Cell Environ., 25, 251–263, https://doi.org/10.1046/j.0016-8025.2001.00799.x, 2002.
Steppe, K., De Pauw, D. J. W., Lemeur, R., and Vanrolleghem, P. A.: A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth, Tree Physiol., 26, 257–273, https://doi.org/10.1093/treephys/26.3.257, 2006.
Steppe, K., De Pauw, D. J. W., and Lemeur, R.: Validation of a dynamic stem diameter variation model and the resulting seasonal changes in calibrated parameter values, Ecol. Model., 218, 247–259, https://doi.org/10.1016/j.ecolmodel.2008.07.006, 2008.
Torres-Ruiz, J. M., Cochard, H., Delzon, S., Boivin, T., Burlett, R., Cailleret, M., Corso, D., Delmas, C. E. L., De Caceres, M., Diaz-Espejo, A., Fernández-Conradi, P., Guillemot, J., Lamarque, L. J., Limousin, J.-M., Mantova, M., Mencuccini, M., Morin, X., Pimont, F., De Dios, V. R., Ruffault, J., Trueba, S., and Martin-StPaul, N. K.: Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change, New Phytol., 241, 984–999, https://doi.org/10.1111/nph.19463, 2024.
Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J. M., and Higdon, D.: Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling, Int. J. Nonlin. Sci. Num., 10, 273–290, https://doi.org/10.1515/IJNSNS.2009.10.3.273, 2009.
Wang, H., Guan, H., Deng, Z., and Simmons, C. T.: Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia, Water Resour. Res., 50, 6154–6167, https://doi.org/10.1002/2013WR014818, 2014.
Xie, S., Mo, X., Liu, S., and Hu, S.: Plant Hydraulics Improves Predictions of ET and GPP Responses to Drought, Water Resour. Res., 59, e2022WR033402, https://doi.org/10.1029/2022WR033402, 2023.
Yang, Michaud, J. M., Jansen, S., Schenk, H. J., and Zuo, Y. Y.: Dynamic surface tension of xylem sap lipids, Tree Physiol., 40, 433–444, https://doi.org/10.1093/treephys/tpaa006, 2020a.
Yang, Y., Zhang, Q., Huang, G., Peng, S., and Li, Y.: Temperature responses of photosynthesis and leaf hydraulic conductance in rice and wheat, Plant Cell Environ., 43, 1437–1451, https://doi.org/10.1111/pce.13743, 2020b.
Zeppel, M., Macinnis-Ng, C., Palmer, A., Taylor, D., Whitley, R., Fuentes, S., Yunusa, I., Williams, M., and Eamus, D.: An analysis of the sensitivity of sap flux to soil and plant variables assessed for an Australian woodland using a soilplantatmosphere model, Funct. Plant Biol., 35, 509–520, https://doi.org/10.1071/FP08114, 2008.
Zhang, Y., Lamarque, L. J., Torres-Ruiz, J. M., Schuldt, B., Karimi, Z., Li, S., Qin, D.-W., Bittencourt, P., Burlett, R., Cao, K.-F., Delzon, S., Oliveira, R., Pereira, L., and Jansen, S.: Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees, Tree Physiol., 38, 1016–1025, https://doi.org/10.1093/treephys/tpy015, 2018.
Short summary
We developed a new method using sap-flow and water-potential data to estimate key plant water-use properties without destructive sampling. Testing on drooping sheoak showed that our approach captures seasonal changes in plant water transport and that these hydraulic properties have seasonal variation. This method could improve models predicting how vegetation responds to drought and climate change.
We developed a new method using sap-flow and water-potential data to estimate key plant...