Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3503-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3503-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Department of Physical Geography, University Trier, Trier, 54296, Germany
Hadysa Mohajerani
Department of Physical Geography, University Trier, Trier, 54296, Germany
Markus C. Casper
Department of Physical Geography, University Trier, Trier, 54296, Germany
Related authors
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-369, https://doi.org/10.5194/hess-2024-369, 2025
Preprint withdrawn
Short summary
Short summary
This study presents a calibration approach for water balance models. The different calibration steps aim at calibrating different hydrological processes: evapotranspiration, the runoff partitioning into surface runoff, interflow and groundwater recharge, as well as the groundwater behaviour. This allows for selection of a model parameterisation that correctly predicts the discharge at catchment outlet and simultaneously correctly depicts the underlying hydrological processes.
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-369, https://doi.org/10.5194/hess-2024-369, 2025
Preprint withdrawn
Short summary
Short summary
This study presents a calibration approach for water balance models. The different calibration steps aim at calibrating different hydrological processes: evapotranspiration, the runoff partitioning into surface runoff, interflow and groundwater recharge, as well as the groundwater behaviour. This allows for selection of a model parameterisation that correctly predicts the discharge at catchment outlet and simultaneously correctly depicts the underlying hydrological processes.
J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein
Nat. Hazards Earth Syst. Sci., 20, 3501–3519, https://doi.org/10.5194/nhess-20-3501-2020, https://doi.org/10.5194/nhess-20-3501-2020, 2020
Short summary
Short summary
We show the potential to observe the unconfined internal-motion behaviour of single clasts in landslides using a wireless sensor measuring acceleration and rotation. The probe's dimensions are 10 mm × 55 mm. It measures up to 16 g and 2000° s−1 with a 100 Hz sampling rate. From the data, we derive transport mode, velocity, displacement and 3D trajectories of several probes. Results are verified by high-speed image analysis and laser distance measurements.
Cited articles
Abbas, S. A., Bailey, R. T., White, J. T., Arnold, J. G., and White, M. J.: Quantifying the role of calibration strategies on surface-subsurface hydrologic model performance, Hydrol. Process., 38, e15298, https://doi.org/10.1002/hyp.15298, 2024.
Ad-hoc-AG Boden (Ed.): Bodenkundliche Kartieranleitung (KA5), 5th edn., Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten, ISBN 978-3-510-95920-4, 2005.
Agrarmeteorologie Rheinland-Pfalz: Aktuelle Wetterdaten Rheinland-Pfalz, https://www.wetter.rlp.de/Agrarmeteorologie, last access: 5 February 2024.
Ahuja, L. R., Ross, J., and Lehman, O.: A theoretical analysis of interflow of water through surface soil horizons with implications for movement of chemicals in field runoff, Water Resour. Res., 17, 65–72, 1981.
Althoff, D. and Rodrigues, L. N.: Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment, J. Hydrol., 600, 126674, https://doi.org/10.1016/j.jhydrol.2021.126674, 2021.
Bailey, R. T., Bieger, K., Arnold, J. G., and Bosch, D. D.: A new physically-based spatially-distributed groundwater flow module for swat+, Hydrology, 7, 75, https://doi.org/10.3390/hydrology7040075, 2020.
Barkwith, A., Hurst, M. D., Jackson, C. R., Wang, L., Ellis, M. A., and Coulthard, T. J.: Simulating the influences of groundwater on regional geomorphology using a distributed, dynamic, landscape evolution modelling platform, Environ. Modell. Softw., 74, 1–20, 2015.
Barthel, R.: Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale, Advances in Geosciences, 9, 63–71, 2006.
Beven, K.: Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Process., 16, 189–206, 2002.
Beven, K. J.: On hypothesis testing in hydrology: Why falsification of models is still a really good idea, Wires Water, 5, e1278, https://doi.org/10.1002/wat2.1278, 2018.
Beven, K. J. and Alcock, R. E.: Modelling everything everywhere: A new approach to decision-making for water management under uncertainty, Freshwater Biol., 57, 124–132, 2012.
Birkigt, J., Stumpp, C., Małoszewski, P., and Nijenhuis, I.: Evaluation of the hydrological flow paths in a gravel bed filter modeling a horizontal subsurface flow wetland by using a multi-tracer experiment, Sci. Total Environ., 621, 265–272, 2018.
Botero-Acosta, A., Ficklin, D. L., Ehsani, N., and Knouft, J. H.: Climate induced changes in streamflow and water temperature in basins across the atlantic coast of the united states: An opportunity for nature-based regional management, J. Hydrol., 44, 101202, https://doi.org/10.1016/j.ejrh.2022.101202, 2022.
Casper, M. C., Grigoryan, G., Gronz, O., Gutjahr, O., Heinemann, G., Ley, R., and Rock, A.: Analysis of projected hydrological behavior of catchments based on signature indices, Hydrol. Earth Syst. Sci., 16, 409–421, https://doi.org/10.5194/hess-16-409-2012, 2012.
Casper, M. C., Mohajerani, H., Hassler, S., Herdel, T., and Blume, T.: Finding behavioral parameterization for a 1-D water balance model by multi-criteria evaluation, J. Hydrol. Hydromech., 67, 213–224, 2019.
Casper, M. C., Salm, Z., Gronz, O., Hutengs, C., Mohajerani, H., and Vohland, M.: Calibration of Land-Use-Dependent Evaporation Parameters in Distributed Hydrological Models Using MODIS Evaporation Time Series Data, Hydrology, 10, 216, https://doi.org/10.3390/hydrology10120216, 2023.
Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S., Wood, A. W., Fowler, H. J., Prudhomme, C., Arnold, J. R., and Brekke, L. D.: Characterizing uncertainty of the hydrologic impacts of climate change, Current climate change reports, 2, 55–64, 2016.
Dangol, S., Zhang, X., Liang, X.-Z., Anderson, M., Crow, W., Lee, S., Moglen, G. E., and McCarty, G. W.: Multivariate calibration of the swat model using remotely sensed datasets, Remote Sens., 15, 2417, https://doi.org/10.3390/rs15092417, 2023.
Darcy, H.: Les fontaines publiques de Dijon, https://books.google.lu/books?id=42EUAAAAQAAJ&printsec=frontcover&hl=de#v=onepage&q&f=false (last access: 17 January 2025), 1856.
Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L., and Stisen, S.: Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model, Hydrol. Earth Syst. Sci., 22, 1299–1315, https://doi.org/10.5194/hess-22-1299-2018, 2018.
Du, J., Rui, H., Zuo, T., Li, Q., Zheng, D., Chen, A., Xu, Y., and Xu, C.-Y.: Hydrological simulation by swat model with fixed and varied parameterization approaches under land use change, Water Resour. Manag., 27, 2823–2838, 2013.
Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-objective calibration approaches in hydrological modelling: A review, Hydrolog. Sci. J., 55, 58–78, 2010.
European Environment Agency (EEA): Dominant Leaf Type 2018, Europe, 3 yearly, Sep. 2020, European Environment Agency, https://doi.org/10.2909/7b28d3c1-b363-4579-9141-bdd09d073fd8, 2020.
Ferket, B. V., Samain, B., and Pauwels, V. R.: Internal validation of conceptual rainfall–runoff models using baseflow separation, J. Hydrol., 381, 158–173, 2010.
Gauster, T., Laaha, G., and Koffler, D.: lfstat: Calculation of Low Flow Statistics for Daily Stream Flow Data, CRAN [code], https://doi.org/10.32614/CRAN.package.lfstat, 2022.
Gerlach, N.: INTERMET – Interpolation meteorologischer Größen, in: Niederschlags-Abfluss-Modellierung zur Verlängerung des Vorhersagezeitraumes operationeller Wasserstands-Abflussvorhersagen, edited by: Bundesanstalt für Gewaesserkunde, Reihe BfG Veranstaltungen, 3/2006, 5–14, https://www.deutsche-digitale-bibliothek.de/item/2GL44F7PM4CKP2SO5QBL2Q4B24HJIBH5 (last access: 23 January 2025), 2006.
Götzinger, J., Barthel, R., Jagelke, J., Bardossy, A.: The role of groundwater recharge and baseflow in integrated models, Groundwater-surface water interaction: process understanding, conceptualization and modelling, IAHS-AISH P., 321, 103–109, https://doi.org/10.13140/2.1.2192.8960, 2008.
Gupta, H. V., Sorooshian, S., and Yapo, P. O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrol. Eng., 4, 135–143, 1999.
Heuer, M. M.: moritzheuer/MultiVariableCalibration: Published Version, Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.14841047, 2025.
Hmaied, A., Podwojewski, P., Gharnouki, I., Chaabane, H., and Hammecker, C.: Evaluation of soil hydraulic properties in northern and central tunisian soils for improvement of hydrological modelling, Land, 13, 385, https://doi.org/10.3390/land13030385, 2024.
Huang, S., Shah, H., Naz, B. S., Shrestha, N., Mishra, V., Daggupati, P., Ghimire, U., and Vetter, T.: Impacts of hydrological model calibration on projected hydrological changes under climate change – a multi-model assessment in three large river basins, Climatic Change, 163, 1143–1164, 2020.
ISPRA – Istituto Superiore per la Protezione e per la Ricerca Ambientale: Corine land cover, ISPRA [data set], http://data.europa.eu/88u/dataset/ispra_rm-meta_geo_cl001 (last access: 28 May 2023), 2018.
Kheimi, M. and Abdelaziz, S. M.: A daily water balance model based on the distribution function unifying probability distributed model and the SCS curve number method, Water, 14, 143, https://doi.org/10.3390/w14020143, 2022.
Knisel Jr., W. G.: Baseflow recession analysis for comparison of drainage basins and geology, J. Geophys. Res., 68, 3649–3653, 1963.
Koch, J., Siemann, A., Stisen, S., and Sheffield, J.: Spatial validation of large-scale land surface models against monthly land surface temperature patterns using innovative performance metrics, J. Geophys. Res.-Atmos., 121, 5430–5452, 2016.
Koch, J., Mendiguren, G., Mariethoz, G., and Stisen, S.: Spatial sensitivity analysis of simulated land surface patterns in a catchment model using a set of innovative spatial performance metrics, J. Hydrometeorol., 18, 1121–1142, 2017.
Kraller, G., Warscher, M., Strasser, U., Kunstmann, H., and Franz, H.: Distributed hydrological modeling and model adaption in high alpine karst at regional scale (Berchtesgaden Alps, Germany), H2Karst Research in Limestone Hydrogeology, 115–126, https://doi.org/10.1007/978-3-319-06139-9_8 2014.
Kubát, J.-F., Strouhal, L., and Kavka, P.: Estimation of infiltration parameters: The role of pedotransfer functions and initial moisture conditions, J. Hydrol., 633, 130954, https://doi.org/10.1016/j.jhydrol.2024.130954, 2024.
Landesamt für Geologie und Bergbau: Bodenflächendaten im Maßstab 1:50 000 (bfd50), Landesamt für Geologie und Umwelt, https://mapclient.lgb-rlp.de/?app=lgb&view_id=17 (last access: 15 December 2024), 2021.
Liu, X., Yang, K., Ferreira, V. G., and Bai, P.: Hydrologic model calibration with remote sensing data products in global large basins, Water Resour. Res., 58, e2022WR032929, https://doi.org/10.1029/2022WR032929, 2022.
McNamara, J. P., Tetzlaff, D., Bishop, K., Soulsby, C., Seyfried, M., Peters, N. E., Aulenbach, B. T., and Hooper, R.: Storage as a metric of catchment comparison, Hydrol. Process., 25, 3364–3371, 2011.
Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M., Gutmann, E. D., Rasmussen, R. M., Rajagopalan, B., Brekke, L. D., and Arnold, J. R.: Effects of hydrologic model choice and calibration on the portrayal of climate change impacts, J. Hydrometeorol., 16, 762–780, 2015.
Meresa, H., Zhang, Y., Tian, J., Ma, N., Zhang, X., Heidari, H., and Naeem, S.: An integrated modelling framework in projections of hydrological extremes, Surv. Geophys., 44, 277–322, 2023.
Mohajerani, H., Jackel, M., Salm, Z., Schütz, T., and Casper, M. C.: Spatial Evaluation of a Hydrological Model on Dominant Runoff Generation Processes Using Soil Hydrologic Maps, Hydrology, 10, 55, https://doi.org/10.3390/hydrology10030055, 2023.
Mohajerani, H., Teschemacher, S., and Casper, M. C.: A comparative investigation of various pedotransfer functions and their impact on hydrological simulations, Water, 13, 1401, https://doi.org/10.3390/w13101401, 2021.
Monteith, J. L.: Evaporation and environment, Symposia of the society for experimental biology, 19, 205–234, 1965.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria, T. ASABE, 58, 1763–1785, 2015.
Muggeo, V. M.: Segmented: an R package to fit regression models with broken-line relationships, R news, 8, 20–25, 2008.
Myers, D. T., Ficklin, D. L., and Robeson, S. M.: Incorporating rain-on-snow into the swat model results in more accurate simulations of hydrologic extremes, J. Hydrol., 603, 126972, https://doi.org/10.1016/j.jhydrol.2021.126972, 2021.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Natkhin, M., Steidl, J., Dietrich, O., Dannowski, R., and Lischeid, G.: Differentiating between climate effects and forest growth dynamics effects on decreasing groundwater recharge in a lowland region in Northeast Germany, J. Hydrol., 448, 245–254, 2012.
Nesru, M., Shetty, A., and Nagaraj, M.: Multi-variable calibration of hydrological model in the upper Omo-Gibe basin, Ethiopia, Acta Geophys., 68, 537–551, 2020.
Nolte, A., Eley, M., Schöniger, M., Gwapedza, D., Tanner, J., Mantel, S. K., and Scheihing, K.: Hydrological modelling for assessing spatio-temporal groundwater recharge variations in the water-stressed Amathole Water Supply System, Eastern Cape, South Africa: Spatially distributed groundwater recharge from hydrological model, Hydrol. Process., 35, e14264, https://doi.org/10.1002/hyp.14264, 2021.
Ntona, M. M., Busico, G., Mastrocicco, M., and Kazakis, N.: Modeling groundwater and surface water interaction: An overview of current status and future challenges, Sci. Total Environ., 846, 157355, https://doi.org/10.1016/j.scitotenv.2022.157355, 2022.
Pai, N., Saraswat, D., and Srinivasan, R.: Field_swat: A tool for mapping swat output to field boundaries, Comput. Geosci., 40, 175–184, 2012.
Paschalis, A., Bonetti, S., Guo, Y., and Fatichi, S.: On the uncertainty induced by pedotransfer functions in terrestrial biosphere modelling, Water Resour. Res., 58, e2021WR031871, https://doi.org/10.1029/2021WR031871, 2022.
Penna, D., Engel, M., Mao, L., Dell'Agnese, A., Bertoldi, G., and Comiti, F.: Tracer-based analysis of spatial and temporal variations of water sources in a glacierized catchment, Hydrol. Earth Syst. Sci., 18, 5271–5288, https://doi.org/10.5194/hess-18-5271-2014, 2014.
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 3 May 2024), 2023.
Refsgaard, J. C.: Towards a formal approach to calibration and validation of models using spatial data. Spatial patterns in catchment hydrology: observations and modelling, edited by: Grayson, R. and Blöschl, G., Cambridge University Press, Cambridge, ISBN 978-0521633161, 329–354, 2001.
Renger, M., Bohne, K., Facklam, M., Harrach, T., Riek, W., Schäfer, W., Wessolek, G., and Zacharias, S.: Ergebnisse und Vorschläge der DGB-Arbeitsgruppe ”Kennwerte des Bodengefüges” zur Schätzung bodenphysikalischer Kennwerte, TU Berlin, https://www.academia.edu/download/41462088/bodenphysikalischeKennwerte.pdf (last access: 22 December 2024), 2008.
Richards, L. A.: Capillary conduction of liquids through porous mediums, Physics, 1, 318–333, 1931.
Rogelis, M. C., Werner, M., Obregón, N., and Wright, N.: Hydrological model assessment for flood early warning in a tropical high mountain basin, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2016-30, 2016.
RStudio Team.: RStudio: Integrated Development Environment for R, RStudio, PBC, Boston, MA, http://www.rstudio.com/ (last access: 3 May 2024), 2020.
Schaake, J. C., Koren, V. I., Duan, Q.-Y., Mitchell, K., and Chen, F.: Simple water balance model for estimating runoff at different spatial and temporal scales, J. Geophys. Res.-Atmos., 101, 7461–7475, 1996.
Schulla, J.: Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen von Klimaänderungen, Zürcher Geographische Schriften, Heft 69, Verlag Geographisches Institut ETH Zürich, https://doi.org/10.3929/ethz-a-001763261, 1997.
Schulla, J.: Model Description WaSiM (Water balance Simulation Model) – (version 10.08.00), http://www.wasim.ch/downloads/doku/wasim/wasim_2024_en.pdf (last access: 19 September 2024), 2024a.
Schulla, J.: TANALYS Topographisches Analyse-Tool, http://www.wasim.ch/de/products/tanalys.htm (last access: 1 October 2024), 2024b.
Schwerdtfeger, J., Hartmann, A., and Weiler, M.: A tracer-based simulation approach to quantify seasonal dynamics of surface-groundwater interactions in the Pantanal wetland, Hydrol. Process., 30, 2590–2602, 2016.
Seiler, K.-P., and Gat, J. R.: Groundwater recharge from run-off, infiltration and percolation, vol. 55, Springer Science and Business Media, Dordrecht, the Netherlands, ISBN 978-1-4020-5305-4, 2007.
Shrestha, R. R., Osenbrück, K., and Rode, M.: Assessment of catchment response and calibration of a hydrological model using high-frequency discharge–nitrate concentration data, Hydrol. Res., 44, 995–1012, 2013.
Smakhtin, V. U.: Estimating continuous monthly baseflow time series and their possible applications in the context of the ecological reserve, Water SA, 27, 213–218, 2001.
Steinrücken, U. and Behrens, T.: Bodenhydrologische Karte: Nahe/Rheinland-Pfalz Südwest, LUWG-Bericht 6/2010, 61 pp., Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht, Mainz, https://lfu.rlp.de/fileadmin/lfu/Service/Publikationen/Allgemeines/Bodenhydrologie_Bericht_17.03.2011-Druck.pdf (last access: 17 August 2024), 2010.
Stisen, S., Demirel, C., and Koch, J.: A novel spatial performance metric for robust pattern optimization of distributed hydrological models, AGU Fall Meeting Abstracts, 2017, H11D-1204, https://ui.adsabs.harvard.edu/abs/2017AGUFM.H11D1204S/abstract (last access: 27 December 2024), 2017.
Stisen, S., Jensen, K. H., Sandholt, I., and Grimes, D. I.: A remote sensing driven distributed hydrological model of the Senegal River basin, J. Hydrol., 354, 131–148, 2008.
Stisen, S., Koch, J., Sonnenborg, T. O., Refsgaard, J. C., Bircher, S., Ringgaard, R., and Jensen, K. H.: Moving beyond run-off calibration – Multivariable optimization of a surface–subsurface–atmosphere model, Hydrol. Process., 32, 2654–2668, 2018.
Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K., and Tallaksen, L. M.: Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions, Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, 2020.
Stoelzle, M., Weiler, M., Stahl, K., Morhard, A., and Schuetz, T.: Is there a superior conceptual groundwater model structure for baseflow simulation?, Hydrol. Process., 29, 1301–1313, 2015.
Szabó, B., Weynants, M., and Weber, T. K. D.: Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2), Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, 2021.
Teepe, R., Dilling, H., and Beese, F.: Estimating water retention curves of forest soils from soil texture and bulk density, J. Plant Nutr. Soil Sc., 166, 111–119, 2003.
Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G., Lyon, S. W., Paniconi, C., Pauwels, V. R., Rupp, D. E., Selker, J. S.: The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange, Water Resour. Res., 49, 5099–5116, 2013.
Troldborg, L., Refsgaard, J. C., Jensen, K. H., and Engesgaard, P.: The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system, Hydrogeol. J., 15, 843–860, 2007.
Van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
Vansteenkiste, T., Tavakoli, M., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., and Willems, P.: Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation, J. Hydrol., 511, 335–349, 2014.
Westerberg, I. K., Guerrero, J.-L., Younger, P. M., Beven, K. J., Seibert, J., Halldin, S., Freer, J. E., and Xu, C.-Y.: Calibration of hydrological models using flow-duration curves, Hydrol. Earth Syst. Sci., 15, 2205–2227, https://doi.org/10.5194/hess-15-2205-2011, 2011.
Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model, Vadose Zone J., 8, 86–95, 2009.
Wösten, J., Lilly, A., Nemes, A., and Le Bas, C.: Development and use of a database of hydraulic properties of European soils, Geoderma, 90, 169–185, 1999.
Wu, S., Tetzlaff, D., Yang, X., Smith, A., and Soulsby, C.: Integrating Tracers and Soft Data Into Multi-Criteria Calibration: Implications From Distributed Modelling in a Riparian Wetland, Water Resour. Res., 59, e2023WR035509, https://doi.org/10.1029/2023WR035509, 2023.
Xiong, L. and Guo, S.: A two-parameter monthly water balance model and its application, J. Hydrol., 216, 111–123, 1999.
Yáñez-Morroni, G., Suárez, F., Muñoz, J. F., and Lagos, M. S.: Hydrological modelling of the Silala River basin. 2. Validation of hydrological fluxes with contemporary data, Wires Water, 11, e1696, https://doi.org/10.1002/wat2.1696, 2024.
Yeh, H.-F., and Chen, H.-Y.: Assessing the long-term hydrologic responses of river catchments in Taiwan using a multiple-component hydrograph approach, J. Hydrol., 610, 127916, https://doi.org/10.1016/j.jhydrol.2022.127916, 2022.
Zacharias, S. and Wessolek, G.: Excluding organic matter content from pedotransfer predictors of soil water retention, Soil Sci. Soc. Am. J., 71, 43–50, 2007.
Zhang, H., Huang, G. H., Wang, D., and Zhang, X.: Multi-period calibration of a semi-distributed hydrological model based on hydroclimatic clustering, Adv. Water Resour., 34, 1292–1303, 2011.
Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53, 2017.
Short summary
This study presents a process-behavioural calibration approach for water balance models. The different calibration steps aim at calibrating different hydrological processes: evapotranspiration, the runoff partitioning into surface runoff, interflow, and groundwater recharge, as well as the groundwater behaviour. This allows for selection of a model parameterisation that correctly predicts the discharge at the catchment outlet and simultaneously correctly depicts the underlying hydrological processes.
This study presents a process-behavioural calibration approach for water balance models. The...