Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3527-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3527-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of BARRA and ERA5 in replicating mean and extreme precipitation over Australia
Kevin K. W. Cheung
CORRESPONDING AUTHOR
School of Emergency Management, Nanjing University of Information Science and Technology, Jiangsu 210044, China
Fei Ji
Science and Insights Division, NSW Department of Climate Change, Energy, the Environment and Water, Sydney, NSW 2150, Australia
Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, Australia
Nidhi Nishant
Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
Jin Teng
CSIRO Environment, GPO Box 1700, Canberra, ACT 2601, Australia
James Bennett
CSIRO Environment, Research Way, Clayton, VIC 3168, Australia
De Li Liu
NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
Related authors
Ivana Čavlina Tomašević, Paul Fox-Hughes, Kevin Cheung, Višnjica Vučetić, Jon Marsden-Smedley, Paul Beggs, and Maja Telišman Prtenjak
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-210, https://doi.org/10.5194/nhess-2023-210, 2024
Manuscript not accepted for further review
Short summary
Short summary
We have analyzed a severe wildfire event in Tasmania, Australia that also developed thunderstorm clouds. The drivers of this compound hazard were highly complex, which included climatic factors (above normal heavy rain seasons followed by heatwave), weather systems (fronts and high winds) to heighten fire severity and unstable atmosphere to develop thunderstorm clouds, all in coincidence. Such event has demonstrated the difficulty to assess wildfire risk in a warming climate.
Ashkan Shokri, James C. Bennett, David E. Robertson, Jean-Michel Perraud, Andrew J. Frost, and Eric A. Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-805, https://doi.org/10.5194/egusphere-2025-805, 2025
Short summary
Short summary
Predicting river flow accurately is crucial for managing water resources, especially in a changing climate. This study used deep learning to improve streamflow predictions across Australia. By either enhancing existing models or working independently with climate data, the deep learning approaches provided more reliable results than traditional methods. These findings can help water managers better plan for floods, droughts, and long-term water availability.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Chi Nguyen, Jai Vaze, Cherry May R. Mateo, Michael F. Hutchinson, and Jin Teng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-228, https://doi.org/10.5194/hess-2024-228, 2024
Revised manuscript under review for HESS
Short summary
Short summary
The availability of high-resolution rainfall data is limited. This study presents a method to generate hourly and 1 km gridded rainfall data for detailed hydrodynamic flood modelling purposes, using point measurements and thin-plate spline interpolation. The analysis shows that the proposed dataset outperforms other gridded datasets in representing spatial distributions and daily and hourly variations of rainfall. The data is suitable for any study where high-resolution rainfall data is needed.
Ivana Čavlina Tomašević, Paul Fox-Hughes, Kevin Cheung, Višnjica Vučetić, Jon Marsden-Smedley, Paul Beggs, and Maja Telišman Prtenjak
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-210, https://doi.org/10.5194/nhess-2023-210, 2024
Manuscript not accepted for further review
Short summary
Short summary
We have analyzed a severe wildfire event in Tasmania, Australia that also developed thunderstorm clouds. The drivers of this compound hazard were highly complex, which included climatic factors (above normal heavy rain seasons followed by heatwave), weather systems (fronts and high winds) to heighten fire severity and unstable atmosphere to develop thunderstorm clouds, all in coincidence. Such event has demonstrated the difficulty to assess wildfire risk in a warming climate.
Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022, https://doi.org/10.5194/hess-26-4801-2022, 2022
Short summary
Short summary
Methodology for developing an operational 7-day ensemble streamflow forecasting service for Australia is presented. The methodology is tested for 100 catchments to learn the characteristics of different NWP rainfall forecasts, the effect of post-processing, and the optimal ensemble size and bootstrapping parameters. Forecasts are generated using NWP rainfall products post-processed by the CHyPP model, the GR4H hydrologic model, and the ERRIS streamflow post-processor inbuilt in the SWIFT package
Cited articles
Acharya, S. C., Nathan, R., Wang, Q. J., Su, C.-H., and Eizenberg, N.: An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia, Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, 2019.
Acharya, S. C., Nathan, R., Wang, Q. J., Su, C.-H., and Eizenberg, N.: Ability of an Australian reanalysis dataset to characterise sub-daily precipitation, Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020, 2020.
Betts, A. K., Chan, D. Z., and Desjardins, R. L.: Near-Surface Biases in ERA5 Over the Canadian Prairies, Front. Environ. Sci., 7, https://doi.org/10.3389/fenvs.2019.00129, 2019.
Capecchi, V., Pasi, F., Gozzini, B., and Brandini, C.: A convection-permitting and limited-area model hindcast driven by ERA5 data: precipitation performances in Italy, Clim. Dynam., 61, 1411–1437, https://doi.org/10.1007/s00382-022-06633-2 , 2023.
Cheung, K. K. W., Ji, F., Nishant, N., Herold, N., and Cook, K.: Evaluation of Convective Environments in the NARCliM Regional Climate Modeling System for Australia, Atmosphere, 14, 690, https://doi.org/10.3390/atmos14040690, 2023.
Choudhury, D., Ji, F., Nishant, N., and Di Virgilio, G.: Evaluation of ERA5 simulated temperature and its extremes for Australia, Atmosphere, 14, 913, https://doi.org/10.3390/atmos14060913, 2023.
Chubb, T. H., Manton, M. J., Siems, S. T., and Peace, A. D.: Evaluation of the AWAP daily precipitation spatial analysis with an independent gauge network in the Snowy Mountains, J. Southern Hemisphere Earth Systems Science, 66, 55–67, 2016.
Dai, W., Zeng, Y., Jing, T. G., Wang, Z., Zong, R., Ni, L., and Fang, N.: Estimation of rainfall erosivity on the Chinese Loess Plateau: A new combination of the ERA5 dataset and machine learning, J.. Hydrol (Amst.), 624, 129892, https://doi.org/10.1016/j.jhydrol.2023.129892, 2023.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Di Virgilio, G., Evans, J. P., Di Luca, A., Olson, R., Argueso, D., Kala, J., Andrys, J., Hoffmann, P., Katzfey, J. J., and Rockel, B.: Evaluating reanalysis driven CORDEX regional climate models over Australia: model performance and errors, Clim. Dynam., 53, 2985–3005, 2019.
Di Virgilio, G., Ji, F., Tam, E., Evans, J. P., Kala, J., Andrys, J., Thomas, C., Choudhury, D., Rocha, C., Li, Y., and Riley, M. L.: Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2, Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, 2025.
Du, Y. L., Wang, Q. J., Su, C. H., Wu, W., and Yang, Q.: Estimating daily precipitation climatology by postprocessing high-resolution reanalysis data, Intl. J. Climatol., 43, 4151–4165, https://doi.org/10.1002/joc.8079, 2023.
Evans, A., Jones, D., Smalley, R., and Lellyett, S.: An Enhanced gridded rainfall analysis scheme for Australia, Bureau Research Report No. 41, Bureau of Meteorology [data set], Australia, https://doi.org/10.25914/6009600786063, 2020.
Fita, L., Evans, J. P., Argüeso, D., King, A., and Liu, Y.: Evaluation of the regional climate response in Australia to large-scale climate models in the historical NARCliM simulations, Clim. Dynam., 49, 2815–2829, https://doi.org/10.1007/s00382-016-3484-x, 2017.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gleixner, S., Demissie, T., and Diro, G. T.: Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa?, Atmosphere (Basel), 11, 996, https://doi.org/10.3390/atmos11090996, 2020.
Herold, N. and Alexander, L.: Climpact 2, https://github.com/ARCCSS-extremes/climpact2 (last access: 30 July 2025), 2016.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., de Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hobeichi, S., Nishant, N., Shao, Y. W., Abramowitz, G., Pitman, A., Sherwood, S., Bishop, C., and Green, S.: Using Machine Learning to Cut the Cost of Dynamical Downscaling, Earths Future, 11, e2022EF003291, https://doi.org/10.1029/2022EF003291, 2023.
Hu, X. L. and Yuan, W. H.: Evaluation of ERA5 precipitation over the eastern periphery of the Tibetan plateau from the perspective of regional rainfall events, Int. J. Climatol., 41, 2625–2637, https://doi.org/10.1002/joc.6980, 2021.
Izadi, N., Karakani, E. G., Saadatabadi, A. R., Shamsipour, A., Rattahi, E., and Habibi, M.: Evaluation of ERA5 Precipitation Accuracy Based on Various Time Scales over Iran during 2000–2018, Water (Basel), 13, 2538, https://doi.org/10.3390/w13182538, 2021.
Ji, F., Evans, J. P., Teng, J., Scorgie, Y., Argüeso, D., and Di Luca, A.: Evaluation of long-term precipitation and temperature Weather Research and Forecasting simulations for southeast Australia, Clim. Res., 67, 99–115, 2016.
Ji, F., Di Virgilio, G., Nishant, N., Tam, E., Evans, J. P., Kala, J., Andrys, J., Thomas, C., and Riley, M.: Evaluation of precipitation extremes in ERA5 driven regional climate simulations, Weather Climate Extremes, 44, 100676, https://doi.org/10.1016/j.wace.2024.100676, 2024.
Jiang, Q., Li, W. Y., Fan, Z. D., He, X., Sun, W., Chen, S., Wen, J., Gao, J., and Wang, J.: Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland, J. Hydrol. (Amst.), 595, 125660, https://doi.org/10.1016/j.jhydrol.2020.125660, 2021.
Jiao, D. L., Xu, N. N., Yang, F., and Xu, K.: Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China, Sci. Rep., 11, 17956, https://doi.org/10.1038/s41598-021-97432-y, 2021.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S., Hnilo, J., Fiorino, M., and Potter, G.: NCEP-DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Lei, X. Y., Xu, W. L., Chen, S. T., Yu, T., Hu, Z., Zhang, M., Jiang, L., Bao, R., Guan, X., Ma, M., Wei, J., Feng, A., and Gao, L.: How Well Does the ERA5 Reanalysis Capture the Extreme Climate Events Over China? Part I: Extreme Precipitation, Front. Environ. Sci., 10, https://doi.org/10.3389/fenvs.2022.921658, 2022.
Lei, Y. H., Letu, H. S., Shang, H. Z., and Shi, J. C.: Cloud cover over the Tibetan Plateau and eastern China: a comparison of ERA5 and ERA-Interim with satellite observations, Clim. Dynam., 54, 2941–2957, https://doi.org/10.1007/s00382-020-05149-x, 2020.
Li, X. X., Qin, X. C., Yang, J., and Zhang, Y. Z.: Evaluation of ERA5, ERA-Interim, JRA55 and MERRA2 reanalysis precipitation datasets over the Poyang Lake Basin in China, Int. J. Climatol., 42, 10435–10450, https://doi.org/10.1002/joc.7915, 2022.
May, P. T., Trewin, B., Su, C. H., and Ostendorf, B.: Verification of moist surface variables over northern Australia in a high-resolution reanalysis (BARRA), J. Southern Hemisphere Earth Systems Science, 71, 194–202, https://doi.org/10.1071/ES21007, 2021.
Nishant, N., Evans, J. P., Di Virgilio, G., Downes, S. M., Ji, F., Cheung, K. K. W., Tam, E., Miller, J., Beyer, K., and Riley, M. L.: Introducing NARCliM1.5: evaluating the performance of regional climate projections for southeast Australia for 1950–2100, Earth's Future, 9, e2020EF001833, https://doi.org/10.1029/2020EF001833, 2021.
Nishant, N., Sherwood, S., Prasad, A., Ji, F., and Singh, A.: Impact of higher spatial resolution on precipitation properties over Australia, Geophys. Res. Lett., 49, e2022GL100717, https://doi.org/10.1029/2022GL100717, 2022.
Pei, F., Zhou, Y., and Xia, Y.: Assessing the Impacts of Extreme Precipitation Change on Vegetation Activity, Agriculture, 11, 487, https://doi.org/10.3390/agriculture11060487, 2021.
Perkins, S. E., Pitman, A.J., Holbrook, N., and McAneney, J.: Evaluation of the AR4 climate models' simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions, J. Climate, 20, 4356–4376, https://doi.org/10.1175/JCLI4253.1, 2007.
Pirooz, A. A. S., Moore, S., Carey-Smith, T., Turner, R., and Su, C.-H.: Evaluation of global and regional reanalyses performance over New Zealand, Weather Climate, 41, 52–70, https://doi.org/10.2307/27127989, 2021.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J.-N., Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L., and Risher, M.: ERA-20C: An Atmospheric Reanalysis of the Twentieth Century, J. Climate, 29, 4083–4097, https://doi.org/10.1175/jcli-d-15-0556.1, 2016.
Qin, S., Wang, K. C., Wu, G. C., and Ma, Z. S.: Variability of hourly precipitation during the warm season over eastern China using gauge observations and ERA5, Atmos. Res., 264, 105872, https://doi.org/10.1016/j.atmosres.2021.105872, 2021.
Quagraine, K. A., Nkrumah, F., Klein, C., Klutse, N. A. B., and Quagraine, K. T.: West African Summer Monsoon Precipitation Variability as Represented by Reanalysis Datasets, Climate, 8, 111, https://doi.org/10.3390/cli8100111, 2020.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurill, L., Reynolds, R. W., Ritledge, G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Schulzweida, U., Kornblueh, L., and Quast, R.: CDO user's guide, Climate data operators, Version, 1, 205–209, 2006.
Shen, L. C., Wen, J. H., Zhang, Y. Q., Ullah, S., Meng, X., and Chen, G.: Performance Evaluation of ERA5 Extreme Precipitation in the Yangtze River Delta, China, Atmosphere (Basel) 13, 1416, https://doi.org/10.3390/atmos13091416, 2022.
Solman, S.A., Sanchez, E., Samuelsson, P., da Rocha, R. P., Li, L., Marengo, J., Pessacg, N. L., Remedio, A. R. C., Chou, S. C., Berbery, H., Le Treut, H., de Castro, M., and Jacob, D.: Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties, Clim. Dynam., 41, 1139–1157, https://doi.org/10.1007/s00382-013-1667-2, 2013.
Song, Y. Y. and Wei, J. F.: Diurnal cycle of summer precipitation over the North China Plain and associated land-atmosphere interactions: Evaluation of ERA5 and MERRA-2, Int. J. Climatol., 41, 6031–6046, https://doi.org/10.1002/joc.7166, 2021.
Su, C.-H., Eizenberg, N., Steinle, P., Jakob, D., Fox-Hughes, P., White, C. J., Rennie, S., Franklin, C., Dharssi, I., and Zhu, H.: BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, Geosci. Model Dev., 12, 2049–2068, https://doi.org/10.5194/gmd-12-2049-2019, 2019.
Su, C.-H., Eizenberg, N., Jakob, D., Fox-Hughes, P., Steinle, P., White, C. J., and Franklin, C.: BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains, Geosci. Model Dev., 14, 4357–4378, https://doi.org/10.5194/gmd-14-4357-2021, 2021.
Tabari, H.: Climate change impact on flood and extreme precipitation increases with water availability, Sci. Rep., 10, 1–10, 2020.
Teng, J., Bennett, J. C., Charles, S., Chiew, F., Ji, F., Potter, N., Fu, G. B., Thatcher, M., and Remenyi, T.: Trend and variance in regional climate models – validation and hydrological implications, J. Hydrol., 642, 131817, https://doi.org/10.1016/j.jhydrol.2024.131817, 2024.
University of New South Wales: Australian Gridded Climate Data, http://climate-cms.wikis.unsw.edu.au/AGCD, last access: 30 July 2025.
Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution, The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019.
Short summary
This study evaluates two reanalysis datasets, which are critical in climate, weather research, and water resources analysis, for the Australian region in terms of simulating daily mean precipitation and six other selected precipitation extremes. While spatial patterns of mean precipitation are well reproduced, substantial biases exist in precipitation variability, trends, and extremes. Caution in applying these datasets is thus advised in terms of the latter aspects.
This study evaluates two reanalysis datasets, which are critical in climate, weather research,...