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Abstract. Process-behavioural hydrological modelling aims
not only at predicting the discharge of an area within a model,
but also at understanding and correctly depicting the under-
lying hydrological processes. Here, we present a new ap-
proach for the calibration and evaluation of water balance
models, exemplarily applied to the Riverisbach catchment in
Rhineland-Palatinate, Germany. For our approach, we used
the behavioural model WaSiM. The first calibration step is
the adjustment of the evapotranspiration (ETa) parameters
based on MODIS evapotranspiration data. This aims at pro-
viding correct evapotranspiration behaviour of the model and
at closing the water balance at the gauging station. In the
second step, geometry and transmissivity of the aquifer are
determined using the characteristic delay curve (CDC). The
portion of groundwater recharge was calibrated using the de-
layed flow index (DFI). In the third step, inappropriate pe-
dotransfer functions (PTFs) could be filtered out by com-
paring dominant runoff process patterns under a synthetic
precipitation event with a soil hydrological reference map.
Then, the discharge peaks were adjusted based on so-called
signature indices. This ensured a correct depiction of high-
flow volume in the model. Finally, the overall model per-
formance was determined using signature indices and effi-
ciency measures. The results show a very good model fit
with values of 0.87 for the NSE (Nash–Sutcliffe model ef-
ficiency coefficient) and 0.89 for the KGE (Kling–Gupta ef-
ficiency) in the calibration period, as well as an NSE of
0.78 and a KGE of 0.87 for the validation period. Simulta-
neously, our calibration approach ensured a correct depiction
of the underlying processes (groundwater behaviour, runoff
patterns). We were also able to detect the model parameter-
isations based on the PTFs that showed satisfactory results

across all calibration steps. This enables a targeted selection
of the most suitable PTFs for determining the soil properties.
This means that our calibration approach allows selecting a
process-behaviourally faithful one from many possible pa-
rameterisation variants.

1 Introduction

Traditionally, hydrological models are calibrated mainly on
the basis of gauging data, with the aim of accurately pre-
dicting discharge. However, the underlying processes like
groundwater behaviour or runoff generation processes are of-
ten neglected in this approach (Schaake et al., 1996; Xiong
and Guo, 1999; Casper et al., 2019; Kheimi and Abdelaziz,
2022). Reasons for this could be that data sets for additional
calibration steps are missing, more comprehensive calibra-
tion is too time-consuming and computationally intensive, or
the correctness of certain underlying model processes is in-
significant for the specific research question. Relying solely
on statistical evaluations of overall runoff performance may
not adequately capture model performance for high and low
flow extremes (Westerberg et al., 2011; Althoff and Ro-
drigues, 2021). This means that although these models are
then suitable for predicting runoff, they do not allow investi-
gations of the underlying processes. Additionally, the model
could behave in unintended ways when incorporating climate
or land use changes (Clark et al., 2016). This emphasises the
necessity for physically-based models to be not just theoret-
ically accurate but also empirically validated against the dy-
namics of natural hydrological systems (Beven, 2002).
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Process-behavioural modelling addresses this issue by
not only considering the discharge but also the discharge-
forming processes during model calibration. This approach
necessitates the integration of methodological frameworks
that align simulated processes with observed catchment re-
sponses (Vansteenkiste et al., 2014). For example, studies by
Ferket et al. (2010), Zhang et al. (2011), and Meresa et al.
(2023) have employed performance metrics to evaluate sub-
surface flow components, such as interflow and deep perco-
lation to groundwater, within runoff discharge simulations.
Similarly, Casper et al. (2023) enhanced the reproduction of
spatial and temporal evapotranspiration (ETa) patterns by ap-
plying a MODIS-based calibration approach to vegetation-
related ETa parameters. Using the example of soil moisture
content, Dangol et al. (2023) were able to show that limited
approaches to model calibration led to incorrect process de-
piction. The inclusion of additional data led to an improved
representation of the corresponding process in the model.
Similar results were obtained by Stisen et al. (2018), who
achieved a more robust model calibration by including spatial
variables such as soil moisture, remotely sensed land surface
temperature, hydraulic head, and actual evapotranspiration in
the calibration process in addition to the discharge. Abbas
et al. (2024) were able to show that the incorporation of in-
creased parameter numbers paired with the incorporation of
different hydrological processes improves the model result.
This shows that the use of different hydrologic processes in
model calibration is necessary for the correct depiction of the
discharge generating processes.

Groundwater’s delayed response to precipitation and its
role in baseflow during dry periods are critical for accurate
water resource management (Beven and Alcock, 2012). The
duration from groundwater recharge to baseflow discharge is
influenced by topography, geology, vegetation, land use, and
climate (Barthel, 2006; Götzinger et al., 2008). Baseflow-
fed streamflow is directly related to groundwater storage and
its interaction with streams, which can vary heavily across
catchments (Barkwith et al., 2015). This complexity necessi-
tates incorporating groundwater flow into hydrological mod-
els to accurately simulate discharge under diverse hydrolog-
ical conditions (Knisel, 1963; Smakhtin, 2001; McNamara
et al., 2011; Barkwith et al., 2015; Stoelzle et al., 2015).
The behaviour of the groundwater component in water bal-
ance models must therefore be considered when calibrating a
model. This makes it necessary to implement a way of eval-
uating the model’s ability to correctly represent groundwater
behaviour and its temporal contribution to the overall dis-
charge.

Pedotransfer functions (PTFs) allow the estimation of soil
hydraulic properties from widely available soil data like grain
size, density, or depth. Simulation outcomes of different
PTFs highly differ in runoff components (surface runoff, in-
terflow, and deep percolation) and evapotranspiration (ETa)
rates in space and time (Refsgaard, 2001; Stisen et al., 2008;
Koch et al., 2016, 2017; Casper et al., 2019; Mohajerani

et al., 2021). Therefore, the correct choice of a PTF for soil
parameterisation is crucial. Despite the knowledge about the
difference the PTF choice makes, modellers seem to give this
too little attention. Often, established PTFs are chosen with-
out evaluating if they are really suitable for the soil param-
eterisation of the specific catchment’s soils. This makes it
necessary to develop approaches which allow to evaluate if
certain PTFs correctly derive the catchment’s soil properties,
as these fundamentally influence the discharge generation.

Liu et al. (2022) demonstrated that the incorporation of
remote sensing data like ETa data or terrestrial water stor-
age change (TWSC) for hydrologic model calibration can
improve the depiction of those processes. It was also shown
that combinations of different evaluation criteria increase the
model accuracy regarding the underlying processes (Nesru
et al., 2020; Nolte et al., 2021; Yáñez-Morroni et al., 2024).
Also, the relevance of groundwater parameterisations in hy-
drological models has already been emphasised several times
(Troldborg et al., 2007; Troch et al., 2013). However, the
calibration of aquifers in hydrological models in particular
has so far received too little attention in multi-variable cali-
bration approaches. This results in the need for a calibration
scheme that combines approaches for the calibration of sur-
face processes such as evapotranspiration, runoff generation
processes, and overall discharge with approaches for the cali-
bration of groundwater behaviour. This is particularly neces-
sary if the model should be used to investigate the effects
of changes in environmental variables, for example under
changing land uses or under climate change scenarios (Du
et al., 2013; Mendoza et al., 2015; Huang et al., 2020). This
also applies if the change in discharge-forming processes it-
self is to be the subject of research (Efstratiadis and Kout-
soyiannis, 2010).

To address the above-mentioned challenges, our research
introduces a new approach for the parameterisation and cal-
ibration of water balance models. This approach comprises
the calibration of evapotranspiration patterns of different
land uses based on remote sensing ETa data, ensuring cor-
rect ETa patterns and a closed water balance. In addition, the
ground water behaviour is assessed by deriving the long term
baseflow from the measured discharge of the catchment. This
allows for calibration of the groundwater behaviour (storage,
recession) as well as the groundwater recharge (deep perco-
lation) within the model. Furthermore, the influence of the
soil parameterisation on the spatial pattern of runoff gener-
ation is assessed. This ensures a correct depiction of runoff
patterns over the catchment area. Lastly, high discharge vol-
ume is calibrated by deriving information about the catch-
ment discharge characteristics from the flow duration curve.
These different methods are applied to model parameterisa-
tions whose soil hydrological properties are determined dif-
ferently by a variety of pedotransfer functions. Therefore, the
suitability of individual PTFs to correctly describe the soil
properties of the catchment can be evaluated. By incorpo-
rating the calibration and evaluation of these different model
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aspects, we aim at reaching a model calibration that correctly
simulates the discharge as well as the underlying hydrolog-
ical processes. This represents an advantage over black-box
calibration approaches, where the calibration is not aimed at
the correct representation of hydrological processes. It also
extends existing multi-variable calibration concepts, which
previously did not take different soil parameterisations into
account in their calibration and evaluation schemes.

The aim of our study is to investigate whether a multi-
variable calibration approach can be used to select a model
parameterisation that correctly represents both the simulated
runoff and the underlying hydrological processes. We hy-
pothesise that (i) the aquifer calibration can be derived from
the measured baseflow; (ii) a model parameter set can be
found that leads to correct discharge and process depiction;
and (iii) soil parameterisations derived by different PTFs that
lead to incorrect process depictions in the model can be reli-
ably detected and filtered out.

2 Methodology and material

2.1 Study area

The Riverisbach catchment (Fig. 1) was selected as the study
area for the demonstration of the parameterisation approach.
This was due to the good availability of data on soil, land
use, ETa patterns, and discharge, which is necessary for the
evaluation of the model calibration. The catchment basin is
located south-east of Trier in Rhineland-Palatinate, Germany.
It covers an area of around 15.42 km2 and ranges from 329 m
above sea level in the north-west to 705 m above sea level
in the south, resulting in a height amplitude of 376 m and
an average slope gradient of 4.49 %. The used gauging sta-
tion “Riveristalsperre” is located in the west of the catchment
at 49°41.771′ N, 6°46.741′ E. The mean annual precipitation
amounts to 918 mm yr−1.

The area is located above bedrock from the Drohntal
strata, i.e. quartz sandstone and quartzitic sandstone with in-
tercalations of claystone and siltstone. The soils are domi-
nated by Cambisols while Gleysols and Stagnosols can be
found along the watercourses in the floodplain area. The ma-
jority of the Riverisbach catchment area is covered by for-
est. Conifers dominate the north-east and west and deciduous
trees dominate in the centre and south. In the west there are
also small areas of grassland and mixed woodland.

2.2 Data sources

Soil type information was taken from the “Bodenflächen-
daten im Maßstab 1 : 50000 (BFD50)” (Landesamt für Ge-
ologie und Bergbau, 2021). The data for the land use are
derived from Corine land cover (ISPRA – Istituto Superi-
ore per la Protezione e per la Ricerca Ambientale, 2018) as
well as from the European Union’s Copernicus Land Mon-
itoring Service information (European Environment Agency

(EEA), 2020). INTERMET data (Gerlach, 2006) were used
as time series for meteorological data. Wind data were taken
from the Agrarmeteorologie Rheinland-Pfalz (2024). Values
for the saturated hydraulic conductivity ksat were taken from
Ad-hoc-AG Boden (2005).

2.3 Model setup and parameterisation

The WaSiM model (Schulla, 1997) version 10.08.02
(Schulla, 2024a) was selected for the simulation and develop-
ment of the parameterisation approach. It is a deterministic,
hydrological catchment model that is suitable for the simula-
tion of both small (< 1km2) and very large (> 10000km2)
areas. It also simulates the underlying processes that lead
to discharge generation. This includes the ETa, groundwa-
ter flow, surface runoff, and interflow, as well as groundwa-
ter recharge. It is therefore suitable for a process-behavioural
modelling approach that includes the calibration of these
processes. A schematic depiction of the WaSiM model is
shown in Fig. 2. The soil is represented in the model as a
rectangular grid of 1-dimensional columns. Each of these
columns is divided into soil horizons of different thick-
nesses, which in turn are subdivided into several layers. At
the bottom, a section of aquifer layers is included. Surface
runoff, interflow, and groundwater-contributing deep perco-
lation can be generated. Surface runoff and interflow of each
subcatchment are delayed through a single linear reservoir
(SLR) each. Snowmelt is handled with a temperature-index-
approach where the snowmelt rate is determined by the tem-
perature and a melt factor.

Spatially resolved data are differentiated within the model
using grid structures. This also enables the model to interpo-
late climatic input data over the catchment area. The model
uses the Richards equation (Richards, 1931) to calculate the
water transport within the unsaturated soil zone. It is defined
as:

∂θ

∂t
=
∂

∂z

[
k(9m)

(
∂9m

∂t

)]
, (1)

where z is the depth, θ is the water content [vol %], t is the
time [d], and k(9m) is the hydraulic conductivity in depen-
dence of the matrix potential [cmd−1]. The van Genuchten
parameters (Van Genuchten, 1980) are used to calculate the
soil physical properties. The Penman–Monteith (Monteith,
1965) method is used to calculate evapotranspiration. A two-
dimensional approach based on Darcy’s law (Darcy, 1856) is
used to calculate groundwater flow. It is defined as:

q = k ·
∂9

∂z
, (2)

where q is the volume flow [m3 s−1], k is the hydraulic con-
ductivity [ms−1], and [∂9/∂z] is the hydraulic gradient [–].

For the model parameterisation, a spatial resolution of
40 m and a temporal resolution of 1 h were chosen. The
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Figure 1. Topography, soil types and land cover types within the Riverisbach catchment as it’s used within our WaSiM based model.

Figure 2. Conceptual diagram of the WaSiM model’s structure. Bold text symbolises certain parameters or functions that are used to derive
parameter values for the model parameterisation. Blue arrows indicate water fluxes within the model.

40 m spatial resolution showed to be the best trade-off be-
tween spatial resolution precision and model computation
time. This also applies to the chosen temporal resolution of
1 h. INTERMET data (Gerlach, 2006) were used as input
time series for meteorological data (temperature, precipita-
tion, radiation, humidity). The data range from 1 January
2010–31 December 2020. Wind data were taken from the
Agrarmeteorologie Rheinland-Pfalz (2024) for the stations
Avelsbach [49.754° N, 6.693° E], Hermeskeil [49.655° N,
6.933° E], and Konz [49.687° N, 6.572° E]. Missing entries
for periods of a few hours were manually resolved.

TANALYS (Schulla, 2024b), the preprocessing tool of
WaSiM, was used to calculate the required spatial informa-
tion grids based on the digital elevation model. These spa-
tial information grids include grids for the slope, exposition,
subcatchments, river network, river width and depth, and col-
mation, as well as lateral aquifer conductivities (kx and ky).
A value of 50 was selected as the threshold for the river net-
work. The threshold value describes from how many cells
of runoff must be combined to form a water body cell in
the model. Higher values for this threshold therefore result
in a coarser river network, while lower values result in finer
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river networks. The resulting network, based on the thresh-
old value of 50 cells, showed the best fit with the water body
of the catchment. Based on the soil types and land use infor-
mation, profiles of the individual soils were created. These
profiles contained data on thickness, soil type, depth, bulk
density, carbonate content, humus content, and dry bulk den-
sity of the individual horizons.

Simulated soil hydraulic properties include hydraulic con-
ductivity, soil water content at field capacity, and saturated
water content. These are described using van Genuchten pa-
rameters and the saturated hydraulic conductivity ksat. We
used 12 different pedotransfer functions (PTFs) to calculate
these parameter values. Pedotransfer functions can derive the
required values for the van Genuchten parameters from mea-
sured soil data based on certain regression curves. Combina-
tions of used pedotransfer functions are shown in Table 1. For
the first seven PTF combinations, values for the saturated hy-
draulic conductivity ksat were taken from the KA5 Ad-hoc-
AG Boden (2005). For PTF combinations 8–12, the values
were calculated by the respective PTF’s equation for ksat.
The chosen PTFs mainly differ in their underlying data, soil
sample size, and considered soil parameters for the resulting
predictive equations. Also, some PTFs are based on regular
regression models while others are based on neural networks
for deriving the hydraulic parameter values. A comprehen-
sive analysis of the characteristics of PTFs 1–11 and their
impact on the derived hydrological soil properties has been
provided by Mohajerani et al. (2021). Each soil was then ini-
tialised with 27 layers, including a groundwater layer, and
their respective hydraulic properties derived by the PTFs.

2.4 Calibration scheme

The calibration approach and its individual steps are de-
scribed and summarised in Table 2. In Fig. 3, the individ-
ual calibration steps are depicted schematically in connection
to the corresponding hydrological processes conceptualised
in the WaSiM model structure. In step 1, evapotranspiration
parameters are calibrated using MODIS evapotranspiration
patterns. This step ensures a closed water balance as well as
correct ETa patterns across different land uses. Step 2 adjusts
the geometry and transmissivity of the groundwater model.
In step 3, the rate of groundwater recharge via the amount
of water entering the aquifer is calibrated. Both steps aim at
correctly depicting the groundwater model behaviour with its
contribution to total discharge. In step 4, the different PTFs
are evaluated by comparing the patterns of dominant runoff
processes under a synthetic heavy rainfall event. This step al-
lows for the identification and exclusion of unsuitable PTFs
that generate inaccurate runoff patterns. In step 5, the peaks
in the hydrograph, represented as the high flow volume on the
flow duration curve, are then adjusted to calibrate the model
parts that are directly influenced by precipitation. Finally, in
step 6, the model is evaluated in terms of its ability to predict

the overall discharge, based on hydrograph efficiency metrics
in a split-sample test.

2.5 Calibration of ETa patterns (step 1)

The approach for calibrating the ETa patterns was origi-
nally described by Casper et al. (2023). According to this,
the evapotranspiration parameters were calibrated using land
use-specific MODIS-derived data (MOD16A2) and validated
against Landsat-derived ETa data. This calibration step en-
hances the representation of spatiotemporal ETa dynam-
ics within the model and closes the water balance at the
catchment outlet. All ETa related parameters are taken from
Casper et al. (2023).

2.6 Calibration of transmissivity (step 2)

Firstly, the model was calibrated in terms of its ability to re-
produce the groundwater behaviour and the associated base
flow. For this purpose, simulation runs were carried out with
the initial parameterisations. A model run for the period from
1 January 2010–31 December 2014 served as a preliminary
run for model spin-up, while the actual model run was then
carried out for the period from 1 January 2010–31 December
2020 using the preliminary run as the initial model state.

We then examined the groundwater behaviour of the catch-
ment and the model by applying the delayed flow index
(DFI) method of Stoelzle et al. (2020) to the measured gaug-
ing data and the simulated hydrograph. For this, the series
of discharge values of the hydrograph is divided into non-
overlapping sections. These sections span a specific period
of block-length n (days) with 1≤ n≤ 180. The minimum
flow value of each interval is then compared with the ones
from adjacent intervals. If a minimum value multiplied by
a specific factor f = 0.9 is smaller than the adjacent min-
ima, a turning point (TP) is defined at its position. These
TPs are then connected and form a delayed-flow hydrograph,
which results in a specific hydrograph for each block length
n. From this, the delayed-flow index (DFI) is calculated for
each block length as the ratio of the sum of the delayed-flow
to the sum of the total flow. An example how the applied
block lengths result in different hydrographs can be seen in
Fig. 4.

The DFI analysis was conducted using R (R Core Team,
2023) within RStudio (RStudio Team, 2020). The above-
mentioned method was applied to the simulated hydrograph.
DFI values for the individual block lengths n were calcu-
lated using the function baseflow from the package lfstat
(Gauster et al., 2022). The resulting DFI values for all block
lengths nwere then plotted in a diagram, creating a character-
istic delay curve (CDC). The find_bps function from the R-
package segmented (Muggeo, 2008) was then used to deter-
mine the breakpoints of the curve. Breakpoints are defined as
those points of the curve at which a change in the discharge
characteristic can be determined (sudden change in slope).
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Figure 3. Conceptual diagram of the WaSiM model structure and the steps of the associated calibration approach. Evapotranspiration pat-
terns are calibrated using MODIS evapotranspiration data (1). The groundwater model flow is then calibrated using the transmissivity (2).
Groundwater recharge, i.e. the amount of water, is adjusted by calibrating the amount of interflow with the scaling factor dr (3). Dominant
runoff process patterns derived from an extreme synthetic rainfall event are compared with the reference map to filter for matching patterns
(4). Calibration of high discharge (peak flows) by adjusting the recession parameters of the direct runoff and interflow single linear reservoirs
for each subcatchment (5). The last step, the evaluation of the hydrograph with efficiency metrics (6), is not shown in this concept figure.

Figure 4. Application of the DFI approach. Panel (a) is the hydrograph separation according to calculated break point values for block
lengths. The corresponding characteristic delay curve (CDC) derived from the hydrograph separation over all block lengths of 1≤ n≤ 180
is shown in (b).
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Table 1. PTF combinations used to estimate the van Genuchten parameters and the saturated hydraulic conductivities.

PTF combination Van Genuchten parameters Soil hydraulic conductivity ksat

1 Wösten et al. (1999) Ad-hoc-AG Boden (2005) KA5
2 Renger et al. (2008) Ad-hoc-AG Boden (2005) KA5
3 Weynants et al. (2009) Ad-hoc-AG Boden (2005) KA5
4 Zacharias and Wessolek (2007) Ad-hoc-AG Boden (2005) KA5
5 Teepe et al. (2003) Ad-hoc-AG Boden (2005) KA5
6 Zhang and Schaap (2017): Rosetta H2w Ad-hoc-AG Boden (2005) KA5
7 Zhang and Schaap (2017): Rosetta H3w Ad-hoc-AG Boden (2005) KA5
8 Wösten et al. (1999) Wösten et al. (1999)
9 Renger et al. (2008) Renger et al. (2008)
10 Zhang and Schaap (2017): Rosetta H2w Zhang and Schaap (2017): Rosetta H2w
11 Zhang and Schaap (2017): Rosetta H3w Zhang and Schaap (2017): Rosetta H3w
12 Szabó et al. (2021): euptfv2 Szabó et al. (2021): euptfv2

Table 2. Scheme for the calibration and evaluation approach applied in this study.

Step Description Aim Scale Behaviour

1 Adjustment of ETa (for
each land use type)

Close the water balance,
match spatial patterns with
MODIS

Spatial and temporal
pattern match

Mean long-term behaviour

2 Adjusting GW model
(transmissivity)

Calibrated baseflow within
the DFI

Temporal match (DFI) Mean long-term behaviour
of GW submodel

3 Adjusting GW recharge Partitioning GW/interflow GW/interflow Long-term GW recharge

4 Checking runoff generation
processes

Match runoff processes
with reference map (BHK)

Spatial match Model behaviour test for
extreme precipitation event
(100 mm)

5 Adjusting high flows Adjusting signature indices Match on flow duration
curve

Rainfall-fed part of the
hydrograph

6 Final model evaluation Peak flow statistics,
split-sample test

Flow duration curve,
hydrograph

Consistency at catchment
outlet

For this, nLS = 4 linear segments were fitted to the CDC by
residual minimisation, resulting in a total of nBP = 3 break-
points along the curve. The area between the last breakpoint
(n= 48) and n= 180 was then considered as the area of the
CDC where the aquifer’s baseflow is the dominant contribu-
tion. This was the area where our groundwater model cali-
bration took place. This procedure was then done for each
PTF, resulting in a CDC for each PTF parameterisation.

Calibration was done to fit the slope of the rear area of
the CDC. As the slope is determined by the transmissivity of
the aquifer, adjustments were made for the model parameters
kx , ky , and colmation, as well as the thickness of the aquifer.
This was done until the slopes of the rear ends of the CDC
for the simulations were identical with the slope of the CDC
for the gauging station. A table with the calibrated model
parameters can be found in the Appendix (Table B1).

2.7 Calibration of groundwater recharge (step 3)

After the groundwater transmissivity was adjusted, the differ-
ent PTFs showed varying proportions in their CDC curves’
rear areas. This indicated that the different PTFs lead to dif-
ferent amounts of water that reached the aquifer. To fit the
simulation’s CDC curve height to the height of the curve for
the measured discharge, the value for the model parameter
drainage density (dr) was adjusted for each PTF indepen-
dently. This conceptual parameter describes how much of the
infiltrating water in the soil passes into the interflow and thus
does not reach the aquifer. It therefore controls the amount of
water contributing to groundwater recharge. As per Schulla
(1997), the parameter dr is included in the formula for the
interflow as:

qifl = ks(2m) ·1z · dr · tanβ, (3)

with: ks being the saturated hydraulic conductivity [ms−1];
2m being the water content in the actual layerm [–]; dr being

https://doi.org/10.5194/hess-29-3503-2025 Hydrol. Earth Syst. Sci., 29, 3503–3525, 2025



3510 M. M. Heuer et al.: Process-behavioural model calibration

Figure 5. CDCs for the uncalibrated groundwater model and after
groundwater model calibration, exemplarily for PTF 8.

the scaling parameter for the interflow to consider anisotropy
of ks,horizontal, compared to ks,vertical; and β being the slope
angle with a maximum of β = 45°.

In this context, higher values of dr represent soil with
stronger lateral drainage capabilities. This usually leads to
more interflow and therefore less water that can infiltrate into
the aquifer and contribute to groundwater recharge. Regard-
ing the groundwater recharge calibration, higher values for
dr lowered the curve, especially in the rear end. This brought
the DFI values into the range of the reference curve (Fig. 5)
for PTFs that initially showed higher CDCs in the rear area.
For CDCs of PTFs that were lower than the reference CDC of
the gauging station, the value for dr had to be lowered. This
reduced interflow and increased the groundwater recharge. A
table with the values of dr for the different PTFs can be found
in the Appendix (Table B2).

2.8 Evaluation of dominant runoff process patterns
(step 4)

In the next step, the different PTFs were compared regarding
their ability to accurately depict the surface runoff processes
in the catchment area under a heavy precipitation event. This
step served to filter out those PTFs that are not capable of
simulating the correct runoff patterns. For this purpose, the
approach developed by Mohajerani et al. (2023) for compar-
ing the runoff processes was used and adapted for our cali-
bration scheme.

The soil hydrological map (BHK) of Rhineland-Palatinate
from Steinrücken and Behrens (2010) was used as a refer-
ence for our comparison. The BHK is a map that depicts
which runoff type dominantly appears under a heavy precipi-
tation event. It divides the runoff into saturated overland flow
(SOF), subsurface flow (SSF), and deep percolation (DP).
Two finer classifications for SOF and SSF are characterised
by different delay times. However, the WaSiM model does

not consider the delay but only the runoff type itself. There-
fore, we only used the three main groups and not the sub-
groups for the comparison. We also refrained from subdivid-
ing the model processes according to the fractions, as sug-
gested by Mohajerani et al. (2023). This was done because
the soil hydrological map categorises the subclasses accord-
ing to the delay and not to the proportions of runoff pro-
cesses. A division by fractions therefore would not be fully
comparable with a division by delay times (as in the BHK).

The BHK was adjusted to the Riverisbach catchment
boundaries and rasterised to a resolution of 40m×40m. This
was done to facilitate a direct comparison between simulated
runoff processes and the BHK as reference. For the compar-
ison, the model state at the end of 31 December 2014 was
used as the initial state of this step’s model run. This ini-
tial state was then used to carry out a 7 d run-up under con-
trolled climatic conditions (temperature= 10°C, radiation=
0Wm−2, wind speed= 0ms−1, relative humidity= 100%,
and precipitation= 0mm) for the entire duration. This was
done to eliminate influence of melting snow on the runoff
analysis during the following main run as well as bringing
soil moisture to field capacity. The final state of this pre-
liminary run then served as the initial state for another 7 d
model run. During this run, the catchment was irrigated with
100 mm of rain over the first seven hours (14.286mmh−1).
Over the simulation period of these seven days, the cumu-
lative runoff fractions for each cell of the catchment grid
were calculated. From the calculated fractions of runoff per
grid cell, maps were created where each grid cell’s dominant
runoff process was attributed to. This resulted in a dominant
runoff process map for each PTF.

The simulated runoff process patterns were then compared
with the runoff process patterns of the BHK. For this pur-
pose, the comparison approach using the spatial efficiency
metric (SPAEF) (Stisen et al., 2017; Demirel et al., 2018)
was adapted. The SPAEF is to be understood as a measure of
spatial similarity. It is defined as:

SPAEF= 1−
√
(α− 1)2+ (β − 1)2+ (γ − 1)2 (4)

α = ρ(A,B) (5)

β =

(
σA

µA

/
σB

µB

)
(6)

γ =

∑n
j=1min(Kj ,Lj )∑n

j=1Kj
, (7)

with α being the Pearson correlation coefficient between
the simulated grid (A) and the reference grid (B). β is the
fraction of coefficient of variations as an indicator of spa-
tial variability. γ is the percentage of histogram intersection
(Demirel et al., 2018). The closer the SPAEF value is to 1, the
higher the similarity between the compared patterns. During
our analysis, however, we encountered a limitation with the
standard SPAEF formula when applied to patterns consist-
ing of only three groups. Specifically, the Pearson correlation
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coefficient, as a component of the SPAEF, tended to yield
lower values if deviations occurred in marginal areas. This
occurred even when there was substantial overall agreement.
To address this issue, we adapted the SPAEF calculation by
substituting the Pearson correlation component. Instead, we
used a direct measurement of percentage agreement between
the simulation and the reference map grids. This adjustment
led to the development of a modified SPAEF formula:

SPAEFmod = 1−
√
(δ− 1)2+ (β − 1)2+ (γ − 1)2 (8)

δ =

∑ng
j=11

ng
for Aj = Bj , (9)

where δ is the percentage match of all grid fields between
simulated map (A) and reference map (B). It is calculated as
the fraction of the amount of identical grid cell pairs between
both maps to the number of grid cells in one map (ng). β
and γ remain unchanged. This new equation for SPAEFmod
allowed us to correctly analyse the agreement between the
simulated runoff patterns and the reference patterns of the
hydrological map (BHK). A separate SPAEFmod value was
then calculated based on the dominant runoff process map
for each PTF.

2.9 Calibration of high flow discharge (step 5)

The discharge peaks of the model were calibrated by adjust-
ing the coefficients of the single linear reservoirs for the di-
rect runoff (kd) and the interflow (kifl). The metrics of the
signature indices (Casper et al., 2012) were used to evalu-
ate the calibration of the individual linear reservoirs. These
indices consider different sections and properties of the flow
duration curves (FDCs) of simulated and measured discharge
and compare them against each other. This yields a percent-
age bias for each signature index parameter. The BiasRR de-
scribes the percent bias in the mean values. The BiasFD-
Cmidslope describes the percent bias in slope of the mid-
segment. The BiasFHV describes the percent bias in high-
segment volumes (upper 2 %). The BiasFLV is the difference
in the long-term baseflow. The BiasFMM depicts the percent
bias in mid-range flow levels.

First, the coefficient for the direct runoff single linear
reservoir, kd, was calibrated. A low value of 2 seemed to fit
best for most PTFs, as the proportion of direct runoff in the
total runoff was low and did not need to be delayed any fur-
ther. For some PTFs, where the fractions of direct discharge
were higher, the value for kd had to be increased. The value
of BiasFHV was then minimised by adjusting the coefficient
for the interflow runoff single linear reservoir, kifl. This was
done to adjust the peaks of the simulated hydrograph to more
closely resemble those of the measured hydrograph of the
catchment. Higher values for kifl lead to a stronger delay of
the interflow runoff. This results in lower peaks of the dis-
charge.

2.10 Final model evaluation (step 6)

2.10.1 Characteristic delay curve (CDC) comparison

The CDCs for the different PTFs were compared to deter-
mine how well the discharge is simulated in the interflow
area. For this purpose, the Manhattan distance (MHd) be-
tween the CDCs between n= 1 and n= 43 (last breakpoint
of the measured data) was calculated according to the follow-
ing formula:

d(A,B)=

n∑
i=1
|Ai −Bi |, (10)

where A represents the values of the CDC for the gauging
station and B the values for the curve of the simulation.

2.10.2 High discharge histogram overlap (HDHO)
analysis

In addition, a high discharge histogram overlap (HDHO)
analysis was carried out based on the hydrographs. By com-
paring the histograms of the temporal peak discharge dis-
tribution for the simulated and measured hydrograph, the
model’s capability of simulating the strongest discharge
events can be assessed. For this purpose, the maximum dis-
charge value of each year was determined. This was done for
each PTF’s hydrograph and for the measured data. The data
were plotted in a histogram. The histogram overlap between
simulated and measured data were then calculated for each
PTF according to following formula:

HDHO=

∑n
j=1min(Kj ,Lj )∑n

j=1Kj
, (11)

where n is the number of bins, Kj the number of values
within bin j for the reference (gauging station), and Lj the
number of values in bin j for the simulation. This was done
to determine a measure of the predictive accuracy of the
discharge peaks. High histogram overlap values indicate a
model’s better predictive accuracy. Lower values represent
poorer model capabilities of high discharge prediction.

2.10.3 Hydrograph efficiency metrics

The hydrographs of the final simulations were then compared
with the measured hydrograph by applying a split sample
test. This was done to evaluate the model’s ability to correctly
predict the overall discharge. For this purpose, three met-
rics were chosen. These include the Kling–Gupta efficiency
(KGE) to evaluate the correspondence between observed and
simulated hydrographs. It considers aspects like correlation,
bias, and variability (Kling et al., 2012). The Nash–Sutcliffe
model efficiency coefficient (NSE) was used to evaluate how
well simulated and measured values fit the 1 : 1 line (Nash
and Sutcliffe, 1970). It puts a special focus on the prediction
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of correct volume. The third metric included was the PBIAS
(percent bias). This metric is a measurement of the average
tendency of the simulated data to be larger or smaller than
their observed counterparts (Gupta et al., 1999). All three
efficiency metric values were calculated for the calibrated
model hydrographs for each PTF.

2.11 Evaluation of PTF suitability

For the evaluation of the different PTFs, the respective model
performance for each calibration step was evaluated. In order
to be considered as satisfactory regarding the groundwater
model calibration, the PTF must allow the model’s CDC to
be adjusted in slope and height to match the reference curve
of the gauging station. If the slope or the height could not
be brought into concordance with the reference, the PTF was
considered as unsatisfactory. For the evaluation of the dom-
inant runoff process patterns, the respective SPAEFmod val-
ues were used as the discriminatory statistic. Here, all PTFs
that lead to SPAEFmod values above 0.5 were considered
as satisfactory. The threshold was chosen as values above
0.5 usually lead to already well-fitting patterns (Mohajerani
et al., 2023). For the evaluation of the discharge prediction,
the NSE, KGE and PBIAS of the validation period are used
as the discriminatory variable. PTFs are considered satis-
factory when the PBIAS is within a range of ±10.0% and
the NSE and KGE are above 0.7. Other studies already con-
sider values of 0.5 as satisfactory for NSE or KGE (Moriasi
et al., 2015; Rogelis et al., 2016). However, we aimed for
a model that shows stronger congruence with the reference
discharge curve, therefore choosing a higher threshold value.
The threshold for the PBIAS was also set stricter, as others
already define values between ±25% as very good (Mori-
asi et al., 2007). Then, an overall benchmark was deducted
based on the three individual evaluation results. A PTF was
then only considered satisfactory if it lead to satisfactory re-
sults for all three evaluation steps.

3 Results

3.1 ETa patterns (step 1)

In step 1, we were able to use the already parameterised and
calibrated values for the ETa-relevant plant properties from
Casper et al. (2023). This made a separate evaluation of cal-
ibrated parameter values obsolete. The adequacy of the used
values was also supported by the closed water balance in our
model (see Sect. 3.4), with deviations ranging from −8.37%
to −0.04%.

3.2 Groundwater model parameterisation (step 2
and 3)

The evaluation of the groundwater model adjustment (Fig. 6)
shows that, in step 2 of our approach, we successfully

matched the slope of the CDC to the observed data for all
PTFs. This was achieved by using a single layer aquifer
with a thickness of 1 m and lateral hydraulic conductivities
of 3× 10−5 ms−1. In step 3, the CDC height could also be
adapted to the course of the gauging station curve for almost
all PTFs except PTF 9 and 10. The corresponding calibrated
values for dr range from 6 for PTF 4 up to 60 for PTF 2, In
the front part of the curve, the simulations almost exclusively
run below the reference curve of the gauging station.

3.3 Dominant runoff process patterns (step 4)

In step 4, the simulated dominant runoff processes for each
PTF were compared to the reference map (BHK) to evaluate
how well each PTF represents the spatial patterns of runoff
(see Fig. 7). The overview of the simulated runoff processes
shows that some PTFs deviate significantly from the refer-
ence map. Except for PTFs 4, 9, and 10, all show domi-
nant interflow over most of the catchment area. PTFs 1, 2, 3,
and 12 show hardly any significant areas of deep percolation.
However, in the reference map of the BHK, deep percolation
can be found in the northern and southern edges of the catch-
ment. Only PTFs 5, 6, 7, and 11 show such areas with dom-
inating deep percolation at the same positions as the BHK.
PTF 4 shows almost exclusively dominant, extensive surface
runoff. It only shows interflow around the watercourse. This
differs highly from the reference map. In comparison, PTF
9 and 10 show strongly dominating deep percolation over
a large area. Also, only narrow areas with interflow can be
found in the vicinity of the watercourse. The area with sur-
face runoff in the west is also not depicted correctly in both
PTFs. For all PTFs, the high correspondence between simu-
lated and reference map for the direct runoff patterns results
from the fact that, by definition, surface runoff occurs in the
model when a watercourse flows through a cell.

The overall values as well as the individual metrics of the
SPAEFmod metric are listed in Table 3. The SPAEFmod val-
ues summarise the values for the three individual parameters.
PTFs 3 and 5 achieve high values of just over 0.75. Their sim-
ulated patterns for these PTFs therefore show high similarity
to the patterns of the reference map. PTFs 1, 2, 7, 8, and 12
show values in the mid-range. They show strong overall sim-
ilarities between the patterns, while individual areas are not
correctly depicted in the simulated patterns. PTFs 4, 6, 9, 10,
and 11 have the lowest values. They are all below 0.

3.4 High flow calibration (step 5)

The signature indices, including an evaluation of the high
discharge (step 5), show a pronounced amplitude across the
range of PTFs for some indices. For the BiasRR, which rep-
resents the mean deviation and thus the water balance, most
PTFs show only small deviations of around 5 %. Only PTFs
4 and 5 have higher deviations of close to 10 %. It is striking
that most PTFs underestimate the water balance, i.e. show
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Figure 6. CDCs for the uncalibrated groundwater model and after groundwater model calibration for each PTF.

Figure 7. Spatial patterns for the simulated dominant runoff processes and the corresponding BHK reference map after a synthetic rainfall
event.

negative deviations. Only PTF 7 has a value of almost 0 %
and therefore shows no over- or underestimation. The bi-
asFDCmidslope, which describes the reactivity of the hy-
drograph, shows a large amplitude. PTFs such as 1, 2, 3,
4, 5, 10, and 11 show deviations of well below 10 %. PTF
6 shows an upward deviation of 21.01 %. PTF 9 shows a
downward deviation of −30.49%. Almost all PTFs show a
BiasFHV close to 0. Only PTF 9 shows significant deviation
of −31.49%. Most PTFs show a moderate underestimation
of between −10% and −15% for the BiasFLV. Only PTF 9
shows a considerable upward deviation of 41.49 %. The de-
viation of the median (BiasFMM) shows a strong amplitude
across the various PTFs. PTF 6 shows the largest negative
deviation of −29.62%. PTF 9 shows the largest positive de-

viation of 28.79 %. PTF 3 has the lowest deviation from zero
at just −1.04%.

3.5 Final model evaluation (step 6)

The Manhattan distances, calculated between the CDCs of
simulated and observed data across the range of n values
from n= 1 to n= 43, show considerable variabilities across
all PTFs (Table 5). While PTF 10 has a distance value of only
2.01, the distance value of PTF 9 is several times higher with
6.68. PTFs 1 and 8 also show small distances, while the other
PTFs are located in the middle range. For the high discharge
histogram overlap (HDHO), PTF 4 shows the lowest value of
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Table 3. Metrics for the comparison of simulated dominant runoff
processes and the BHK reference map.

PTF % match α Histogram overlap SPAEFmod

1 0.89 0.74 0.95 0.72
2 0.88 0.74 0.95 0.71
3 0.88 0.83 0.96 0.76
4 0.06 0.28 0.08 −0.49
5 0.89 0.83 0.97 0.79
6 0.71 1.94 0.79 −0.01
7 0.82 1.20 0.96 0.73
8 0.89 0.73 0.95 0.71
9 0.27 5.38 0.31 −3.49
10 0.45 3.51 0.50 −1.62
11 0.71 1.96 0.79 −0.03
12 0.88 0.73 0.95 0.71

Table 4. Signature indices of the calibrated model for different
PTFs.

PTF BiasRR BiasFDCmidslope BiasFHV BiasFLV BiasFMM

1 −5.31 4.05 1.25 −11.84 −7.75
2 −3.79 1.29 −0.88 −9.76 −4.61
3 −6.56 −0.03 −0.89 −9.15 −1.04
4 −9.30 5.83 −0.76 −9.70 −8.23
5 −8.37 8.68 −3.5 −11.07 −11.89
6 −4.46 21.01 1.95 −13.23 −29.62
7 −0.04 20.99 0.14 −8.79 −7.36
8 −5.52 10.64 0.08 −14.56 −17.54
9 −5.38 −30.49 −31.49 41.49 28.79
10 −4.94 0.40 −4.39 −4.18 −2.35
11 −3.65 7.26 3.93 −9.41 −13.36
12 −5.00 9.32 0.22 −13.36 −14.99

0.5. PTFs 1 and 12 show a high value of 0.9. Values of the
other PTFs are located within 0.5 and 0.9.

The split-sample test carried out based on the simulated
and measured hydrograph (Fig. 8) shows strong consistency
with evaluation metrics of the model for the best parameter-
isation (PTF 8). The model shows high values for the effi-
ciency measures for both the calibration and the validation
period. Between calibration and validation, there is only a
slight decrease in the NSE from 0.87–0.78, while the KGE
decreases only minimally from 0.89–0.87. Values for the
PBIAS slightly improve from around −5.52% for the cali-
bration period to 3.16 % for the validation period. Efficiency
measures for the split-sample test of other PTFs (Table 5)
show a large value range. For example, PTF 1 also shows
relatively high values for the NSE and KGE. However, PTFs
4, 6, 9, 10, and 11 show low values. All other PTFs show val-
ues in between. The PBIAS shows values of around−5.00%
for most PTFs for the calibration period, while the values for
the validation period are between −5% and 5 % for all PTFs
except PTF 7.

The hydrograph simulated by PTF 8 successfully repli-
cates the measured hydrograph, with only slight underesti-

mation of peak flows and a minor delay in response around
December 2017. The model tends to smooth out finer fluctu-
ations, resulting in a lower reactivity compared to observed
data. Overall, however, PTF 8 closely mirrors the complex
shape of the observed hydrograph. Hydrographs for other
PTFs can be found in the appendix as Figs. A1 and A2.

The long-time discharge can also be depicted as a flow
duration curve (Fig. 9). The flow duration curve for PTF 8
shows very good agreement in the high discharge volume.
This corresponds to the discharge peaks of the hydrograph.
In the middle part, the flow duration curve shows a kink.
From there, it is no longer fully congruent with the curve
for the measured discharge in areas for lower discharge vol-
umes. The simulation slightly deviates from the measured
flow duration curve in the area of very low discharges. How-
ever, it should be noted that the representation is logarithmic.
The deviations occurring in the low discharge range therefore
only account for a small proportion of the total discharge.
PTF 8 therefore fits the flow duration curve of the reference
the best. The other PTFs are deviating around the measured
curve. Some overestimate the corresponding proportions and
others underestimate the proportions. In the middle range, the
results of the simulations are almost exclusively lower than
the reference.

3.6 Overall evaluation of PTFs

The evaluation of all PTFs for the individual calibration steps
shows that only two (PTFs 1 and 8) of the 12 PTFs used yield
satisfactory results for all three calibration steps (Table 6).
The majority of PTFs show satisfactory results for the cali-
bration of the groundwater model. For the runoff process pat-
terns, an increasing number of PTFs already show that they
do not lead to satisfactory results. For the discharge predic-
tion, only two of the PTFs used show acceptable results.

4 Discussion

This study employed a multi-step calibration approach de-
signed to incrementally improve the accuracy of hydrologi-
cal simulations by systematically targeting specific compo-
nents of the water balance model. The following paragraphs
discuss the results of each calibration step in detail.

4.1 Evapotranspiration/water balance (step 1)

We used calibrated vegetation parameters from Casper et al.
(2023). Because of the almost closed water balance (BiasRR
in Table 4), an additional calibration step for evapotranspi-
ration parameters was not necessary in our case. Only if the
water balance could not be closed at the catchment outlet
would it have been necessary to adjust the evapotranspiration
parameters.
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Table 5. Efficiency metrics for the calibrated model for different PTFs.

PTF MHd HDHO NSEcal KGEcal PBIAScal NSEval KGEval PBIASval

1 3.19 0.9 0.86 0.89 −5.31 0.78 0.87 2.64
2 4.88 0.7 0.66 0.82 −3.79 0.59 0.79 1.28
3 3.59 0.8 0.72 0.84 −6.56 0.63 0.81 −0.15
4 3.36 0.5 0.67 0.79 −9.30 0.45 0.69 −5.25
5 3.68 0.7 0.72 0.83 −8.37 0.55 0.75 −3.16
6 6.60 0.6 0.49 0.73 −4.46 0.34 0.70 5.01
7 5.04 0.8 0.60 0.81 −0.04 0.49 0.77 8.67
8 2.76 0.8 0.87 0.89 −5.52 0.78 0.87 3.16
9 6.68 0.8 0.54 0.61 −5.38 0.49 0.60 −3.24
10 2.01 0.6 0.59 0.78 −4.94 0.47 0.75 3.16
11 5.36 0.8 0.55 0.76 −3.65 0.43 0.74 5.39
12 5.84 0.9 0.70 0.83 −5.00 0.64 0.80 0.64

Figure 8. Measured (gauging station) and simulated (PTF 8) hydrographs. Period before the dashed vertical line is the calibration period,
while the one right of the dashed line marks the validation period. Efficiency metric values are shown for their respective period.

4.2 Groundwater model (steps 2 and 3)

Fitting to the characteristic delay curve (CDC) is a suited
method for the calibration of the groundwater model in
terms of its mean long-term behaviour (Fig. 6). The gra-
dient of those segments of the CDCs which correspond to
longer delay intervals (higher n values) are highly sensitive
to aquifer transmissivity parameters (kx , ky and thickness).
On the other hand, the long-term groundwater recharge de-
pends on the interflow intensity, which is adjusted by the pa-
rameter drainage density dr. This approach effectively modi-
fied the height of the CDCs across most PTFs. However, two
PTFs (PTFs 9 and 10) did not allow a good adjustment to
the observed CDC height, due to lack of soil stratification
in their parameterisation. These two PTFs estimate the hy-
draulic properties based on grain size, while key factors like
depth or bulk density – typically considered in other PTFs

or when using the KA5 standard for saturated hydraulic con-
ductivity (ksat) – are not addressed. This means that, in the
absence of stratification, there is little interflow and a large
portion of water percolates into the aquifer (Ahuja et al.,
1981). Without stratification, interflow cannot be controlled
by the scaling factor dr because there is too little interflow
to begin with. The consistent underestimation of the initial
segments of the CDCs suggests that the catchment is delay-
ing certain parts of the water more than the model does (Yeh
and Chen, 2022). This could theoretically be resolved by in-
creasing the interflow delay through increasing values for kifl.
However, as our catchment is mainly interflow dominated,
the discharge peaks are almost exclusively interflow. Such an
adjustment could reduce peak discharge significantly, which
might compromise the hydrograph fit, as noted by Shrestha
et al. (2013). Therefore, we assume that a two-layer aquifer
model with distinct transmissivities would probably better
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Table 6. Evaluation of the model based on different PTF parameterisations for the three main calibration steps. A mark indicates satisfactory
results for the respective step. A mark for overall benchmark is granted if all three calibration steps are marked as satisfactory.

PTF Groundwater model Runoff process Discharge Overall
calibration patterns prediction benchmark

1 × × × ×

2 × × – –
3 × × – –
4 × – – –
5 × × – –
6 × – – –
7 × × – –
8 × × × ×

9 – – – –
10 – – – –
11 × – – –
12 × × – –

Figure 9. Flow duration curve for the gauging station for the simu-
lation with PTF 8 (red) and the other PTFs (grey).

represent the complex groundwater dynamics in our catch-
ment.

4.3 Evaluation of dominant runoff processes (step 4)

The evaluation of dominant runoff processes has shown that
most PTFs can reproduce the pattern of the reference with
reasonable accuracy (Fig. 7). However, PTFs 4, 6, 9, 10, and
11 showed significant deviations from the reference patterns,
which indicate that these PTFs produce soil parameter esti-
mates that differ substantially from actual field conditions.
This results in either little interflow and too much surface
runoff (PTF 4) or too much deep percolation and little inter-
flow (PTFs 9 and 10). The high proportion of surface runoff
and low fractions of interflow of PTF 4 are probably due
to the low hydraulic conductivities compared to other PTFs
(Mohajerani et al., 2021). Therefore, the upper soil layers
in the model quickly saturate during the synthetic rainfall

event which results in a predominance of surface runoff. In
contrast, PTFs 9 and 10 lead almost exclusively to dominant
deep percolation. This is due to a lack of soil stratification:
only the grain size distribution is considered, while other
properties such as bulk density or depth are neglected for
the estimation of soil hydraulic conductivities (Renger et al.,
2008; Zhang and Schaap, 2017). Consequently, the model as-
sumes uniform permeability that allows most precipitation to
infiltrate directly into the groundwater reservoir and bypass
interflow pathways. However, the strong deviations in runoff
pattern among these three PTFs can be systematically identi-
fied using the SPAEFmod metric. While the majority of PTFs
achieved SPAEFmod values exceeding 0.65, which indicates
good alignment with the reference map, PTFs 4, 6, 9, 10,
and 11 showed significantly lower (in all cases, negative) val-
ues. This evaluation step serves as a reliable means to screen
out PTFs that fail to capture dominant runoff processes accu-
rately. This ensures that only soil parameterisations consis-
tent with observed runoff fractions are considered in the final
model selection process.

4.4 High flow calibration (step 5)

The subsequent adjustment of the rainfall-fed part of the hy-
drograph, e.g. discharge fractions in the high volume based
on the signature indices (Table 4), showed good applicability.
For all PTFs except 9 and 10, the BiasFHV could be brought
close to zero. The water distribution could be shifted from
peak discharge values towards mid-range discharge levels by
adjusting kd or kifl. PTFs 9 and 10 lack volume in the dis-
charge peaks due to the large proportion of water that in-
filtrates very quickly into the aquifer. Therefore, hardly any
direct runoff or interflow is present, which could contribute
to high volume discharge (Seiler and Gat, 2007). This is also
reflected in the patterns for the dominant runoff processes. In
that case, the parameter kifl could not be used to shift more
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water from the peaks to the stronger delayed portions of dis-
charge without losing a significant amount of water volume
in the peaks. This is probably because our study area pro-
duces only little direct runoff, the contribution of which to
the total runoff is delayed via kd. Therefore, mainly inter-
flow contributes to the discharge. As a result, the hydrograph
peaks in our model primarily reflect fast interflow rather than
a balanced combination of direct runoff and interflow runoff.
An independent adjustment, via kd and kifl, would only be
possible if both runoff types are present to a certain extend.
Adding a second aquifer layer with slightly higher conductiv-
ities than our current aquifer would enable us to represent a
less delayed groundwater discharge that currently is depicted
through interflow. As a result, less interflow would be needed
to represent parts of the slow components and therefore could
be used to model part of the peak discharge. However, the
necessity of this depends entirely on the catchment charac-
teristics (Natkhin et al., 2012; Kraller et al., 2014) and can
be derived from a repeated application of the characteristic
delay curve (Step 2 and 3).

4.5 Final model evaluation (step 6) and PTF evaluation

The hydrograph of the best fitting model (based on PTF 8)
shows that the model is capable of correctly predicting the
discharge (Fig. 8). This is also supported by high values of
efficiency measures such as NSE (0.78), KGE (0.87), and a
low PBIAS (3.16 %) for the validation period in the split-
sample test. In addition, a high discharge histogram overlap
(0.8) shows a good agreement in the peak discharge over
time. However, the various PTFs show considerable devia-
tions from each other. The choice of the pedotransfer func-
tion has a significant influence on the individual processes
depicted by the model and therefore the correct choice of
the pedotransfer function is crucial to develop a process-
behaviourally correct model parameterisation. This is also
consistent with the findings of Mohajerani et al. (2021) and
Paschalis et al. (2022). Our multi-criteria calibration frame-
work, with its combination of parameterisation steps, proved
effective both in evaluating PTFs and refining the calibration
itself. Inconsistencies with both the CDCs and the patterns
of dominant runoff processes proved the non-suitability of
PTFs 9 and 10. Likewise, PTF 4 was found unsuitable due to
deviations in runoff process patterns, despite its potential for
further groundwater volume adjustments via drainage den-
sity dr. This shows that a holistic view of the different pro-
cesses is indeed necessary, as one PTF can be suited for a
single process such as the groundwater flow but unsuited for
other processes.

A great advantage of our developed approach is the rela-
tively simple applicability of the developed methods as well
as the shown high selectivity regarding different calibrations
and the selection of the most suitable one. It has been shown
several times that the parameterisation of the soil properties
is crucial for the hydrological behaviour of an area (Kubát

et al., 2024). However, the choice of the best suiting PTF
is still given too little attention in hydrological modelling
(Hmaied et al., 2024). Our approach allows the hydrologi-
cal model to be parameterised with the most suitable PTF
by both adjusting the aquifer parameterisation and evaluating
the dominant runoff process patterns to filter out non-fitting
PTFs. This is something that has not been incorporated into
calibration approaches until now. In addition, information on
aquifer properties is often lacking, which is why their correct
parameterisation and calibration are often neglected in the
calibration strategies for hydrological models (Ntona et al.,
2022). However, our approach makes it possible to obtain in-
formation on aquifer behaviour from information that is usu-
ally available like the hydrograph. The gathered data can then
be used for model calibration. This enables the correct repre-
sentation of this discharge contributing process, i.e. the base
flow generation, in the model.

4.6 Transferability and outlook

Our calibration approach is effectively transferable to other
hydrological models and catchments, provided the neces-
sary input parameters are available. For the first step, the
calibration of ETa, remotely sensed ETa data are necessary.
Here, readily available MODIS data can be used. Addition-
ally, the application of the delayed flow index (DFI) re-
quires only simulated and measured hydrographs, alongside
a mechanism for adjusting groundwater recharge by perco-
lating water. Models must support runoff partitioning into
surface runoff, interflow, and deep percolation (groundwater
recharge) to utilise the dominant runoff process comparison.
For this, a reference for the spatial patterns, for example, the
soil hydrological map, is necessary. While certain methods
necessitate only discharge data, we emphasise the benefits of
incorporating multiple evaluation approaches. This compre-
hensive parameterisation captures the catchment behaviour
across various hydrological processes more accurately. Con-
sequently, our methodology demonstrates broad applicabil-
ity for future parameterisations of hydrological water balance
models, particularly those with a process representation sim-
ilar to the WaSiM model.

For SWAT+, for example, our approach could be adapted
and used for a more process-behavioural focused calibra-
tion than the widely used calibration based on gauging data
alone. For the calibration of the aquifer, we recommend using
gwflow (Bailey et al., 2020) together with SWAT+, which al-
lows for a more complex representation of aquifer behaviour
in the model than SWAT+ alone does. Our approach using
the DFI can then be applied exactly as described. It is also
possible to evaluate the model with regard to the runoff com-
ponents by comparing it with a reference map. For example,
a tool such as FieldSWAT (Pai et al., 2012) could be used to
record the spatial distribution of surface runoff, interflow or
deep percolation, which would enable a comparison with the
reference map. Signature indices and split-sample tests are
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other classic methods that can be used for evaluation. Our
approach is therefore entirely suitable for a calibration and
evaluation of SWAT+ models.

We believe that our calibration approach will particularly
improve the robustness of model calibrations if these models
are to be used for the projection of catchment responses un-
der changing environmental conditions. Botero-Acosta et al.
(2022), for example, used the SWAT+ model to investigate
the effects of climate change on a catchment, but had to at-
tribute a certain degree of uncertainty to the results as there
was a certain degree of equifinality regarding the calibration
of the model parameters. The application of our calibration
approach would be useful here in order to reduce uncertain-
ties in the model calibration and to guarantee a physically
correct behaviour of the model. This would reduce the un-
certainty in the model results.

The calibration approach can also be applied to catch-
ments with different characteristics. For catchments that are
not rainfall but snowmelt dominated, the DFI method could
be adapted. The calibration would then be done for the parts
of smaller block lengths where the snow-fed parts of the
discharge would be located. This is recommended for those
catchments, as the incorporation of snowmelt is crucial for
the correct discharge prediction under these circumstances
(Myers et al., 2021).

Including tracer data as an additional evaluation criterion
could enhance the robustness of our model parameterisation
assessments (e.g. Wu et al., 2023). It offers valuable insights
into discharge composition by distinguishing contributions
from individual runoff components at the gauging station.
For glacial and snow influenced catchments the isotope ap-
proach of Penna et al. (2014) could be applied. For wetlands,
Birkigt et al. (2018) and Schwerdtfeger et al. (2016) demon-
strated approaches of tracer-based modelling. This could fur-
ther improve the accuracy of selecting the correct model pa-
rameterisation by including this additional evaluation step.

5 Conclusions

Our study shows that with our approach to calibration, a
process-behavioural model parameterisation can be selected
that can correctly predict the runoff and correctly map the
underlying runoff-forming processes. The different perfor-
mance of the various PTFs was particularly evident. These
lead to widely varying results for both the runoff and the pro-
cesses themselves. As part of our approach, however, it was
possible to detect and sort out the PTFs that led to process
depictions that did not correspond to the expected process
behaviour in the catchment. This emphasises the importance
for modellers to consider the use of different PTFs/soil pa-
rameterisations and a critical evaluation of those.

Our method helps to create process-behavioural models
that achieve the right results for the right reasons (Beven,
2018). It improves the robustness of the model, as the
model’s process-behaviour can be approximated much more
closely to the actual observed process-behaviour of the catch-
ment. This could be particularly relevant if the models are
to be used for the evaluation of changing environmental pa-
rameters. These include, for example, changes in land use,
such as the conversion of forest into arable land, but also
changes in the temperature and precipitation regime, as is the
case with climate change. Our work thus contributes to the
development of reliable models for the projection of catch-
ment behaviour under future changes. However, future work
is necessary to analyse to what extent better process depic-
tion can positively influence the model prediction under ex-
ternal changes.
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Appendix A: Figures

Figure A1. Full hydrographs for the gauging station and the simulation for PTFs 1–6. The hydrograph left of the dashed line was used as
calibration period, while the part right of the dashed line served as calibration period.
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Figure A2. Full hydrographs for the gauging station and the simulation for PTFs 7–12. The hydrograph left of the dashed line was used as
calibration period, while the part right of the dashed line served as calibration period.
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Appendix B: Tables

Table B1. Parameters adjusted within our parameterisation and calibration approach.

Parameter Unit Values Description

kx [ms−1] 3× 10−5 Lateral conductivity of the aquifer in x direction
ky [ms−1] 3× 10−5 Lateral conductivity of the aquifer in y direction
Colmation [ms−1] 1× 10−5 Hydraulic conductivity resistance between aquifer and waterbody
River network threshold [–] 50 Threshold for the river network generation in TANALYS
dr [–] 6–75 (160) Scaling factor for the interflow
kd [h] 2–20 Recession parameter for the direct runoff SLR
kifl [h] 5–36 Recession parameter for the interflow SLR

Table B2. Calibrated parameters with values for different PTFs.

PTF kd kifl dr Comment

1 4 15 30
2 2 21 60
3 2 9 24
4 20 23 6
5 2 8 45
6 2 5 23
7 4 30 34
8 2 36 50
9 2 3 (160+) Calibration of dr not possible
10 2 3 (160+) Calibration of dr not possible
11 7 32 29
12 2 34 55

Code and data availability. The calibrated model as
well as the used input data can be found under
https://doi.org/10.5281/zenodo.14841047 (Heuer, 2025).

Author contributions. MCC and MMH conceptualised the study
and methods. MMH did the data curation, formal analysis, software
development, and the original draft. MCC did the funding acquisi-
tion, project administration, and supervision. MMH, HM, and MCC
did the review and editing.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank the Stadtwerke Trier (SWT) for pro-
viding gauging data for the catchment. We also thank the Landesamt
für Umwelt (LfU) Mainz for providing high-resolution climate data.
We also thank Jörg Schulla for his constant support on the WaSiM
model’s usage.

Financial support. Funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) project no. 426111700
and Forstliche Forschungsförderung no. 5.2-04-2023 project “Kli-
mawald2100 Modul Wald und Wasser”. The publication was fund-
ed/supported by the Open Access Fund of Universität Trier.

Review statement. This paper was edited by Wouter Buytaert and
reviewed by Dan Myers and one anonymous referee.

References

Abbas, S. A., Bailey, R. T., White, J. T., Arnold, J. G., and
White, M. J.: Quantifying the role of calibration strategies on

https://doi.org/10.5194/hess-29-3503-2025 Hydrol. Earth Syst. Sci., 29, 3503–3525, 2025

https://doi.org/10.5281/zenodo.14841047


3522 M. M. Heuer et al.: Process-behavioural model calibration

surface-subsurface hydrologic model performance, Hydrol. Pro-
cess., 38, e15298, https://doi.org/10.1002/hyp.15298, 2024.

Ad-hoc-AG Boden (Ed.): Bodenkundliche Kartieranleitung (KA5),
5th edn., Bundesanstalt für Geowissenschaften und Rohstoffe
in Zusammenarbeit mit den Staatlichen Geologischen Diensten,
ISBN 978-3-510-95920-4, 2005.

Agrarmeteorologie Rheinland-Pfalz: Aktuelle Wetterdaten
Rheinland-Pfalz, https://www.wetter.rlp.de/Agrarmeteorologie,
last access: 5 February 2024.

Ahuja, L. R., Ross, J., and Lehman, O.: A theoretical analysis of
interflow of water through surface soil horizons with implications
for movement of chemicals in field runoff, Water Resour. Res.,
17, 65–72, 1981.

Althoff, D. and Rodrigues, L. N.: Goodness-of-fit cri-
teria for hydrological models: Model calibration and
performance assessment, J. Hydrol., 600, 126674,
https://doi.org/10.1016/j.jhydrol.2021.126674, 2021.

Bailey, R. T., Bieger, K., Arnold, J. G., and Bosch, D. D.:
A new physically-based spatially-distributed ground-
water flow module for swat+, Hydrology, 7, 75,
https://doi.org/10.3390/hydrology7040075, 2020.

Barkwith, A., Hurst, M. D., Jackson, C. R., Wang, L., Ellis, M. A.,
and Coulthard, T. J.: Simulating the influences of groundwater on
regional geomorphology using a distributed, dynamic, landscape
evolution modelling platform, Environ. Modell. Softw., 74, 1–20,
2015.

Barthel, R.: Common problematic aspects of coupling hydrologi-
cal models with groundwater flow models on the river catchment
scale, Advances in Geosciences, 9, 63–71, 2006.

Beven, K.: Towards an alternative blueprint for a physically based
digitally simulated hydrologic response modelling system, Hy-
drol. Process., 16, 189–206, 2002.

Beven, K. J.: On hypothesis testing in hydrology: Why falsifica-
tion of models is still a really good idea, Wires Water, 5, e1278,
https://doi.org/10.1002/wat2.1278, 2018.

Beven, K. J. and Alcock, R. E.: Modelling everything everywhere:
A new approach to decision-making for water management under
uncertainty, Freshwater Biol., 57, 124–132, 2012.

Birkigt, J., Stumpp, C., Małoszewski, P., and Nijenhuis, I.: Evalua-
tion of the hydrological flow paths in a gravel bed filter modeling
a horizontal subsurface flow wetland by using a multi-tracer ex-
periment, Sci. Total Environ., 621, 265–272, 2018.

Botero-Acosta, A., Ficklin, D. L., Ehsani, N., and Knouft, J. H.:
Climate induced changes in streamflow and water temperature
in basins across the atlantic coast of the united states: An op-
portunity for nature-based regional management, J. Hydrol., 44,
101202, https://doi.org/10.1016/j.ejrh.2022.101202, 2022.

Casper, M. C., Grigoryan, G., Gronz, O., Gutjahr, O., Heinemann,
G., Ley, R., and Rock, A.: Analysis of projected hydrologi-
cal behavior of catchments based on signature indices, Hydrol.
Earth Syst. Sci., 16, 409–421, https://doi.org/10.5194/hess-16-
409-2012, 2012.

Casper, M. C., Mohajerani, H., Hassler, S., Herdel, T., and
Blume, T.: Finding behavioral parameterization for a 1-D wa-
ter balance model by multi-criteria evaluation, J. Hydrol. Hy-
dromech., 67, 213–224, 2019.

Casper, M. C., Salm, Z., Gronz, O., Hutengs, C., Mohajerani, H.,
and Vohland, M.: Calibration of Land-Use-Dependent Evap-
oration Parameters in Distributed Hydrological Models Using

MODIS Evaporation Time Series Data, Hydrology, 10, 216,
https://doi.org/10.3390/hydrology10120216, 2023.

Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gan-
gopadhyay, S., Wood, A. W., Fowler, H. J., Prudhomme, C.,
Arnold, J. R., and Brekke, L. D.: Characterizing uncertainty
of the hydrologic impacts of climate change, Current climate
change reports, 2, 55–64, 2016.

Dangol, S., Zhang, X., Liang, X.-Z., Anderson, M., Crow, W.,
Lee, S., Moglen, G. E., and McCarty, G. W.: Multivariate calibra-
tion of the swat model using remotely sensed datasets, Remote
Sens., 15, 2417, https://doi.org/10.3390/rs15092417, 2023.

Darcy, H.: Les fontaines publiques de Dijon, https:
//books.google.lu/books?id=42EUAAAAQAAJ&printsec=
frontcover&hl=de#v=onepage&q&f=false (last access: 17 Jan-
uary 2025), 1856.

Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L.,
and Stisen, S.: Combining satellite data and appropriate objec-
tive functions for improved spatial pattern performance of a dis-
tributed hydrologic model, Hydrol. Earth Syst. Sci., 22, 1299–
1315, https://doi.org/10.5194/hess-22-1299-2018, 2018.

Du, J., Rui, H., Zuo, T., Li, Q., Zheng, D., Chen, A., Xu, Y., and
Xu, C.-Y.: Hydrological simulation by swat model with fixed and
varied parameterization approaches under land use change, Wa-
ter Resour. Manag., 27, 2823–2838, 2013.

Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-
objective calibration approaches in hydrological modelling: A
review, Hydrolog. Sci. J., 55, 58–78, 2010.

European Environment Agency (EEA): Dominant Leaf Type
2018, Europe, 3 yearly, Sep. 2020, European Environment
Agency, https://doi.org/10.2909/7b28d3c1-b363-4579-9141-
bdd09d073fd8, 2020.

Ferket, B. V., Samain, B., and Pauwels, V. R.: Internal validation of
conceptual rainfall–runoff models using baseflow separation, J.
Hydrol., 381, 158–173, 2010.

Gauster, T., Laaha, G., and Koffler, D.: lfstat: Calculation of Low
Flow Statistics for Daily Stream Flow Data, CRAN [code],
https://doi.org/10.32614/CRAN.package.lfstat, 2022.

Gerlach, N.: INTERMET – Interpolation meteorologis-
cher Größen, in: Niederschlags-Abfluss-Modellierung zur
Verlängerung des Vorhersagezeitraumes operationeller
Wasserstands-Abflussvorhersagen, edited by: Bundesanstalt
für Gewaesserkunde, Reihe BfG Veranstaltungen, 3/2006,
5–14, https://www.deutsche-digitale-bibliothek.de/item/
2GL44F7PM4CKP2SO5QBL2Q4B24HJIBH5 (last access:
23 January 2025), 2006.

Götzinger, J., Barthel, R., Jagelke, J., Bardossy, A.: The role
of groundwater recharge and baseflow in integrated models,
Groundwater-surface water interaction: process understanding,
conceptualization and modelling, IAHS-AISH P., 321, 103–109,
https://doi.org/10.13140/2.1.2192.8960, 2008.

Gupta, H. V., Sorooshian, S., and Yapo, P. O. Status of automatic
calibration for hydrologic models: Comparison with multilevel
expert calibration, J. Hydrol. Eng., 4, 135–143, 1999.

Heuer, M. M.: moritzheuer/MultiVariableCalibration:
Published Version, Zenodo [data set] and [code],
https://doi.org/10.5281/zenodo.14841047, 2025.

Hmaied, A., Podwojewski, P., Gharnouki, I., Chaabane, H.,
and Hammecker, C.: Evaluation of soil hydraulic prop-
erties in northern and central tunisian soils for im-

Hydrol. Earth Syst. Sci., 29, 3503–3525, 2025 https://doi.org/10.5194/hess-29-3503-2025

https://doi.org/10.1002/hyp.15298
https://www.wetter.rlp.de/Agrarmeteorologie
https://doi.org/10.1016/j.jhydrol.2021.126674
https://doi.org/10.3390/hydrology7040075
https://doi.org/10.1002/wat2.1278
https://doi.org/10.1016/j.ejrh.2022.101202
https://doi.org/10.5194/hess-16-409-2012
https://doi.org/10.5194/hess-16-409-2012
https://doi.org/10.3390/hydrology10120216
https://doi.org/10.3390/rs15092417
https://books.google.lu/books?id=42EUAAAAQAAJ&printsec=frontcover&hl=de#v=onepage&q&f=false
https://books.google.lu/books?id=42EUAAAAQAAJ&printsec=frontcover&hl=de#v=onepage&q&f=false
https://books.google.lu/books?id=42EUAAAAQAAJ&printsec=frontcover&hl=de#v=onepage&q&f=false
https://doi.org/10.5194/hess-22-1299-2018
https://doi.org/10.2909/7b28d3c1-b363-4579-9141-bdd09d073fd8
https://doi.org/10.2909/7b28d3c1-b363-4579-9141-bdd09d073fd8
https://doi.org/10.32614/CRAN.package.lfstat
https://www.deutsche-digitale-bibliothek.de/item/2GL44F7PM4CKP2SO5QBL2Q4B24HJIBH5
https://www.deutsche-digitale-bibliothek.de/item/2GL44F7PM4CKP2SO5QBL2Q4B24HJIBH5
https://doi.org/10.13140/2.1.2192.8960
https://doi.org/10.5281/zenodo.14841047


M. M. Heuer et al.: Process-behavioural model calibration 3523

provement of hydrological modelling, Land, 13, 385,
https://doi.org/10.3390/land13030385, 2024.

Huang, S., Shah, H., Naz, B. S., Shrestha, N., Mishra, V., Dag-
gupati, P., Ghimire, U., and Vetter, T.: Impacts of hydrologi-
cal model calibration on projected hydrological changes under
climate change – a multi-model assessment in three large river
basins, Climatic Change, 163, 1143–1164, 2020.

ISPRA – Istituto Superiore per la Protezione e per la Ricerca
Ambientale: Corine land cover, ISPRA [data set], http://
data.europa.eu/88u/dataset/ispra_rm-meta_geo_cl001 (last ac-
cess: 28 May 2023), 2018.

Kheimi, M. and Abdelaziz, S. M.: A daily water balance model
based on the distribution function unifying probability dis-
tributed model and the SCS curve number method, Water, 14,
143, https://doi.org/10.3390/w14020143, 2022.

Kling, H., Fuchs, M., and Paulin, M. Runoff conditions in the upper
Danube basin under an ensemble of climate change scenarios, J.
Hydrol., 424, 264–277, 2012.

Knisel Jr., W. G.: Baseflow recession analysis for comparison of
drainage basins and geology, J. Geophys. Res., 68, 3649–3653,
1963.

Koch, J., Siemann, A., Stisen, S., and Sheffield, J.: Spatial valida-
tion of large-scale land surface models against monthly land sur-
face temperature patterns using innovative performance metrics,
J. Geophys. Res.-Atmos., 121, 5430–5452, 2016.

Koch, J., Mendiguren, G., Mariethoz, G., and Stisen, S.: Spatial sen-
sitivity analysis of simulated land surface patterns in a catchment
model using a set of innovative spatial performance metrics, J.
Hydrometeorol., 18, 1121–1142, 2017.

Kraller, G., Warscher, M., Strasser, U., Kunstmann, H., and
Franz, H.: Distributed hydrological modeling and model adap-
tion in high alpine karst at regional scale (Berchtesgaden Alps,
Germany), H2Karst Research in Limestone Hydrogeology, 115–
126, https://doi.org/10.1007/978-3-319-06139-9_8 2014.

Kubát, J.-F., Strouhal, L., and Kavka, P.: Estimation of in-
filtration parameters: The role of pedotransfer functions
and initial moisture conditions, J. Hydrol., 633, 130954,
https://doi.org/10.1016/j.jhydrol.2024.130954, 2024.

Landesamt für Geologie und Bergbau: Bodenflächendaten im
Maßstab 1 : 50000 (bfd50), Landesamt für Geologie und
Umwelt, https://mapclient.lgb-rlp.de/?app=lgb&view_id=17
(last access: 15 December 2024), 2021.

Liu, X., Yang, K., Ferreira, V. G., and Bai, P.: Hydrologic
model calibration with remote sensing data products in
global large basins, Water Resour. Res., 58, e2022WR032929,
https://doi.org/10.1029/2022WR032929, 2022.

McNamara, J. P., Tetzlaff, D., Bishop, K., Soulsby, C., Seyfried, M.,
Peters, N. E., Aulenbach, B. T., and Hooper, R.: Storage as a met-
ric of catchment comparison, Hydrol. Process., 25, 3364–3371,
2011.

Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Bar-
lage, M., Gutmann, E. D., Rasmussen, R. M., Rajagopalan, B.,
Brekke, L. D., and Arnold, J. R.: Effects of hydrologic model
choice and calibration on the portrayal of climate change im-
pacts, J. Hydrometeorol., 16, 762–780, 2015.

Meresa, H., Zhang, Y., Tian, J., Ma, N., Zhang, X., Heidari, H., and
Naeem, S.: An integrated modelling framework in projections of
hydrological extremes, Surv. Geophys., 44, 277–322, 2023.

Mohajerani, H., Jackel, M., Salm, Z., Schütz, T., and Casper, M. C.:
Spatial Evaluation of a Hydrological Model on Dominant Runoff
Generation Processes Using Soil Hydrologic Maps, Hydrology,
10, 55, https://doi.org/10.3390/hydrology10030055, 2023.

Mohajerani, H., Teschemacher, S., and Casper, M. C.: A com-
parative investigation of various pedotransfer functions and
their impact on hydrological simulations, Water, 13, 1401,
https://doi.org/10.3390/w13101401, 2021.

Monteith, J. L.: Evaporation and environment, Symposia of the so-
ciety for experimental biology, 19, 205–234, 1965.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L.,
Harmel, R. D., and Veith, T. L. Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations,
T. ASABE, 50, 885–900, 2007.

Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P. Hydrologic
and water quality models: Performance measures and evaluation
criteria, T. ASABE, 58, 1763–1785, 2015.

Muggeo, V. M.: Segmented: an R package to fit regression models
with broken-line relationships, R news, 8, 20–25, 2008.

Myers, D. T., Ficklin, D. L., and Robeson, S. M.: Incorporat-
ing rain-on-snow into the swat model results in more accurate
simulations of hydrologic extremes, J. Hydrol., 603, 126972,
https://doi.org/10.1016/j.jhydrol.2021.126972, 2021.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I – A discussion of principles, J. Hydrol., 10,
282–290, 1970.

Natkhin, M., Steidl, J., Dietrich, O., Dannowski, R., and Lis-
cheid, G.: Differentiating between climate effects and forest
growth dynamics effects on decreasing groundwater recharge in
a lowland region in Northeast Germany, J. Hydrol., 448, 245–
254, 2012.

Nesru, M., Shetty, A., and Nagaraj, M.: Multi-variable calibration
of hydrological model in the upper Omo-Gibe basin, Ethiopia,
Acta Geophys., 68, 537–551, 2020.

Nolte, A., Eley, M., Schöniger, M., Gwapedza, D., Tanner, J.,
Mantel, S. K., and Scheihing, K.: Hydrological modelling
for assessing spatio-temporal groundwater recharge variations
in the water-stressed Amathole Water Supply System, East-
ern Cape, South Africa: Spatially distributed groundwater
recharge from hydrological model, Hydrol. Process., 35, e14264,
https://doi.org/10.1002/hyp.14264, 2021.

Ntona, M. M., Busico, G., Mastrocicco, M., and Kazakis, N.: Mod-
eling groundwater and surface water interaction: An overview
of current status and future challenges, Sci. Total Environ., 846,
157355, https://doi.org/10.1016/j.scitotenv.2022.157355, 2022.

Pai, N., Saraswat, D., and Srinivasan, R.: Field_swat: A tool for
mapping swat output to field boundaries, Comput. Geosci., 40,
175–184, 2012.

Paschalis, A., Bonetti, S., Guo, Y., and Fatichi, S.: On the un-
certainty induced by pedotransfer functions in terrestrial bio-
sphere modelling, Water Resour. Res., 58, e2021WR031871,
https://doi.org/10.1029/2021WR031871, 2022.

Penna, D., Engel, M., Mao, L., Dell’Agnese, A., Bertoldi, G., and
Comiti, F.: Tracer-based analysis of spatial and temporal varia-
tions of water sources in a glacierized catchment, Hydrol. Earth
Syst. Sci., 18, 5271–5288, https://doi.org/10.5194/hess-18-5271-
2014, 2014.

https://doi.org/10.5194/hess-29-3503-2025 Hydrol. Earth Syst. Sci., 29, 3503–3525, 2025

https://doi.org/10.3390/land13030385
http://data.europa.eu/88u/dataset/ispra_rm-meta_geo_cl001
http://data.europa.eu/88u/dataset/ispra_rm-meta_geo_cl001
https://doi.org/10.3390/w14020143
https://doi.org/10.1007/978-3-319-06139-9_8
https://doi.org/10.1016/j.jhydrol.2024.130954
https://mapclient.lgb-rlp.de/?app=lgb&view_id=17
https://doi.org/10.1029/2022WR032929
https://doi.org/10.3390/hydrology10030055
https://doi.org/10.3390/w13101401
https://doi.org/10.1016/j.jhydrol.2021.126972
https://doi.org/10.1002/hyp.14264
https://doi.org/10.1016/j.scitotenv.2022.157355
https://doi.org/10.1029/2021WR031871
https://doi.org/10.5194/hess-18-5271-2014
https://doi.org/10.5194/hess-18-5271-2014


3524 M. M. Heuer et al.: Process-behavioural model calibration

R Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 3 May 2024), 2023.

Refsgaard, J. C.: Towards a formal approach to calibration and vali-
dation of models using spatial data. Spatial patterns in catchment
hydrology: observations and modelling, edited by: Grayson,
R. and Blöschl, G., Cambridge University Press, Cambridge,
ISBN 978-0521633161, 329–354, 2001.

Renger, M., Bohne, K., Facklam, M., Harrach, T., Riek, W.,
Schäfer, W., Wessolek, G., and Zacharias, S.: Ergebnisse
und Vorschläge der DGB-Arbeitsgruppe ”Kennwerte des Bo-
dengefüges” zur Schätzung bodenphysikalischer Kennwerte,
TU Berlin, https://www.academia.edu/download/41462088/
bodenphysikalischeKennwerte.pdf (last access: 22 Decem-
ber 2024), 2008.

Richards, L. A.: Capillary conduction of liquids through porous
mediums, Physics, 1, 318–333, 1931.

Rogelis, M. C., Werner, M., Obregón, N., and Wright, N.: Hydro-
logical model assessment for flood early warning in a tropical
high mountain basin, Hydrol. Earth Syst. Sci. Discuss. [preprint],
https://doi.org/10.5194/hess-2016-30, 2016.

RStudio Team.: RStudio: Integrated Development Environment for
R, RStudio, PBC, Boston, MA, http://www.rstudio.com/ (last ac-
cess: 3 May 2024), 2020.

Schaake, J. C., Koren, V. I., Duan, Q.-Y., Mitchell, K., and Chen, F.:
Simple water balance model for estimating runoff at different
spatial and temporal scales, J. Geophys. Res.-Atmos., 101, 7461–
7475, 1996.

Schulla, J.: Hydrologische Modellierung von Flussgebieten zur
Abschätzung der Folgen von Klimaänderungen, Zürcher Ge-
ographische Schriften, Heft 69, Verlag Geographisches Institut
ETH Zürich, https://doi.org/10.3929/ethz-a-001763261, 1997.

Schulla, J.: Model Description WaSiM (Water balance Simulation
Model) – (version 10.08.00), http://www.wasim.ch/downloads/
doku/wasim/wasim_2024_en.pdf (last access: 19 Septem-
ber 2024), 2024a.

Schulla, J.: TANALYS Topographisches Analyse-Tool, http://www.
wasim.ch/de/products/tanalys.htm (last access: 1 October 2024),
2024b.

Schwerdtfeger, J., Hartmann, A., and Weiler, M.: A tracer-based
simulation approach to quantify seasonal dynamics of surface-
groundwater interactions in the Pantanal wetland, Hydrol. Pro-
cess., 30, 2590–2602, 2016.

Seiler, K.-P., and Gat, J. R.: Groundwater recharge from run-off, in-
filtration and percolation, vol. 55, Springer Science and Business
Media, Dordrecht, the Netherlands, ISBN 978-1-4020-5305-4,
2007.

Shrestha, R. R., Osenbrück, K., and Rode, M.: Assessment of
catchment response and calibration of a hydrological model us-
ing high-frequency discharge–nitrate concentration data, Hydrol.
Res., 44, 995–1012, 2013.

Smakhtin, V. U.: Estimating continuous monthly baseflow time se-
ries and their possible applications in the context of the ecologi-
cal reserve, Water SA, 27, 213–218, 2001.

Steinrücken, U. and Behrens, T.: Bodenhydrologische Karte:
Nahe/Rheinland-Pfalz Südwest, LUWG-Bericht 6/2010, 61 pp.,
Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht,
Mainz, https://lfu.rlp.de/fileadmin/lfu/Service/Publikationen/

Allgemeines/Bodenhydrologie_Bericht_17.03.2011-Druck.pdf
(last access: 17 August 2024), 2010.

Stisen, S., Demirel, C., and Koch, J.: A novel spatial performance
metric for robust pattern optimization of distributed hydrological
models, AGU Fall Meeting Abstracts, 2017, H11D-1204, https:
//ui.adsabs.harvard.edu/abs/2017AGUFM.H11D1204S/abstract
(last access: 27 December 2024), 2017.

Stisen, S., Jensen, K. H., Sandholt, I., and Grimes, D. I.: A re-
mote sensing driven distributed hydrological model of the Sene-
gal River basin, J. Hydrol., 354, 131–148, 2008.

Stisen, S., Koch, J., Sonnenborg, T. O., Refsgaard, J. C., Bircher, S.,
Ringgaard, R., and Jensen, K. H.: Moving beyond run-off cal-
ibration – Multivariable optimization of a surface–subsurface–
atmosphere model, Hydrol. Process., 32, 2654–2668, 2018.

Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K., and Tallaksen, L.
M.: Beyond binary baseflow separation: a delayed-flow index for
multiple streamflow contributions, Hydrol. Earth Syst. Sci., 24,
849–867, https://doi.org/10.5194/hess-24-849-2020, 2020.

Stoelzle, M., Weiler, M., Stahl, K., Morhard, A., and Schuetz, T.:
Is there a superior conceptual groundwater model structure for
baseflow simulation?, Hydrol. Process., 29, 1301–1313, 2015.

Szabó, B., Weynants, M., and Weber, T. K. D.: Updated European
hydraulic pedotransfer functions with communicated uncertain-
ties in the predicted variables (euptfv2), Geosci. Model Dev., 14,
151–175, https://doi.org/10.5194/gmd-14-151-2021, 2021.

Teepe, R., Dilling, H., and Beese, F.: Estimating water retention
curves of forest soils from soil texture and bulk density, J. Plant
Nutr. Soil Sc., 166, 111–119, 2003.

Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G.,
Lyon, S. W., Paniconi, C., Pauwels, V. R., Rupp, D. E.,
Selker, J. S.: The importance of hydraulic groundwater theory
in catchment hydrology: The legacy of Wilfried Brutsaert and
Jean-Yves Parlange, Water Resour. Res., 49, 5099–5116, 2013.

Troldborg, L., Refsgaard, J. C., Jensen, K. H., and Engesgaard, P.:
The importance of alternative conceptual models for simulation
of concentrations in a multi-aquifer system, Hydrogeol. J., 15,
843–860, 2007.

Van Genuchten, M. T.: A closed-form equation for predicting the
hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am.
J., 44, 892–898, 1980.

Vansteenkiste, T., Tavakoli, M., Van Steenbergen, N., De Smedt, F.,
Batelaan, O., Pereira, F., and Willems, P.: Intercomparison of five
lumped and distributed models for catchment runoff and extreme
flow simulation, J. Hydrol., 511, 335–349, 2014.

Westerberg, I. K., Guerrero, J.-L., Younger, P. M., Beven, K. J.,
Seibert, J., Halldin, S., Freer, J. E., and Xu, C.-Y.: Calibration of
hydrological models using flow-duration curves, Hydrol. Earth
Syst. Sci., 15, 2205–2227, https://doi.org/10.5194/hess-15-2205-
2011, 2011.

Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken
pedotransfer functions: Introducing a closed-form hydraulic
model, Vadose Zone J., 8, 86–95, 2009.

Wösten, J., Lilly, A., Nemes, A., and Le Bas, C.: Development and
use of a database of hydraulic properties of European soils, Geo-
derma, 90, 169–185, 1999.

Wu, S., Tetzlaff, D., Yang, X., Smith, A., and Soulsby, C.:
Integrating Tracers and Soft Data Into Multi-Criteria Cali-
bration: Implications From Distributed Modelling in a Ri-

Hydrol. Earth Syst. Sci., 29, 3503–3525, 2025 https://doi.org/10.5194/hess-29-3503-2025

https://www.R-project.org/
https://www.academia.edu/download/41462088/bodenphysikalischeKennwerte.pdf
https://www.academia.edu/download/41462088/bodenphysikalischeKennwerte.pdf
https://doi.org/10.5194/hess-2016-30
http://www.rstudio.com/
https://doi.org/10.3929/ethz-a-001763261
http://www.wasim.ch/downloads/doku/wasim/wasim_2024_en.pdf
http://www.wasim.ch/downloads/doku/wasim/wasim_2024_en.pdf
http://www.wasim.ch/de/products/tanalys.htm
http://www.wasim.ch/de/products/tanalys.htm
https://lfu.rlp.de/fileadmin/lfu/Service/Publikationen/Allgemeines/Bodenhydrologie_Bericht_17.03.2011-Druck.pdf
https://lfu.rlp.de/fileadmin/lfu/Service/Publikationen/Allgemeines/Bodenhydrologie_Bericht_17.03.2011-Druck.pdf
https://ui.adsabs.harvard.edu/abs/2017AGUFM.H11D1204S/abstract
https://ui.adsabs.harvard.edu/abs/2017AGUFM.H11D1204S/abstract
https://doi.org/10.5194/hess-24-849-2020
https://doi.org/10.5194/gmd-14-151-2021
https://doi.org/10.5194/hess-15-2205-2011
https://doi.org/10.5194/hess-15-2205-2011


M. M. Heuer et al.: Process-behavioural model calibration 3525

parian Wetland, Water Resour. Res., 59, e2023WR035509,
https://doi.org/10.1029/2023WR035509, 2023.

Xiong, L. and Guo, S.: A two-parameter monthly water balance
model and its application, J. Hydrol., 216, 111–123, 1999.

Yáñez-Morroni, G., Suárez, F., Muñoz, J. F., and Lagos, M. S.:
Hydrological modelling of the Silala River basin. 2. Validation
of hydrological fluxes with contemporary data, Wires Water, 11,
e1696, https://doi.org/10.1002/wat2.1696, 2024.

Yeh, H.-F., and Chen, H.-Y.: Assessing the long-term hydrologic
responses of river catchments in Taiwan using a multiple-
component hydrograph approach, J. Hydrol., 610, 127916,
https://doi.org/10.1016/j.jhydrol.2022.127916, 2022.

Zacharias, S. and Wessolek, G.: Excluding organic matter content
from pedotransfer predictors of soil water retention, Soil Sci.
Soc. Am. J., 71, 43–50, 2007.

Zhang, H., Huang, G. H., Wang, D., and Zhang, X.: Multi-period
calibration of a semi-distributed hydrological model based on
hydroclimatic clustering, Adv. Water Resour., 34, 1292–1303,
2011.

Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic param-
eter distributions and summary statistics (Rosetta3), J. Hydrol.,
547, 39–53, 2017.

https://doi.org/10.5194/hess-29-3503-2025 Hydrol. Earth Syst. Sci., 29, 3503–3525, 2025

https://doi.org/10.1029/2023WR035509
https://doi.org/10.1002/wat2.1696
https://doi.org/10.1016/j.jhydrol.2022.127916

	Abstract
	Introduction
	Methodology and material
	Study area
	Data sources
	Model setup and parameterisation
	Calibration scheme
	Calibration of ETa patterns (step 1)
	Calibration of transmissivity (step 2)
	Calibration of groundwater recharge (step 3)
	Evaluation of dominant runoff process patterns (step 4)
	Calibration of high flow discharge (step 5)
	Final model evaluation (step 6)
	Characteristic delay curve (CDC) comparison
	High discharge histogram overlap (HDHO) analysis
	 Hydrograph efficiency metrics

	Evaluation of PTF suitability

	Results
	ETa patterns (step 1)
	Groundwater model parameterisation (step 2 and 3)
	Dominant runoff process patterns (step 4)
	High flow calibration (step 5)
	Final model evaluation (step 6)
	Overall evaluation of PTFs

	Discussion
	Evapotranspiration/water balance (step 1)
	Groundwater model (steps 2 and 3)
	Evaluation of dominant runoff processes (step 4)
	High flow calibration (step 5)
	Final model evaluation (step 6) and PTF evaluation
	Transferability and outlook

	Conclusions
	Appendix A: Figures
	Appendix B: Tables
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

