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Abstract. Reanalysis datasets are critical in climate research
and weather analysis, offering consistent historical weather
and climate data crucial for understanding atmospheric phe-
nomena and validating climate models. However, biases ex-
ist in reanalysis datasets that would affect their applications
under circumstances. This study evaluates BARRA, which
is a high-resolution reanalysis for the Australian region, and
ERA5 in simulating mean precipitation and six selected pre-
cipitation extremes for their climatology, temporal correla-
tion, coefficient of variation, and trend. Both datasets re-
produce daily timescale probability density distributions and
spatial patterns of mean precipitation well with minor biases.
ERA5 shows stronger temporal correlations, superior inter-
annual precipitation accuracy, and lower biases in coeffi-
cient of variation compared to BARRA, especially in North-
ern Australia. However, both models exhibit substantial bi-
ases in trend, underestimating increasing trends in Northern
Australia. ERA5 underestimates dry days and heavy rainfall,
while BARRA tends to overestimate these extremes. Tempo-
ral correlations for extreme precipitation indices are weaker
compared to mean annual precipitation. Notable differences
exist in variability biases, with BARRA showing larger bi-
ases, especially for heavy precipitation in inland regions and
Northern Australia. While both datasets replicate the main
trends, biases persist. Overall, the evaluation results support

application of both datasets for climatology analyses, but
caution is advised for variability and trend analyses, particu-
larly for specific extremes.

1 Introduction

A reanalysis dataset is created by combining historical obser-
vational data from various sources, such as weather stations,
satellites, buoys, and more, with modern data assimilation
techniques and numerical models (Kalnay et al., 1996; Saha
et al., 2010; Dee et al., 2011; Kobayashi et al., 2015; Poli
et al., 2016; Hersbach et al., 2020). The fundamental aim of
reanalysis is to construct a uniform and coherent historical
archive of various atmospheric and environmental parame-
ters, such as temperature, humidity, and wind patterns, on
either a regional or a global scale.

These datasets are invaluable for climate studies, weather
analysis, and model validation as they provide a uniform
representation of historical climate conditions. For instance,
Quagraine et al. (2020) used five global reanalysis datasets
(European Centre for Medium-Range Weather Forecasts Re-
analysis ERA-Interim, Dee et al., 2011; ERA5, Hersbach
et al., 2020; JRA-55, Kobayashi et al., 2015); MERRA2
(Gelaro et al., 2017); and NCEP-R2 (Kanamitsu et al., 2002)
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to investigate the variability of West African summer mon-
soon precipitation, showing all datasets could represent the
average rainfall patterns and seasonal cycle. Dai et al. (2023)
utilized ERA5 data to estimate rainfall erosivity on the Chi-
nese Loess Plateau, finding rainfall erosivity derived from
ERA5 was highly consistent with those derived from the me-
teorological stations. Cheung et al. (2023) employed ERA5
to evaluate storm conditions in regional climate simulations,
demonstrating that regional climate models can capture cli-
matology of measurements of storm severity over land, in-
cluding their spatial patterns and seasonality. Numerous stud-
ies have used reanalysis datasets as inputs for regional cli-
mate models (RCMs) to evaluate the models’ capability in
replicating observed climatic patterns (Solman et al., 2013; Ji
et al., 2016; Fita et al., 2017; Di Virgilio et al., 2019; Capec-
chi et al., 2023; Di Virgilio et al., 2025; Ji et al., 2024).

While reanalysis datasets provide valuable insights into
historical weather and climate conditions, they have limita-
tions and uncertainties given that they are modelled outputs
rather than direct observations. Many studies have evaluated
reanalysis data across various variables and regions. For in-
stance, Betts et al. (2019) assessed ERA5 biases in near-
surface variables over Canada, highlighting its improved
performance over ERA-Interim (Dee et al., 2011), though
precipitation biases remained significant. Similarly, Hu and
Yuan (2021) and Jiang et al. (2021) found that ERA5 pre-
cipitation accurately captured rainfall pattern over the East-
ern Tibetan Plateau and mainland China, but underestimated
intensity. Izadi et al. (2021) found ERA5 performed better
at monthly and seasonal timescales in Iran, underestimating
coastal summer precipitation and overestimating it in moun-
tains. Jiao et al. (2021) and Qin et al. (2021) found ERA5
overestimated summer precipitation and frequency in China
but underestimated intensity during the warm season. Lei et
al. (2022) and Shen et al. (2022) noted ERA5’s limitations in
simulating extreme precipitation events in China, especially
for high-end extremes.

Comparisons between reanalysis datasets have also been
conducted. Wang et al. (2019) found that both ERA5 and
ERA-Interim exhibited warm biases over Arctic Sea ice,
with larger biases in cold season than warm season. Lei
et al. (2020) showed ERA5 improved cloud cover simula-
tion over eastern China but not over the Tibetan Plateau,
when compared to ERA-Interim. Gleixner et al. (2020) found
ERA5 reduced biases in temperature and precipitation over
East Africa compared to ERA-Interim but still struggled with
long-term trends. Song and Wei (2021) found both ERA5 and
MERRA-2 (Gelaro et al., 2017) captured night precipitation
peaks over North China, but only ERA5 accurately reflected
the afternoon peak. Li et al. (2022) concluded that ERA5
performed better than ERA-Interim, JRA55 (Kobayashi et
al., 2015), and MERRA-2 in capturing precipitation over the
Poyang Lake Basin. A summary of the above literature re-
view can be found in Table S1 in the Supplement.

In Australia, reanalyses like NCEP (Kalnay et al., 1996),
JRA-55 (Kobayashi et al., 2015), ERA-Interim (Dee et al.,
2011), and ERA5 (Hersbach et al., 2020) are commonly
used alongside the Australian Bureau of Meteorology’s high-
resolution (12 km) BARRA reanalysis. BARRA covers Aus-
tralia, Aotearoa / New Zealand, and Southeast Asia (Su et
al., 2019), while BARRA-C offers even higher-resolution
(1.5 km) analysis for four capital cities (Su et al., 2021).

May et al. (2021) found BARRA reliable, though it
showed seasonal and diurnal biases. Other studies, like
Pirooz et al. (2021), compared BARRA with global reanal-
yses, concluding BARRA performed better for precipita-
tion and temperature in Aotearoa / New Zealand but lagged
behind ERA5 for high gust winds. Du et al. (2023) used
BARRA for estimating daily precipitation in ungauged Aus-
tralian catchments, while Hobeichi et al. (2023) employed
BARRA to train statistical models for downscaling. Acharya
et al. (2019, 2020) found BARRA’s precipitation perfor-
mance varied by region, with poorer results in tropical areas.
Nishant et al. (2022) suggested higher resolution in BARRA-
C did not always improve precipitation simulations, while
Choudhury et al. (2023) noted ERA5 performed better for
mean temperatures than extremes in Australia. These previ-
ous studies on BARRA and BARRA-C have also been sum-
marized in Table S1.

However, there is a gap in the existing studies concerning
the intercomparison of various reanalyses, such as BARRA
and ERA5, specifically in relation to precipitation extremes
over Australia. In this study, we aim to bridge this gap by
evaluating and comparing the performance of BARRA and
ERA5 in capturing precipitation extremes. While the tra-
ditional evaluation methods focusing on climatology (long-
term mean), here we also include temporal correlation, coef-
ficient of variation, and trend in evaluation to quantify their
overall performance, which have not been examined before
in previous studies. By assessing climate means and extremes
and quantifying their biases, this study provides a valuable
reference for selecting appropriate datasets for specific ap-
plications and cautions against treating reanalysis data as ob-
servations. The paper is organized as follows: Section 2 in-
troduces the reanalysis datasets and observational data used
for evaluation. Section 3 outlines the climate extreme indices
and evaluation methodology. Results are presented in Sect. 4,
followed by further discussion in Sect. 5. Finally, Sect. 6 of-
fers a summary and conclusions.

2 Data

2.1 ERA5

ERA5 is a global atmospheric reanalysis dataset developed
by ECMWF (Hersbach et al., 2020). ERA5 provides hourly
estimates of many atmospheric, land, and oceanic climate
variables. The data is on a ∼ 30 km horizontal grid and re-
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solves the atmosphere using 137 levels from the surface up
to a height of 0.01 hPa (∼ 80 km).

ERA5 is constructed upon the foundation of the Integrated
Forecasting System (IFS) Cy41r2. This allows ERA5 to ben-
efit from a decade’s worth of development in areas such as
model physics, core dynamics, and data assimilation tech-
niques. ERA5 is a significant advancement over its predeces-
sors (e.g. ERA-Interim) due to its higher spatial and tempo-
ral resolution, improved assimilation techniques, and more
sophisticated modelling components. It provides a detailed
and accurate representation of various atmospheric variables,
such as temperature, humidity, wind speed, pressure, and
more. The dataset covers the entire globe and spans from
1940 to the present, making it valuable for various appli-
cations in climate research, meteorology, environmental sci-
ence, and more.

2.2 BARRA

BARRA is a high-resolution regional atmospheric reanalysis
dataset developed by the Australian Bureau of Meteorology,
which is available from January 1990 to February 2019 (Su
et al., 2019). BARRA was constructed based on the Aus-
tralian Community Climate Earth-System Simulator (AC-
CESS) model with assimilation of a wide range of obser-
vational data to create a coherent and consistent representa-
tion of past weather and climate conditions. BARRA cov-
ers the Australian continent, Aotearoa / New Zealand, part of
Asia, and some Pacific Islands with a horizontal resolution of
12 km and 70 vertical levels from the surface up to a height of
80 km. BARRA specifically focuses on providing detailed in-
formation about weather patterns and atmospheric variables
over the Australian region, which provides about 100 param-
eters at hourly intervals.

The ACCESS model, which was applied to generate
BARRA, originated from the UKMO’s Unified Model (UM),
which can be configured in global mode or regional mode.
For regional simulations, the global version of ACCESS
becomes ACCESS-R. ACCESS-R was initialized by ERA-
Interim reanalysis data, which also provides boundary con-
ditions during simulation. A series of observations have been
assimilated into BARRA, including land and ship (buoy)
synoptic observations, upper-air observations from radioson-
des and wind profilers, and satellite derived radiances and
winds (Su et al., 2019). However, no precipitation observa-
tions were directly assimilated.

2.3 AGCD

The observational data in the study are from the Australian
Gridded Climate Dataset (AGCD, Evans et al., 2020). The
daily gridded maximum and minimum temperatures and pre-
cipitation data has a spatial resolution of 0.05° (∼ 5 km) and
is interpolated from observations at stations across the Aus-
tralian continent. Most of those stations are in the more heav-

ily populated coastal regions with far fewer stations inland
and over high elevation areas. For example, there are very
few station observations near the Gibson desert region in
Western Australia, making the gridded observations unre-
liable over that region. Thus, in the following figures that
region has been masked and not considered for evaluation.
Since observations and reanalyses are not at the same spa-
tial resolutions, we aggregated the observations to the na-
tive grid of ERA5 and BARRA respectively for compar-
ison, including the performance of statistical significance
tests. For the purpose of comparison, we also interpolated
the reanalysis to AGCD grids using the conservative area-
weighted re-gridding scheme from the Climate Data Opera-
tors (Schulzweida et al., 2006), which will be shown in the
Supplement. The states and sub-regions in the Australian re-
gion we discuss in the following can be found in Fig. S1 in
the Supplement.

3 Methodology

3.1 ET-SCI

While extreme climate and weather events are generally mul-
tifaceted phenomena, in this study we evaluate climate ex-
tremes based on daily precipitation and temperature as de-
fined by Expert Team on Sector-specific Climate Indices (ET-
SCI; Herold and Alexander, 2016). We used the ClimPACT
version 2 software to calculate the ET-SCI indices (https:
//climpact-sci.org/, last access: 30 July 2025), focussing on
daily precipitation.

Although ClimPACT generates 14 precipitation-related
core indices, we selected seven (Table 1) based on the fol-
lowing considerations: (1) to capture key aspects of climate
extremes and (2) to capture extremes which have impacts
on society and infrastructure such as agriculture, water re-
sources, and economy (Tabari, 2020; Pei et al., 2021). Ac-
cordingly, we include absolute indices such as the maximum
1 d precipitation (Rx1day) and total precipitation (PRCP-
TOT), a threshold-based index (e.g. number of heavy rain
days, R10mm), percentile indices (e.g. total annual precipi-
tation from very heavy rain days, R99p), and duration indices
such as the consecutive wet (CWD) and dry days (CDD).

With the above consideration, the seven aforementioned
precipitation-related indices were calculated on native re-
analysis grids and observation grids. While the availability
of AGCD and ERA5 starts much earlier, the analysis pe-
riod is 1990–2018, which is the duration of BARRA. Since
the AGCD observations have the highest resolution, here we
mainly show the evaluation on the native grids of the re-
analyses (i.e. the 12 km grid of BARRA and 30 km grid of
ERA5). The extreme indices calculated from reanalysis data
have also been regridded to the 5 km resolution using bilinear
interpolation, which are included in the supplementary infor-
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Table 1. List of ET-SCI indices evaluated in this study.

Index Definition Units Timescale Sectors

PRCPTOT Total wet-day precipitation (sum of
daily precipitation ≥ 1.0 mm)

mm Annual/monthly Agriculture and food security, water,
water resources and food security,
forestry/GHGs

CDD Consecutive dry days (maximum
number of consecutive dry days (when
precipitation < 1.0 mm))

days Annual Health, agriculture and food security,
water resources and food security,
disaster risk reduction, forestry/GHGs

CWD Consecutive wet days (maximum
annual number of consecutive wet days
(when precipitation ≥ 1.0 mm))

days Annual Coasts, agriculture, transport
operations

R10mm Days when precipitation is at least
10 mm

days Annual/monthly Coasts

R90p Total annual precipitation from very
heavy precipitation days (annual sum
of daily precipitation > 90th
percentile)

mm Annual Coasts, transport operations

R99p Total annual precipitation from very
heavy precipitation days (annual sum
of daily precipitation > 99th
percentile)

mm Annual Coasts, transport operations

Rx1Day Amount of precipitation from very wet
days (maximum 1 d precipitation)

mm Annual/monthly Agriculture and food security, water,
coasts, disaster risk reduction,
forestry/GHGs

mation to demonstrate that our conclusions are insensitive to
the choice of evaluation resolution.

3.2 Evaluation metrics

We evaluated BARRA and ERA5 for their performance in
capturing daily precipitation probability density functions
(PDFs), climatology (29 years in our case), coefficient of
variation (CV), temporal correlation, and trends of seven se-
lected precipitation extreme indices. Each PDF was evalu-
ated using the skill score defined by Perkins et al. (2007),
which quantifies the common area between two reanalyses
and observations. For each grid, the maximum rainfall range
between reanalysis and observation was divided into 200 bins
to compute normalized histograms over the same range. The
common area was determined by calculating the minimum of
the pairwise frequencies, and the standardized overlap area
was obtained by summing these minimum frequencies and
multiplying by the bin width. The CV is a valuable statisti-
cal tool representing the ratio of the (yearly) standard devi-
ation to the mean, allowing for the comparison of variation
between different data series, even when their means differ
significantly. Temporal correlations, which were computed at
an annual time step, of climate extremes measure the similar-
ities between simulations and observations in terms of their
inter-annual variabilities, with larger temporal correlations

indicating better performance. For trend analyses, we applied
simple linear trend line fitting to the yearly time series of
climate indices. All the above metrics are computed at each
grid point in the datasets’ native grids as well as the AGCD
grid after re-gridding. Differences between BARRA/ERA5
and AGCD then form the bias maps. After averaging over all
grid points, the domain averages will then be discussed in the
following.

We used bias and domain-averaged absolute bias to quan-
tify spatial differences between reanalyses and observations.
Temporal correlation, coefficient of variation, and trend were
used to quantify temporal similarities between reanalyses
and observations. The non-parametric Mann–Kendall test
was used to assess the statistical significance of differences
and trends. Biases were assessed at an annual timescale for
all extremes.

4 Results

4.1 Mean climate

This section evaluates and compares the annual mean of daily
precipitation between BARRA and ERA5 against AGCD
over Australia.
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Figure 1. Perkins skill score (PSS) of daily precipitation PDF between (a) BARRA and AGCD, and (b) ERA5 and AGCD. The regions with
low density of station observations in AGCD has been masked and was not considered in all subsequent evaluation.

4.1.1 Daily precipitation PDF

We first compare the Perkins Score for daily precipitation
between BARRA, ERA5, and AGCD (Fig. 1). Both reanaly-
ses generally capture the daily precipitation PDF well, with
Perkins Scores exceeding 0.9 across most of Australia, in-
dicating a strong agreement with observations. However,
there are regional variations in performance. Scores are rela-
tively lower in northern Australia and Tasmania, suggesting
greater discrepancies in these areas. ERA5 exhibits notice-
ably higher scores inland compared to coastal regions, re-
flecting its improved representation of precipitation in inte-
rior regions. In contrast, BARRA does not show a clear spa-
tial pattern, with more variability across different locations.
Overall, ERA5 outperforms BARRA, particularly in inland
areas, likely due to its global data assimilation approach.
However, BARRA shows better agreement in the southeast-
ern coastal regions, indicating its advantage in capturing lo-
cal precipitation patterns influenced by complex terrain and
coastal effects.

4.1.2 Bias and temporal correlation

We evaluate precipitation simulated by BARRA and ERA5
against observations (AGCD). The mean annual precipita-
tion from the three datasets and biases in BARRA and ERA5
compared to AGCD are shown in Fig. 2 (and Fig. S2 on
the observation grid). Results show that both BARRA and
ERA5 simulate the spatial patterns of mean annual precipita-
tion very well with high rainfall in northern Australian, east-
ern Australia coast, and western Tasmania and low rainfall

inland, albeit with clear biases. Compared to AGCD, both
BARRA and ERA5 underestimate precipitation up to 20 %
for Eastern Australian coast, southwest western Australia,
and western Tasmania, but overestimate annual precipitation
up to 30 % inland (Fig. S3). Some clear differences in bi-
ases between BARRA and ERA5 can be observed in central
western Australia and northern Queensland where BARRA
overestimate precipitation but ERA5 underestimate it. Do-
main averaged absolute bias in annual precipitation is about
0.17 mm d−1 (∼ 12.7 % relative bias with respect to domain
average) for BARRA and 0.15 mm d−1 (∼ 10.5 % relative
bias) for ERA5 (Table 2).

The skill of simulated precipitation from BARRA and
ERA5 is further demonstrated in the temporal correlations
between BARRA/ERA5 and AGCD shown in Fig. 3 (and
Fig. S4 on the observation grid). Temporal correlation of an-
nual precipitation is larger in southeast Australia and north-
ern Tasmania for both BARRA and ERA5, which is above
0.85. This indicates inter-annual variability of precipitation
is well captured by BARRA and ERA5. In contrast, temporal
correlation is weaker for western inland and northern Aus-
tralia. ERA5 generally has larger temporal correlation when
compared with BARRA, especially for northern Australia,
where temporal correlation for BARRA is below 0.5. On av-
erage, temporal correlation for ERA5 is 0.85, which is larger
than 0.77 for BARRA (Table 2).

4.1.3 CV (coefficient of variation) and trend

CV of annual precipitation for AGCD and biases between
BARRA/ERA5 and AGCD are presented in Fig. 4 (and
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Figure 2. Annual mean precipitation of AGCD, BARRA, and ERA5 (a–c) and annual mean biases between BARRA/ERA5 and AGCD (d–
e). The regions with low density of station observations in AGCD has been masked and was not considered in all subsequent evaluations.
Unit: mm d−1. Stippling indicates areas with biases that are statistically significant at 95 % confidence level.

Table 2. Domain-averaged absolute biases and temporal correlation between BARRA/ERA5 and AGCD for annual precipitation and precip-
itation extremes.

Indices Absolute biases in annual mean Temporal correlation Absolute biases in CV Absolute biases in trend

BARRA ERA5 BARRA ERA5 BARRA ERA5 BARRA ERA5

Annual pr 0.169 0.149 0.771 0.854 0.063 0.037 0.008 0.007
CDD 14.543 6.913 0.578 0.650 0.050 0.045 0.584 0.566
CWD 2.346 1.714 0.446 0.527 0.061 0.059 0.064 0.060
R10mm 3.265 1.700 0.688 0.761 0.081 0.053 0.085 0.094
R90p 0.777 0.439 0.761 0.827 0.211 0.082 0.023 0.023
R99p 4.093 3.668 0.562 0.625 0.121 0.060 0.206 0.162
Rx1day 20.333 7.916 0.380 0.486 0.219 0.107 0.848 0.542
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Figure 3. Temporal correlation coefficient of annual precipitation between BARRA/ERA5 and AGCD. A black contour at value 0.85 has
been added for reference.

Fig. S5 on the observation grid). By its definition, CV helps
capture the standard deviation in the dataset relative to its
mean. In the observation, CV is generally smaller for coastal
regions, including Tasmania but excepting northwest West
Australia, than inland Australia, where annual rainfall is
much lower than in coastal regions. Alternatively, regions
with higher annual precipitation generally have smaller CV.
Both BARRA and ERA5 reasonably capture the main fea-
ture of CV in observation. However, clear biases can be ob-
served, especially in BARRA that has more than 50 % large
positive biases in Northern Australia, up to 20 % positive bi-
ases for inland, and relatively smaller biases for southeastern
Australia, southwest West Australia, and Tasmania. In con-
trast, ERA5 does not have a clear bias pattern, and biases are
relatively smaller when compared to BARRA.

To further investigate the variability evident in observa-
tions and BARRA/ERA5 simulations, we assess the trends in
annual precipitation (Figs. 5 and S6 on the observation grid).
AGCD shows strong increasing trends over Northern Aus-
tralia and Northeast Australia coastal regions but decreasing
trends over Northern Queensland, southwestern West Aus-
tralia, and southern Great Dividing Range (including Victo-
ria), although not all trends are significant. Most inland re-
gions have a relatively small trend in annual precipitation.
Both BARRA and ERA5 reproduce the major trend pattern;
however clear biases can be observed over Northern Aus-
tralia where both BARRA and ERA5 underestimate trend
more than 100 % (i.e. trend of 0.08 mm d−1 per year with
bias of similar magnitude). BARRA overestimated decreas-
ing trend over Northern Queensland but ERA5 underestimate
it (even increasing trend instead).

In summary, evaluation of annual mean precipitation indi-
cates both BARRA and ERA5 possess small biases (∼ 20 %)
in the spatial precipitation patterns. ERA5 shows stronger
temporal correlations than BARRA, particularly in north-
ern Australia. Overall, ERA5 demonstrates higher accu-
racy in capturing inter-annual precipitation variability. Both
BARRA and ERA5 captured spatial distribution of coef-
ficient of variation reasonably well but with large biases
(∼ 50 %). BARRA shows much larger biases than ERA5 es-
pecially for Northern Australia. Both BARRA and ERA5
roughly reproduce the pattern of trend but with very large bi-
ases (∼ 100 %), especially for Northern Australia where both
substantially underestimate the increasing trend.

4.2 Climate extremes

This section evaluates the seven selected precipitation ex-
treme indices (Table 1) from BARRA and ERA5 over Aus-
tralia by comparing them against AGCD. Evaluations are
performed primarily using spatial bias maps and temporal
correlations. We also assess the interannual variability and
trends in the simulated BARRA and ERA5 indices and com-
pare these with AGCD to further investigate any discrepan-
cies.

4.2.1 Bias and temporal correlation

Annual mean biases in six precipitation extremes are shown
in Fig. 6 (and Fig. S8 on the observation grid). For duration-
related extremes (CDD and CWD), there is a clear north-
to-south gradient in AGCD (Fig. S7) with longer duration
of CDD and CWD in northern Australia than southern Aus-
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Figure 4. CV of annual precipitation for AGCD, BARRA, and ERA5 (a–c) and biases in CV between BARRA/ERA5 and AGCD (d–e).

tralia (CWD also has a clear west-to-east gradient in Tasma-
nia), which is well simulated in BARRA and ERA5 (Fig. S7).
While the spatial distributions are well captured, clear biases
are evident in them (Fig. 6). BARRA generally underesti-
mates CDD especially for central inland and northwest West
Australia where biases are up to 40 %. ERA5 also underesti-
mates CDD for central inland, but in contrast overestimates
CDD for most of northwestern Australia. Overall ERA5 has
smaller absolute bias in CDD (6.9 d) than BARRA (14.5 d)
(Table 2). Both BARRA and ERA5 have a similar bias pat-
tern for CWD, which generally overestimate CWD over most
of regions except for southern Australian coast, southwest
West Australia, and western Tasmania. The positive biases
over Northern Australia may reach 30 %. Overall BARRA
has slightly larger biases in CWD (2.3 d) than ERA5 (1.7 d)
(Table 2).

For threshold-based extremes (PRCPTOT, R10mm, R90p,
R99p, Rx1day), both BARRA and ERA5 also generally
match the spatial distribution of heavy precipitation days
and R90p (Fig. S7) in AGCD with large values in North-
ern Australia, eastern seaboard and Australian Great Divid-
ing Range, and western Tasmania. However, clear biases can
be observed in BARRA and ERA5 for both R10mm and
R90p (Fig. 6). BARRA and ERA5 have large negative bi-
ases in R10mm over Northern Australia, eastern seaboard,
southwest Western Australia, and western Tasmania, but bi-
ases in central inland and northwest West Australia are gener-
ally small. Overall, domain averaged absolute bias for ERA5
(1.7 d) is about half of that for BARRA (3.3 d). Both BARRA
and ERA5 also have relatively large negative biases in R90p
for most of northern Australia, eastern coasts, southwest
West Australia, and western Tasmania but small positive bi-
ases inland, especially for BARRA. Overall averaged abso-
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Figure 5. Trend of annual precipitation for AGCD, BARRA, and ERA5 (a–c) and biases in trend between BARRA/ERA5 and AGCD (d–e).

lute bias is 0.78 mm d−1 for BARRA and 0.44 mm d−1 for
ERA5 (Table 2).

BARRA and ERA5 also reasonably captured the spatial
patterns of R99p and Rx1day; however, quite large biases
are present in BARRA and ERA5 (Fig. 6). BARRA gen-
erally overestimate R99p and Rx1day over northern Aus-
tralia coasts and along the Great Dividing Range. In con-
trast, ERA5 generally underestimate R99p and Rx1day over
northern and eastern coasts, southwest Western Australia,
and western Tasmania. The domain averaged bias in R99p
is at a similar magnitude for BARRA (4.09 mm d−1) and
ERA5 (3.67 mm d−1); however biases in Rx1day are much
larger for BARRA (20.3 mm d−1) than ERA5 (7.9 mm d−1)
(Table 2).

Figure 7 (and Fig. S9 on the observation grid) presents the
temporal correlations between BARRA/ERA5 and AGCD
for the six precipitation extreme indices. Unlike the strong

temporal correlation between BARRA/ERA5 and AGCD for
mean annual precipitation (Fig. 3), the temporal correlations
for these extreme indices are worse except for R90p (Fig. 7).
For extremes like R10mm and R90p, the correlation ranges
from reasonably good (above 0.6) to pretty good (above
0.8) between BARRA/ERA5 and AGCD for most of the do-
main. Temporal correlations for CDD, CWD, and R99p are
not as good as R10mm and R99p. CDD has more regions
with stronger correlations (0.5–0.6) or above than CWD and
Rx1day. For the latter the correlation is about ∼ 0.5 or less
over most of the domain. Compared to BARRA, ERA5 has
slightly stronger temporal correlations for those extremes
(Table 2).
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Figure 6. Biases in CDD, CWD, R10mm, R90p, R99p, and Rx1Day in BARRA (left column) and ERA5 (right column). Stippling indicates
areas with biases that are statistically significant at 95 % confidence level. A black contour at 40 % has been added to the panels for Rx1day
(last row) for reference.

4.2.2 CV (coefficient of variation) and trend

The observed and simulated CV of precipitation extremes
and biases in their CV for BARRA and ERA5 are shown
in Figs. S10 and 8 (and Fig. S11 on the observation grid),
respectively. Generally, both BARRA and ERA5 have sim-
ilar CV bias patterns and magnitude for CDD, CWD, and
R10mm. In contrast, BARRA is quite different from ERA5
for the other three extremes. BARRA substantially underesti-
mated CV of R90p over most of the inland regions, but ERA5
has much smaller negative biases, even small positive biases,
although both have small biases in CV of R90p along most
coastal regions and over Tasmania. BARRA systematically
overestimate CVs of R99p and Rx1day over northern Aus-
tralia but ERA5 has relatively small biases for them. Overall,
BARRA has more than twice as much as CV biases in ERA5
for R90p, R99p, and Rx1day (Table 2).

Trends of each of the precipitation extreme indices for the
three datasets and biases in trend for BARRA and ERA5 are
shown in Figs. S12 and 9 (and Fig. S13 on the observation

grid), respectively. Generally, both BARRA and ERA5 sim-
ulate the main pattern of trends for those extremes but with
large biases. BARRA and ERA5 simulated CDD trend well
for southern Australia but BARRA generally underestimated
trend in CDD over inland Australia and overestimate trend in
northwest Australia. ERA5 only has large positive trend bi-
ases in northern central Australia. The overall domain aver-
aged biases are similar between BARRA (0.584) and ERA5
(0.566). Both BARRA and ERA5 have small biases in CWD
in central and southern Australia but similar biases pattern
in Northern Australia. They also have similar overall biases
in CWD (0.064 for BARRA and 0.060 for ERA5). Both
BARRA and ERA5 underestimated the increasing trend in
R10mm in northern Australia, but BARRA overestimated
the trend in most of southeast Australia, while ERA5 un-
derestimated it. Overall, ERA5 has slightly larger biases
(0.094) than BARRA (0.085). Like R10mm, both BARRA
and ERA5 also underestimate the trend of R90p in most of
northern Australia but have small biases in central and south-
ern Australia. They have almost the same overall biases in
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Figure 7. Temporal correlation of CDD, CWD, R10mm, R90p, R99p, and Rx1Day between BARRA and AGCD (left column) and between
ERA5 and AGCD (right column).

R90p. BARRA/ERA5 have similar bias patterns for R99p
and Rx1day but biases for rx1days are much larger. Both
BARRA and ERA5 have large biases in R99p and Rx1day
but biases in BARRA are generally larger than ERA5.

In summary, both BARRA and ERA5 reproduce spatial
patterns of extremes well but display biases. ERA5 underes-
timates CDD and certain extreme precipitation indices (e.g.
Rx1day), while BARRA tends to overestimate these ex-
tremes. Both reanalyses show discrepancies in various pre-
cipitation indices across different regions, with BARRA gen-
erally displaying larger biases compared to ERA5. Tempo-
ral correlations between BARRA/ERA5 and observations
for extreme precipitation indices are weaker than those for
mean annual precipitation, except for a few indices where
ERA5 demonstrates slightly stronger correlations compared
to BARRA. Both BARRA and ERA5 align in CV pat-
terns and biases for certain extremes (CV, R10mm, R90p)
but differ notably in others (PRCPTOT, trend, CDD, R99p,

Rx1day). BARRA significantly underestimates very heavy
precipitation variability over inland regions, while ERA5
presents smaller biases or even positive biases in these areas.
Additionally, BARRA tends to overestimate extreme precip-
itation variability in Northern Australia compared to ERA5.
Overall, BARRA shows more than double the biases in vari-
ability compared to ERA5 for specific extreme precipitation
indices. Both reanalyses generally simulate the main trend
patterns but exhibit considerable biases. BARRA underesti-
mates or overestimates trends in certain regions and indices,
while ERA5 demonstrates different biases, including smaller
biases overall compared to BARRA across these precipita-
tion extremes.

5 Discussion

In this study, we assessed the performance of BARRA and
ERA5 in simulating mean precipitation and six selected pre-
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Figure 8. Biases in CV of CDD, CWD, R10mm, R90p, R99p and Rx1Day for BARRA (left column) and ERA5 (right column) relative to
AGCD.

cipitation extremes. While most previous evaluations have
focused on the climatology of precipitation and its extremes,
only a few studies have included the coefficient of variation
(CV) (Teng et al., 2024). Our evaluation encompassed an-
nual climatology along with temporal correlation, CV, and
trend analysis, providing a comprehensive assessment of the
performance of these two reanalysis datasets.

The results indicate that both BARRA and ERA5 demon-
strate reasonable skill in simulating mean precipitation and
certain precipitation extremes (e.g. CWD and R90p). How-
ever, they encounter challenges in accurately reproducing
temporal correlation, CV, and trends for certain extreme
events, highlighting significant uncertainties in their repre-
sentation of extremes.

While acknowledging the capabilities of these reanalysis
datasets, our study also identifies specific limitations and
suggests potential directions for future research. A crucial
consideration in model evaluation is the accuracy of ob-
servational data, which substantially influences evaluation
outcomes. In this study, we used the AGCD dataset as the
observational benchmark, which is based on interpolating
data from in-situ stations (Evans et al., 2020). However, the
AGCD dataset presents several limitations: (1) spatial cov-
erage: sparse station coverage in northwest and central Aus-

tralia, and limited observations in high-elevation areas, re-
sult in a concentration of stations in southeastern Australia,
southwestern Western Australia, and eastern Tasmania. The
arid interior is notably underrepresented. (2) Data complete-
ness and homogeneity: incomplete and inhomogeneous ob-
servations due to missing data, changes in observational tech-
niques, or station relocations can affect the consistency of
the dataset. (3) Interpolation uncertainties: the interpolation
method used in AGCD (splining), instead of the ordinary
kriging method used in its predecessor (AWAP), introduces
uncertainties, particularly in areas with sparse data coverage
for extreme events like heavy rainfall.

These observational uncertainties may contribute to biases
in the evaluation results. In particular, the limited number
of monitoring sites over the Great Dividing Range and in-
land areas introduces significant uncertainties in estimated
observed precipitation for these regions. Independent studies,
such as Chubb et al. (2016), found that daily precipitation is
underestimated by at least 15 % in some areas, which could
suggest similar underestimation in BARRA and ERA5 for
these regions. Similarly, the sparse gauge network in north-
western inland areas might miss localized extreme precipita-
tion events.
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Figure 9. Biases in trends of CDD, CWD, R10mm, R90p, R99p, and Rx1Day for BARRA (left column) and ERA5 (right column) relative
to AGCD.

Our analysis focused on seven ET-SCI-defined precipita-
tion extreme indices (including mean precipitation), widely
used in various evaluation studies (Nishant et al., 2021; Ji et
al., 2024). However, recognizing the need for region-specific
indices, we suggest future studies extend the analysis to in-
corporate additional extreme indices tailored to specific re-
gions and applications.

Our findings emphasize that while both BARRA and
ERA5 are competent in simulating the climatology of mean
climate, temporal correlation, and CV, challenges remain in
accurately capturing trends, particularly for certain extremes.
Notably, ERA5 shows better overall performance compared
to BARRA. Although higher resolution often correlates with
better performance, recent studies have shown that increasing
resolution alone does not always guarantee improvements
(Nishant et al., 2022). Considering the critical role of driving
data, model physics, and data assimilation, it may be valu-
able to update BARRA using the latest ERA5 data along with
improved model physics and data assimilation techniques to
enhance its performance.

In this study, we evaluated ERA5 and BARRA on both
their native resolutions and a common resolution (5 km) to

match AGCD. The results showed that the evaluations were
consistent across native and common resolutions, suggesting
that the performance assessments were not highly sensitive
to changes in resolution.

6 Summary and Conclusion

Reanalysis datasets play a crucial role in climate research,
weather analysis, and various scientific investigations. Their
ability to provide a consistent and comprehensive represen-
tation of historical weather and climate conditions makes
them invaluable. These datasets are particularly essential
for studying long-term climate trends, understanding atmo-
spheric phenomena, and validating climate models.

In this study, we evaluated BARRA and ERA5 for their
capabilities to simulate daily precipitation, followed by mean
precipitation and six selected precipitation extremes for their
climatology, temporal correlation, coefficient of variation
(CV), and trend on a monthly timescale to quantify their
overall performance. We evaluated BARRA and ERA5 at
their native resolutions, as well as at a common resolution
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(i.e. the observation resolution). Both analyses yielded con-
sistent results, indicating that the evaluation is not sensitive
to the remapping process.

Perkins skill score analysis of daily precipitation indicates
that both BARRA and ERA5 resemble PDF of AGCD well,
with ERA5 slightly outperforms BARRA in inland regions.
The assessment of annual mean precipitation reveals that
both BARRA and ERA5 adeptly reproduce the spatial pre-
cipitation patterns, exhibiting minor biases of around 20 %.
Particularly, ERA5 showcases stronger temporal correlations
compared to BARRA, which is especially evident in north-
ern Australia. ERA5, overall, demonstrates superior accu-
racy in capturing inter-annual precipitation variability. How-
ever, both models depict the spatial distribution of the co-
efficient of variation reasonably well but with larger biases,
roughly around 50 %. Particularly, BARRA displays signifi-
cantly higher biases, especially in Northern Australia.

Regarding the replication of trend patterns, both mod-
els exhibit substantial biases, reaching approximately 100 %.
This is especially notable in Northern Australia, where they
both notably underestimate the increasing trend. Further-
more, while both BARRA and ERA5 possess about the right
spatial patterns of extremes, biases are evident. ERA5 tends
to underestimate consecutive dry days (CDD) and certain
heavy rainfall events, while BARRA tends to overestimate
these extremes. Discrepancies in various precipitation in-
dices across regions are apparent, with BARRA generally
displaying larger biases compared to ERA5.

When examining temporal correlations for extreme pre-
cipitation indices compared to mean annual precipitation,
both BARRA and ERA5 show weaker correlations, ex-
cept for a few indices (CDD, R10mm, R90p) where ERA5
slightly outperforms BARRA. While both models align in
coefficient of variation patterns and biases for certain ex-
tremes, notable differences arise in others. BARRA notably
underestimates very heavy precipitation variability over in-
land regions, whereas ERA5 presents smaller biases or even
positive biases in these areas. Moreover, BARRA tends to
overestimate extreme precipitation variability in Northern
Australia compared to ERA5. Specifically, BARRA show-
cases more than double the biases in variability compared to
ERA5 for specific extreme precipitation indices.

In terms of trend patterns, both models generally replicate
the observed trends but exhibit considerable biases. BARRA
shows both underestimations and overestimations in certain
regions and indices, while ERA5 displays different biases,
including overall smaller biases compared to BARRA across
these precipitation extremes.

In summary, our findings suggest that both ERA5 and
BARRA are reliable for climatological analyses, including
mean precipitation and precipitation extremes, and can be
confidently used by end-users for such purposes. However, as
discussed in the introduction, caution is advised when using
these datasets for variability and trend analyses, particularly
for specific extreme events like Rx1day. The performance of

these reanalyses is regionally dependent and this should be
considered when using them as observational references for
evaluating other model simulations. Additionally, the biases
in the variability and trends of climate extremes present in
both datasets must be carefully accounted for when compar-
ing them with other data sources.

Data availability. Details about AGCD are avail-
able at the Australian Bureau of Meteorology website
(https://doi.org/10.25914/6009600786063, Evans et al., 2020).
The dataset is available on the NCI (National Computational
Infrastructure) server in project zv2. Detail on how to access the
data can be found at http://climate-cms.wikis.unsw.edu.au/AGCD
(University of New South Wales, 2025). ERA5 data is available on
the NCI in Project rt52. BARRA data is available on the NCI in
project cj37.
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