Articles | Volume 29, issue 9
https://doi.org/10.5194/hess-29-2185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-29-2185-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HESS Opinions: Floods and droughts – are land use, soil management, and landscape hydrology more significant drivers than increasing CO2?
Karl Auerswald
School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
Juergen Geist
School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
John N. Quinton
CORRESPONDING AUTHOR
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Peter Fiener
Working Group Water and Soil Resource Research, University of Augsburg, Augsburg, 86159, Germany
Related authors
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Jinshi Jian, Xuan Du, Juying Jiao, Xiaohua Ren, Karl Auerswald, Ryan Stewart, Zeli Tan, Jianlin Zhao, Daniel L. Evans, Guangju Zhao, Nufang Fang, Wenyi Sun, Chao Yue, and Ben Bond-Lamberty
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-87, https://doi.org/10.5194/essd-2022-87, 2022
Manuscript not accepted for further review
Short summary
Short summary
Field soil loss and sediment yield due to surface runoff observations were compiled into a database named AWESOME: Archive for Water Erosion and Sediment Outflow MEasurements. Annual soil erosion data from 1985 geographic sites and 75 countries have been compiled into AWESOME. This database aims to be an open framework for the scientific community to share field-based annual soil erosion measurements, enabling better understanding of the spatial and temporal variability of annual soil erosion.
Kay D. Seufferheld, Pedro V. G. Batista, Hadi Shokati, Thomas Scholten, and Peter Fiener
EGUsphere, https://doi.org/10.5194/egusphere-2025-3391, https://doi.org/10.5194/egusphere-2025-3391, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Soil erosion by water threatens food security, but soil conservation practices can help protect arable land. We tested a soil erosion model that simulates sediment yields in micro-scale watersheds with soil conservation in place. The model captured the very low sediment yields but showed limited accuracy on an annual time scale. However, it performed well when applied to larger areas over longer timeframes, demonstrating its suitability for strategic long-term soil conservation planning.
John N. Quinton, Gabriel Yesuf, German Baldi, Mengyi Gong, Kelvin Kinuthia, Ellen L. Fry, Yuda Odongo, Barthelemew Nyakundi, Joseph Hitimana, Patricia de Britto Costa, Alice A. Onyango, Sonja M. Leitner, Richard D. Bardgett, and Mariana C. Rufino
EGUsphere, https://doi.org/10.5194/egusphere-2025-3722, https://doi.org/10.5194/egusphere-2025-3722, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We investigated how the soil degradation status of smallholder grazing, classified using remote sensing, in two districts of Western Kenya, compared with measured soil parameters at 90 sites. Grouping sites using soil data had some agreement with the remote sensing (RS) classification. Overall, our results suggest that supplementing RS methods with microbial biomass C, soil P, percent C and N, and soil pH, could enhance our ability to identify degraded soils and target restoration efforts.
Hadi Shokati, Kay D. Seufferheld, Peter Fiener, and Thomas Scholten
EGUsphere, https://doi.org/10.5194/egusphere-2025-3146, https://doi.org/10.5194/egusphere-2025-3146, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Floods threaten lives and property and require rapid mapping. We compared two artificial intelligence approaches on aerial imagery: a fine‑tuned Segment Anything Model (SAM) guided by point or bounding box prompts, and a U‑Net network with ResNet‑50 and ResNet‑101 backbones. The point‑based SAM was the most accurate with precise boundaries. Faster and more reliable flood maps help rescue teams, insurers, and planners to act quickly.
Lena Katharina Öttl, Florian Wilken, Anna Juřicová, Pedro V. G. Batista, and Peter Fiener
SOIL, 10, 281–305, https://doi.org/10.5194/soil-10-281-2024, https://doi.org/10.5194/soil-10-281-2024, 2024
Short summary
Short summary
Our long-term modelling study examines the effects of multiple soil redistribution processes on carbon dynamics in a 200 km² catchment converted from natural forest to agriculture about 1000 years ago. The modelling results stress the importance of including tillage erosion processes and long-term land use and land management changes to understand current soil-redistribution-induced carbon fluxes at the landscape scale.
Raphael Rehm and Peter Fiener
SOIL, 10, 211–230, https://doi.org/10.5194/soil-10-211-2024, https://doi.org/10.5194/soil-10-211-2024, 2024
Short summary
Short summary
A carbon transport model was adjusted to study the importance of water and tillage erosion processes for particular microplastic (MP) transport across a mesoscale landscape. The MP mass delivered into the stream network represented a serious amount of MP input in the same range as potential MP inputs from wastewater treatment plants. In addition, most of the MP applied to arable soils remains in the topsoil (0–20 cm) for decades. The MP sink function of soil results in a long-term MP source.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Pedro V. G. Batista, Daniel L. Evans, Bernardo M. Cândido, and Peter Fiener
SOIL, 9, 71–88, https://doi.org/10.5194/soil-9-71-2023, https://doi.org/10.5194/soil-9-71-2023, 2023
Short summary
Short summary
Most agricultural soils erode faster than new soil is formed, which leads to soil thinning. Here, we used a model simulation to investigate how soil erosion and soil thinning can alter topsoil properties and change its susceptibility to erosion. We found that soil profiles are sensitive to erosion-induced changes in the soil system, which mostly slow down soil thinning. These findings are likely to impact how we estimate soil lifespans and simulate long-term erosion dynamics.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Jinshi Jian, Xuan Du, Juying Jiao, Xiaohua Ren, Karl Auerswald, Ryan Stewart, Zeli Tan, Jianlin Zhao, Daniel L. Evans, Guangju Zhao, Nufang Fang, Wenyi Sun, Chao Yue, and Ben Bond-Lamberty
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-87, https://doi.org/10.5194/essd-2022-87, 2022
Manuscript not accepted for further review
Short summary
Short summary
Field soil loss and sediment yield due to surface runoff observations were compiled into a database named AWESOME: Archive for Water Erosion and Sediment Outflow MEasurements. Annual soil erosion data from 1985 geographic sites and 75 countries have been compiled into AWESOME. This database aims to be an open framework for the scientific community to share field-based annual soil erosion measurements, enabling better understanding of the spatial and temporal variability of annual soil erosion.
Roisin O'Riordan, Jess Davies, Carly Stevens, and John N. Quinton
SOIL, 7, 661–675, https://doi.org/10.5194/soil-7-661-2021, https://doi.org/10.5194/soil-7-661-2021, 2021
Short summary
Short summary
As urban populations grow, soil sealing with impermeable surfaces will increase. At present there is limited knowledge on the effect of sealing on soil carbon and nutrients. We found that, in general, sealing reduced soil carbon and nutrients; however, where there were additions due to human activity, soil carbon and nutrients were increased. This suggests that there is a legacy soil carbon store in areas with an industrial past and highlights the influence of artefacts in urban soil.
Benjamin Bukombe, Peter Fiener, Alison M. Hoyt, Laurent K. Kidinda, and Sebastian Doetterl
SOIL, 7, 639–659, https://doi.org/10.5194/soil-7-639-2021, https://doi.org/10.5194/soil-7-639-2021, 2021
Short summary
Short summary
Through a laboratory incubation experiment, we investigated the spatial patterns of specific maximum heterotrophic respiration in tropical African mountain forest soils developed from contrasting parent material along slope gradients. We found distinct differences in soil respiration between soil depths and geochemical regions related to soil fertility and the chemistry of the soil solution. The topographic origin of our samples was not a major determinant of the observed rates of respiration.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Mario Reichenbach, Peter Fiener, Gina Garland, Marco Griepentrog, Johan Six, and Sebastian Doetterl
SOIL, 7, 453–475, https://doi.org/10.5194/soil-7-453-2021, https://doi.org/10.5194/soil-7-453-2021, 2021
Short summary
Short summary
In deeply weathered tropical rainforest soils of Africa, we found that patterns of soil organic carbon stocks differ between soils developed from geochemically contrasting parent material due to differences in the abundance of organo-mineral complexes, the presence/absence of chemical stabilization mechanisms of carbon with minerals and the presence of fossil organic carbon from sedimentary rocks. Physical stabilization mechanisms by aggregation provide additional protection of soil carbon.
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021, https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Short summary
Soil greenhouse gas (GHG) fluxes were measured monthly from nitrogen (N), phosphorous (P), N and P, and control plots of the first nutrient manipulation experiment located in an African pristine tropical forest using static chambers. The results suggest (1) contrasting soil GHG responses to nutrient addition, hence highlighting the complexity of the tropical forests, and (2) that the feedback of tropical forests to the global soil GHG budget could be altered by changes in N and P availability.
Florian Wilken, Peter Fiener, Michael Ketterer, Katrin Meusburger, Daniel Iragi Muhindo, Kristof van Oost, and Sebastian Doetterl
SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021, https://doi.org/10.5194/soil-7-399-2021, 2021
Short summary
Short summary
This study demonstrates the usability of fallout radionuclides 239Pu and 240Pu as a tool to assess soil degradation processes in tropical Africa, which is particularly valuable in regions with limited infrastructure and challenging monitoring conditions for landscape-scale soil degradation monitoring. The study shows no indication of soil redistribution in forest sites but substantial soil redistribution in cropland (sedimentation >40 cm in 55 years) with high variability.
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021, https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Florian Wilken, Michael Ketterer, Sylvia Koszinski, Michael Sommer, and Peter Fiener
SOIL, 6, 549–564, https://doi.org/10.5194/soil-6-549-2020, https://doi.org/10.5194/soil-6-549-2020, 2020
Short summary
Short summary
Soil redistribution by water and tillage erosion processes on arable land is a major threat to sustainable use of soil resources. We unravel the role of tillage and water erosion from fallout radionuclide (239+240Pu) activities in a ground moraine landscape. Our results show that tillage erosion dominates soil redistribution processes and has a major impact on the hydrological and sedimentological connectivity, which started before the onset of highly mechanised farming since the 1960s.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper, 56, FAO, Rome, 300(9), D05109, https://www.fao.org/4/x0490e/x0490e00.htm (last access: 12 April 2025), 1998.
Anonym: Ländliches Wegenetz [Rural road network], Schriftenreihe der Arge Landentwicklung, 26, 108–109, https://www.landentwicklung.de/fileadmin/sites/Landentwicklung/Dateien/Publikationen/Schriftenreihe_ArgeLandentwicklung/Heft_26_40_Jahre_Bund-Laender-Arbeitsgemeinschaft_Nachhaltige_Landentwicklung.pdf (last access: 12 April 2025), 2018.
Arnault, J., Fersch, B., Rummler, T., Zhang Z., Quenum G.M., Wei J., Graf M., Laux P., and Kunstmann, H.: Lateral terrestrial water flow contribution to summer precipitation at continental scale – A comparison between Europe and West Africa with WRF-Hydro-tag ensembles, Hydrol. Process., 35, e14183, https://doi.org/10.1002/hyp.14183, 2021.
Auerswald, K., Fischer, F. K., Winterrath, T., and Brandhuber, R.: Rain erosivity map for Germany derived from contiguous radar rain data, Hydrol. Earth Syst. Sci., 23, 1819–1832, https://doi.org/10.5194/hess-23-1819-2019, 2019a.
Auerswald, K., Fischer, F., Winterrath, T., Elhaus, D., Maier, H., and Brandhuber, R.: Klimabedingte Veränderung der Regenerosivität seit 1960 und Konsequenzen für Bodenabtragsschätzungen [Climate-change-induced changes in rain erosivity and consequences of soil loss estimation], in: Bodenschutz, Ergänzbares Handbuch der Maßnahmen und Empfehlungen für Schutz, Pflege und Sanierung von Böden, Landschaft und Grundwasser (Loseblattsammlung), edited by: Bachmann, G., König, W., and Utermann, J., Berlin, Erich Schmidt Verlag, 4090, 21 pp., ISBN 978-3-503-02718-7, 2019b.
Auerswald, K., Fischer, F., and Winterrath, T.: R-Faktor – Regenerosivität, in: Pilotstudie “Klimawirkungskarten Bayern” [Pilot study “Climate-effect maps for Bavaria”], UmweltSpezial, Bayerisches Landesamt für Umwelt, Augsburg, 61–69, https://www.bestellen.bayern.de/application/applstarter?APPL=eshop&DIR=eshop&ACTIONxSETVAL(artdtl.htm,APGxNODENR:1325,AARTxNR:lfu_klima_00168,AARTxNODENR:356404,USERxBODYURL:artdtl.htm,KATALOG:StMUG,AKATxNAME:StMUG,ALLE:x)=X, (last access: 12 April 2025), 2019c.
Auerswald, K., Moyle, P., Seibert, S. P., and Geist, J.: HESS Opinions: Socio-economic and ecological trade-offs of flood management – benefits of a transdisciplinary approach, Hydrol. Earth Syst. Sci., 23, 1035–1044, https://doi.org/10.5194/hess-23-1035-2019, 2019d.
Auerswald, K., Albrecht, H., Kainz, M., and Pfadenhauer, J.: Principles of sustainable landuse systems developed and evaluated by the Munich Research Alliance on Agroecosystems (FAM), Petermann. Geogr. Mitt., 144, 16–25, https://www.researchgate.net/publication/261647600_Principles_of_sustainable_land-use_systems_developed_and_evaluated_by_the_Munich_Research_Alliance_on_Agro-Ecosystems_FAM#fullTextFileContent (last access: 12 April 2025), 2000.
Auerswald, K., Geist, J., Fiener, P., and Quinton, J.: Data behind “Floods and droughts – are land use, soil management, and landscape hydrology more significant drivers than increasing CO2?”, Lancaster University [data set], https://doi.org/10.17635/lancaster/researchdata/718, 2025.
Augustin, K., Kuhwald, M., Brunotte, J., and Duttmann, R.: Wheel load and wheel pass frequency as indicators for soil compaction risk: A four-year analysis of traffic intensity at field scale, Geoscience, 10, 292, https://doi.org/10.3390/geosciences10080292, 2020.
Baldocchi, D., Knox, S., Dronova, I., Verfaillie, J., Oikawa, P., Sturtevant, C., Matthes J. H., and Detto. M.: The impact of expanding flooded land area on the annual evaporation of rice, Agr. Forest Meteorol., 223, 181–193, https://doi.org/10.1016/j.agrformet.2016.04.001, 2016.
Baldocchi, D. D. and Rao, K. S.: Intra-field variability of scalar flux densities across a transition between a desert and an irrigated potato field, Bound.-Lay. Meteorol., 76, 109–136, 1995.
Balmer, G.: Baumreihen mit vielen Funktionen [Tree rows with many functions], https://blog.nationalmuseum.ch/2022/07/alleen/ (last access: 30 July 2023), 2022.
Batista, P., Baptista, V., Wilken, F., Seufferheld, K., Quinton, J. N., and Fiener, P.: First evidence of widespread, severe soil erosion underneath centre-pivot irrigation systems, Sci. Total Environ., 888, 164119, https://doi.org/10.1016/j.scitotenv.2023.164119, 2023.
Baumeister, C., Gudera, T., Hergesell, M., Kampf, J., Kopp, B., Neumann, J., Schwebler, W., and Wingering M.: Entwicklung von Bodenwasserhaushalt und Grundwasserneubildung in Baden-Württemberg, Bayern, Rheinland-Pfalz und Hessen (1951–2015) [Development of soil hydrology and groundwater recharge Baden-Wuerttemberg, Bavaria, Rhineland-Palatinate and Hesse], KLIWA-Berichte, 21, 102 pp., https://www.kliwa.de/_download/KLIWAHeft21.pdf (last access: 8 March 2024), 2017.
Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., Van der Velde, M., and Makowski, D.: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France, Nat. Commun., 9, 1627, https://doi.org/10.1038/s41467-018-04087-x, 2018.
Bengough, A. G., McKenzie, B. M., Hallett, P. D., and Valentine, T. A.: Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits, J. Ex. Bot., 62, 59–68, 2011.
Blumröder, J. S., May, F., Härdtle, W., and Ibisch, P. L.: Forestry contributed to warming of forest ecosystems in northern Germany during the extreme summers of 2018 and 2019, Ecological Solutions Evidence, 2, e12087, https://doi.org/10.1002/2688-8319.12087, 2021.
Boeing, F., Rakovec, O., Kumar, R., Samaniego, L., Schrön, M., Hildebrandt, A., Rebmann, C., Thober, S., Müller, S., Zacharias, S., Bogena, H., Schneider, K., Kiese, R., Attinger, S., and Marx, A.: High-resolution drought simulations and comparison to soil moisture observations in Germany, Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, 2022.
BMEL: Waldbericht der Bundesregierung 2021 [Forest Report of the Federal Government], Bundesministerium für Ernährung und Landwirtschaft, 84 pp., https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/waldbericht2021.pdf?___blob=publicationFile&v=9 (last access: 30 July 2023), 2021.
Brandhuber, R., Treisch, M., Fischer, F., Kistler, M., Maier, H., and Auerswald K.: Starkregen, Bodenerosion, Sturzfluten – Beobachtungen und Analysen im Mai/Juni 2016 [Heavy rainfall, soil erosion, flash floods – Observations and analyses in May/June 2016], Schriftenreihe der Bayerischen Landesanstalt für Landwirtschaft, 2–2017, 121 pp., https://www.lfl.bayern.de/mam/cms07/publikationen/daten/schriftenreihe/starkregen-bodenerosion_sturzfluten_lfl-schriftenreihe.pdf (last access: 12 April 2025), 2017.
Bronstert, A., Agarwal, A., Boessenkool, B., Crisologo, I., Fischer, M., Heistermann, M., Köhn-Reich, L., López-Tarazón, J.A., Moran, T., Ozturk, U., Reinhardt-Imjela, C., and Wendi, D.: Forensic hydro-meteorological analysis of an extreme flash flood: The 2016-05-29 event in Braunsbach, SW Germany, Sci. Total Environ., 630, 977–991, https://doi.org/10.1016/j.scitotenv.2018.02.241, 2018.
Brus, D. J. and van den Akker, J. J. H.: How serious a problem is subsoil compaction in the Netherlands? A survey based on probability sampling, SOIL, 4, 37–45, https://doi.org/10.5194/soil-4-37-2018, 2018.
Bürger, G., Heistermann, M., and Bronstert, A.: Towards subdaily rainfall disaggregation via Clausius–Clapeyron, J. Hydrometeorol., 15, 1303–1311, https://doi.org/10.1175/JHM-D-13-0161.1, 2014.
ByStMWBV: Roads and Bridges in Bavaria, Bayerisches Staatsministerium für Wohnen, Bau und Verkehr, München, https://www.stmb.bayern.de/assets/stmi/vum/strasse/sub_2018_englisch.pdf (last access: 27 March 2024), 2018.
ByStMUV: Klima-Report Bayern 2021 [Climate Report for Bavaria 2021], Bayerisches Staatsministerium für Umwelt und Verbraucherschutz, München, 196 pp., https://www.bestellen.bayern.de/application/applstarter?APPL=eshop&DIR=eshop&ACTIONxSETVAL(artdtl.htm,APGxNODENR:1325,AARTxNR:stmuv_klima_012,AARTxNODENR:358070,USERxBODYURL:artdtl.htm,KATALOG:StMUG,AKATxNAME:StMUG,ALLE:x)=X (last access: 12 April 2025), 2021.
Calder, K. L.: Eddy diffusion and evaporation in flow over aerodynamically smooth and rough surfaces: A treatment based on laboratory laws of turbulent flow with special reference to conditions in the lower atmosphere, Q. J. Mech. Appl. Math., 2, 153–176, 1949.
Cambi, M., Certini, G., Neri, F., and Marchi, E.: The impact of heavy traffic on forest soils: A review, Forest Ecol. Manag., 338, 124–138, https://doi.org/10.1016/j.foreco.2014.11.022, 2015.
Carroll, R. W. H., Deems, J. S., Niswonger, R., Schumer, R., and Williams, K. H.: The importance of interflow to groundwater recharge in a snowmelt-dominated headwater basin, Geophys. Res. Lett., 46, 5899–5908, https://doi.org/10.1029/2019GL082447, 2019.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Metteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437, 529–533, 2005.
Cushway, K. C., Geist, J., and Schwalb, A. N.: Surviving global change: a review of the impacts of drought and dewatering on freshwater mussels, Biol. Rev., 100, 275–307, https://doi.org/10.1111/brv.13142, 2024.
Davin, E. L., Seneviratne, S. I., Ciais, P., and Wang, T.: Preferential cooling of hot extremes from cropland albedo management, P. Natl. Acad. Sci. USA, 111, 9757–9761, https://doi.org/10.1073/pnas.1317323111, 2014.
Drainas, K., Kaule, L., Mohr, S., Uniyal, B., Wild, R., and Geist, J.: Predicting stream water temperature with artificial neural networks based on open-access data, Hydrol. Process., 37, e14991, https://doi.org/10.1002/hyp.14991, 2023.
Drivas, P. J. and Shair, F. H.: Dispersion of an instantaneous cross-wind line source of tracer released from an urban highway, Atmos. Environ., 8, 475–485, 1974.
DWD: Zeitreihen fuer Gebietsmittel fuer Bundeslaender und Kombinationen von Bundeslaender [Time series of spatial averages of federal states and combinations of federal states], Deutscher Wetterdienst (German Weather Service), https://opendata.dwd.de/climate_environment/CDC/regional_averages_DE/monthly/precipitation/regional_averages_rr_06.txt (last access: 10 February 2025), 2025.
Ehleringer, J. R. and Bjorkman, O.: Quantum yields for CO2 uptake in C3 and C4 plants - dependence on temperature, CO2, and O2 concentration, Plant Physiol., 59, 86–90, 1977.
Esch, T., Schorcht, G., and Thiel, M.: Satellitengestützte Erfassung der Bodenversiegelung in Bayern [Satellite-assisted Recording of Soil Sealing in Bavaria], Bayerisches Landesamt für Umwelt, Augsburg, Germany, 17 pp., https://www.bestellen.bayern.de/application/applstarter?APPL=eshop&DIR=eshop&ACTIONxSETVAL(artdtl.htm,APGxNODENR:193925,AARTxNR:lfu_all_00054,AARTxNODENR:194197,USERxBODYURL:artdtl.htm,KATALOG:StMUG,AKATxNAME:StMUG,ALLE:x)=X (last access: 12 April 2025), 2007.
FGSV: Richtlinien für die Anlage von Straßen, Teil Entwässerung (RAS-Ew) [Recommendations for Road Construction; Part Dainage], Forschungsgesellschaft für Straßen- und Verkehrswesen, Arbeitsgruppe Erd- und Grundbau, FGSV Verlag GmbH, Köln, 96 pp., ISBN 978-3-86446-299-3, 2021.
Fiener, P. and Auerswald, K.: Concept and effects of a multi-purpose grassed waterway, Soil Use Manage., 19, 65–72, https://doi.org/10.1111/j.1475-2743.2003.tb00281.x, 2003.
Fiener, P., Auerswald, K., and Van Oost, K.: Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments – a review, Earth-Sci. Rev., 106, 92–104, https://doi.org/10.1016/j.earscirev.2011.01.004, 2011.
Fiener, P., Neuhaus, P., and Botschek, J.: Long-term trends in rainfall erosivity – analysis of high resolution precipitation time series (1937–2007) from Western Germany, Agr. Forest Meteorol., 171–172, 115–123, 2013.
Forman, R. T. T. and Baudry, J.: Hedgerows and hedgerow networks in landscape ecology, Environ. Manage., 8, 495–510, 1984.
Funk, R., Völker, L., Kestel, F., Veste, M., and Hahn, T.: Der Einfluss von Hecken auf Wind und Mikroklima [Influence of Hedges on Wind and Microclimate], Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF), Müncheberg, Germany, https://doi.org/10.13140/RG.2.2.25302.93769, 2022.
García-García, A., Cuesta-Valero, F.J., Miralles, D.G., Mahecha, M. D., Quaas, J., Reichstein, M., Zscheischler, J., and Peng, J.: Soil heat extremes can outpace air temperature extremes, Nat. Clim. Change, 13, 1237–1241, https://doi.org/10.1038/s41558-023-01812-3, 2023.
Gericke, O. J. and Smithers, J. C.: Review of methods used to estimate catchment response time for the purpose of peak discharge estimation, Hydrolog. Sci. J., 59, 1935–1971, https://doi.org/10.1080/02626667.2013.866712, 2014.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to rising vapor pressure deficit, New Phytol., 226, 1550–1566, https://doi.org/10.1111/nph.16485, 2020.
Guarin, J. R., Martre, P., Ewert, F., Webber, H., Dueri, S., Calderini, D., Reynolds, M., Molero, G., Miralles, D., Garcia, G., Slafer, G., Giunta, F., Pequeno, D. N. L., Stella, T., Ahmed, M., Alderman, P. D., Basso, B., Berger, A. G., Bindi, M., Bracho-Mujica, G., Cammarano, D., Chen, Y., Dumont, B., Rezaei, E. E., Fereres, E., Ferrise, R., Gaiser, T., Gao, Y., Garcia-Vila, M., Gayler, S., Hochman, Z., Hoogenboom, G., Hunt, L. A., Kersebaum, K. C., Nendel, C., Olesen, J. E., Palosuo, T., Priesack, E., Pullens, J. W. M., Rodríguez A., Rötter, R. R., Ruiz Ramos, M., Semenov, M. A., Senapati, N., Siebert, S., Srivastava, A. K., Stöckle, C., Supit, I., Tao, F., Thorburn, P., Wang, E., Weber, T. K. D., Xiao, L., Zhang, Z., Zhao, C., Zhao, J., Zhao, Z., Zhu, Y., and Asseng, S.: Evidence for increasing global wheat yield potential, Environ. Res. Lett., 17, 124045, https://doi.org/10.1088/1748-9326/aca77c, 2022.
Haberlandt, U., Shehu, B., Thiele, L., Willems, W., Stockel, H., Deutschländer, T., Junghänel, T., and Ostermöller, J.: Methodische Untersuchungen für eine Neufassung der regionalisierten Starkregenstatistik KOSTRA-DWD [Methodological investigations for updating the regionalised extreme rainfall statistics KOSTRA-DWD], Hydrol. Wasserbewirts., 67, 138–159, https://doi.org/10.5675/HyWa_2023.3_1, 2023.
Haerter, J. O. and Berg, P.: Unexpected rise in extreme precipitation caused by a shift in rain type?, Nat. Geosci., 2, 372–373, 2009.
Hartmann, P., Zink, A., Fleige, H., and Horn, R.: Effect of compaction, tillage and climate change on soil water balance of arable Luvisols in Northwest Germany, Soil Till. Res., 124, 211–218, 2012.
Håkansson, I. and Reeder, R. C.: Subsoil compaction by vehicles with high axle load – Extent, persistence and crop response, Soil Till. Res., 29, 277–304, 1994.
Herbst, M., Roberts, J. M., Rosier, P. T. W., Taylor, M. E., and Gowing, D. J.: Edge effects and forest water use: A field study in a mixed deciduous woodland, Forest Ecol. Manag., 250, 176–186, https://doi.org/10.1016/j.foreco.2007.05.013, 2007.
Horn, R., Mordhorst, A., Fleige, H., Zimmermann, I., Burbaum, B., Filipinski, M., and Cordsen, E.: Soil type and land use effects on tensorial properties of saturated hydraulic conductivity in northern Germany, Eur. J. Soil Sci., 71, 179–189, https://doi.org/10.1111/ejss.12864, 2020.
Hümann, M.: Abflussgeschehen unter Wald – Validierung und Weiterentwicklung eines GIS-basierten Tools zur Erstellung von Abflussprozesskarten auf forstlich genutzten Standorten [Runoff from Forests – Validation and Further Development of a GIS Tool to Produce Runoff-Process Maps for Forested Sites], PhD thesis, Universität Trier, 223 pp., https://ubt.opus.hbz-nrw.de/files/542/Dissertation_HAmann_OPUS.pdf (last access: 12 April 2025), 2012.
Ingraham, N. L. and Mark, A. F.: Isotopic assessment of the hydrologic importance of fog deposition on tall snow tussock grass on southern New Zealand uplands, Austral Ecol., 25, 402–408, https://doi.org/10.1046/j.1442-9993.2000.01052.x, 2000.
Jacobs, A. F. G., Heusinkveld, B. G., Kruit, R. J. W., and Berkowicz, S. M.: Contribution of dew to the water budget of a grassland area in the Netherlands, Water Resour. Res., 42, W03415, https://doi.org/10.1029/2005WR004055, 2006.
Joeres, A., Steeger, G., Huth, K., Donheiser, M., and Wörpel S.: Wo in Deutschland das Grundwasser sinkt [Where the groundwater is declining in Germany], https://correctiv.org/aktuelles/kampf-um-wasser/2022/10/25/klimawandel-grundwasser-in-deutschland-sinkt/ (last access: 12 April 2025), 2022.
Kaseke, K. F., Wang, L., and Seely, M. K.: Nonrainfall water origins and formation mechanisms, Science Advances, 3, e1603131, https://doi.org/10.1126/sciadv.1603131, 2017.
Keller, T. and Or, D.: Farm vehicles approaching weights of sauropods exceed safe mechanical limits for soil functioning, P. Natl. Acad. Sci. USA, 119, e2117699119, https://doi.org/10.1073/pnas.2117699119, 2022.
Keller, T., Sandin, M., Colombi, T., Horn, R., and Or, D.: Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning, Soil Till. Res., 194, 10429, https://doi.org/10.1016/j.still.2019.104293, 2019.
Klaassen, W. and Claussen, M.: Landscape variability and surface flux parameterization in climate models, Agr. Forest Meteorol., 73, 181–188, 1995.
Klaassen, W., Van Breugel, P. B., Moors, E. J., and Nieveen, J. P.: Increased heat fluxes near a forest edge, Theor. Appl. Climatol., 72, 231–243, 2002.
Krassovsky, I.: Physiological activity of the seminal and nodal roots of crop plants, Soil Sci., 21, 307–325, 1926.
Lambert, F. H. and Webb, M. J.: Dependency of global mean precipitation on surface temperature, Geophys. Res. Lett., 35, L16706, https://doi.org/10.1029/2008GL034838, 2008.
Leclerc, M. Y. and Thurtell, G. W.: Footprint prediction of scalar fluxes using a Markovian analysis, Bound.-Lay. Meteorol., 52, 247–258, 1990.
Lenderink, G. and van Meijgaard, E.: Increase in hourly precipitation extremes beyond expectations from temperature changes, Nat. Geosci., 1, 511–514, https://doi.org/10.1038/ngeo262, 2008.
LfU: Fachlicher Hintergrund [Technical Background], Bayerisches Landesamt für Umwelt, https://www.lfu.bayern.de/wasser/gewaesserverzeichnisse/fachlicher_hintergrund/index.htm (last access: 15 March 2024), 2024.
Loriaux, J. M., Lenderink, G., De Roode, S. R., and Siebesma, A. P.: Understanding convective extreme precipitation scaling using observations and an entraining plume model, J. Atmos. Sci., 70, 3641–3655, https://doi.org/10.1175/JAS-D-12-0317.1, 2013.
Mahlerwein, G.: Die Moderne 1880–2010. Grundzüge der Agrargeschichte, Band 3 [Modern Times 1880–2010. Outline of Agri-History, volume 3], 248 pp., Böhlau Verlag, Köln, ISBN 978-3-412-22228-4, 2016.
Makarieva, A. M., Gorshkov, V. G., and Li, B.: Revisiting forest impact on atmospheric water vapor transport and precipitation, Theor. Appl. Climatol., 111, 79–96, https://doi.org/10.1007/s00704-012-0643-9, 2013a.
Makarieva, A. M., Gorshkov, V. G., Sheil, D., Nobre, A. D., and Li, B.-L.: Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics, Atmos. Chem. Phys., 13, 1039–1056, https://doi.org/10.5194/acp-13-1039-2013, 2013b.
Makarieva, A. M., Gorshkov, V. G., Sheil, D., Nobre, A. D., Bunyard, P., and Li, B.: Why does air passage over forest yield more rain? Examining the coupling between rainfall, pressure, and atmospheric moisture content, J. Hydrometeorol., 15, 411–426, https://doi.org/10.1175/JHM-D-12-0190.1, 2014.
Mann, M. E., Rahmstorf, S., Kornhuber, K., Steinman, B. A., Miller, S. K., Petri, S., and Coumou, D.: Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification, Science Advances, 4, eaat3272, https://doi.org/10.1126/sciadv.aat3272, 2018.
Mayr, B., Thaler, T., and Hübl, J.: Successful small-scale household relocation after a millennial flood event in Simbach, Germany 2016, Water-Switzerland, 12, 156, https://doi.org/10.3390/w12010156, 2020.
McNaughton, K. G.: Evaporation and advection II: evaporation downwind of a boundary separating regions having different surface resistances and available energies, Q. J. Roy. Meteor. Soc., 102, 193–202, 1976.
Meeus, J. H. A.: The transformation of agricultural landscapes in Western Europe, Sci. Total Environ., 129, 171–190, https://doi.org/10.1016/0048-9697(93)90169-7, 1993.
Migała, K., Liebersbach, J., and Sobik, M.: Rime in the Giant Mts. (The Sudetes, Poland), Atmos. Res., 64, 63–73, 2002.
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.: Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. NY Acad. Sci., 1436, 19–35, https://doi.org/10.1111/nyas.13912, 2019.
Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J., Gattke, C., Hundhausen, M., Knippertz, P., Küpfer, K., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Scheibel, M., Seidel, F., and Wisotzky, C.: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis, Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, 2023.
Monteith, J. L.: Dew, Q. J. Roy. Meteor. Soc., 83, 322–341, https://doi.org/10.1002/qj.49708335706, 1957.
Nóia Júnior, R. de S., Deswarte, J.-C., Cohan, J.-P., Martre, P., van der Velde, M., Lecerf, R., Webber, H., Ewert, F., Ruane, A.C., Slafer, G.A., and Asseng, S.: The extreme 2016 wheat yield failure in France, Glob. Change Biol., 29, 3130–3146, https://doi.org/10.1111/gcb.16662, 2023.
Nordmann, B.: Einfluss der Forstwirtschaft auf den vorbeugenden Hochwasserschutz – Integrale Klassifizierung abflusssensitiver Waldflächen [Influence of Forestry on Precautionary Flood Protection – Integral Classification of Runoff-Sensitive Forest Areas (in German)], PhD thesis, Technische Universität München, 242 pp., https://mediatum.ub.tum.de/1006969 (last access: 12 April 2025), 2011.
NRCS: Estimation of direct runoff from storm rainfall, in: National Engineering Handbook. Part 630 Hydrology, chapter 10, Natural Resources Conservation Service (NRCS), United States Department of Agriculture, 79 pp., https://irrigationtoolbox.com/NEH/Part630_Hydrology/H_210_630_10.pdf (last access: 12 April 2025), 2004.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor. Soc., 108, 1–24, 1982.
Panin, G., Tetzlaff, G., and Raabe, A.: Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions, Theor. Appl. Climatol., 60, 163–178, https://doi.org/10.1007/s007040050041, 1998.
Prueger, J. H., Hipps, L. E., and Cooper, D. I.: Evaporation and the development of the local boundary layer over an irrigated surface in an arid region, Agr. Forest Meteorol., 78, 223–237, 1996.
Raatz, L., Bacchi, N., Pirhofer Walzl, K., Glemnitz M., Müller, M. E. H., Joshi, J., and Scherber, C.: How much do we really lose? – Yield losses in the proximity of natural landscape elements in agricultural landscapes, Ecol. Evol., 9, 7838–7848, https://doi.org/10.1002/ece3.5370, 2019.
Reckendorfer, W., Böttiger, M., Funk, A., and Hein, T.: The development of abandoned side-channels: ecological implications and future perspectives, in: 5th Symposium Conference Volume for Research in Protected Areas, 639–642, https://www.researchgate.net/publication/237150599_The_development_of_abandoned_side-channels_ecological_implications_and_future_perspectives/citations (last access: 12 April 2025), 2013.
Ripl, W.: Water: the bloodstream of the biosphere, Philos. T. R. Soc. B, 358, 1921–1934, https://doi.org/10.1098/rstb.2003.1378, 2003.
Robine, J.-M., Cheung, S. L. K, Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J.-P., and Herrmann, F. R.: Death toll exceeded 70,000 in Europe during the summer of 2003, C. R. Biol., 331, 171–178, https://doi.org/10.1016/j.crvi.2007.12.001, 2008.
Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.
Ryan, M. G.: Effects of climate change on plant respiration, Ecol. Appl., 1, 157–167, 1991.
Savage, M. J., McInnes, K. J., and Heilman, J. L.: The “footprints” of eddy correlation sensible heat flux density, and other micrometeorological measurements, South African J. Sci., 92, 137–142, 1996.
Schjønning, P., Lamandé, M., Keller, T., Pedersen, J., and Stettler, M.: Rules of thumb for minimizing subsoil compaction, Soil Use Manage., 28, 378–393, 2012.
Schneider, F. and Don, A.: Root-restricting layers in German agricultural soils. Part I: extent and cause, Plant Soil, 442, 433–451, https:doi.org/10.1007/sII104-019-04185-9, 2019.
Schnyder, H., Auerswald, K., Geist, J., and Heissenhuber, A.: Farmers need independent and holistic advice, Nature, 571, 326, https://doi.org/10.1038/d41586-019-02165-8, 2019.
Seibert, S. and Auerswald, K.: Hochwasserminderung im ländlichen Raum – Ein Handbuch zur quantitativen Planung [Flood Mitigation in Rural Areas – a Handbook for Quantitative Planning], Springer Verlag, https://doi.org/10.1007/978-3-662-61033-6, 2020.
Shehu, B., Willems, W., Stockel, H., Thiele, L.-B., and Haberlandt, U.: Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany, Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, 2023.
Sharratt, B. S. and Campbell, G. S.: Radiation balance of a soil-straw surface modified by straw color, Agron. J., 86, 200–203, https://doi.org/10.2134/agronj1994.00021962008600010035x, 1994.
Skliris, N., Zika, J., Nurser, G., Josey, S. A., and Marsh, R.: Global water cycle amplifying at less than the Clausius-Clapeyron rate, Sci. Rep.-UK, 6, 38752, https://doi.org/10.1038/srep38752, 2016.
Soane, B. D., Blackwell, P. S., Dickson, J. W., and Painter, D. J.: Compaction by agricultural vehicles: A review II. Compaction under tyres and other running gear, Soil Till. Res., 1, 373–400, https://doi.org/10.1016/0167-1987(80)90039-2, 1980.
Sudmeyer, R., Bicknell, D., and Coles, N.: Tree windbreaks in the Wheatbelt, Bulletin, 4723, Department of Agriculture and Food, Western Australia, 28 pp., https://library.dpird.wa.gov.au/cgi/viewcontent.cgi?article=1196&context=bulletins (last access: 12 April 2025), 2007.
Tajima, R.: Importance of individual root traits to understand crop root system in agronomic and environmental contexts, Breed Sci., 71, 13–19, https://doi.org/10.1270/jsbbs.20095, 2021.
Tempel, M.: Abflussverhalten kleiner, forstlich genutzter Bacheinzugsgebiete am Beispiel des Einzugsgebietes des Oberen Gräfenbaches im Soonwald/Hunsrück [Runoff Behavior of Small, Forested Creek Catchments Using the Example of the Upper Graefenbach in the Soonwald/Hunsrueck], PhD thesis, Johannes Gutenberg-Universität Mainz, https://openscience.ub.uni-mainz.de/bitstreams/4490e295-eff8-4026-9760-e33c4b2835d6/download (last access: 12 April 2025), 2006.
Tetzlaff, B., Kuhr, P., and Wendland, F.: National inventory of artificially drained lands in Germany, CIGR XVIIth World Congress, Québec City, Canada, 13–17 June, 10 pp., https://doi.org/10.13031/2013.32112, 2010.
Uber, M., Haller, M., Brendel, C., Hillebrand, G., and Hoffmann, T.: Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations, Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024, 2024.
Üreyen, S. and Thiel, M.: Satellitengestützte Erfassung der Bodenversiegelung in Bayern [Satellite-Assisted Recording of Soil Sealing in Bavaria], Bayerisches Landesamt für Umwelt, Augsburg, Germany, 71 pp., https://www.lfu.bayern.de/umweltkommunal/flaechenmanagement/bodenversiegelung/index.htm (last access: 12 April 2025), 2017.
van der Ent, R. J. and Tuinenburg, O. A.: The residence time of water in the atmosphere revisited, Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017, 2017.
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
van der Ploeg, R. R., Ehlers, W., and Sieker, F.: Floods and other possible adverse environmental effects of meadowland area decline in former West Germany, Naturwissenschaften, 86, 313–319, https://doi.org/10.1007/s001140050623, 1999.
van der Ploeg R. R., Hermsmeyer D., and Bachmann J.: Post-war changes in land use in former West Germany and the increased number of inland floods, in: Flood Issues in Contemporary Water Management, edited by: Marsalek, J., Watt, W. E., Zeman, E., and Sieker, F., Kluwer Academic Publishers, Dordrecht, ISBN 978-0-7923-6452-8, 2000.
van Oorschot, F., van der Ent, R. J., Alessandri, A., and Hrachowitz, M.: Influence of irrigation on root zone storage capacity estimation, Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024, 2024.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Verbist, K., Cornelis, W. M., Schiettecatte, W., Oltenfreiter, G., Van Meirvenne, M., and Gabriels, D.: The influence of a compacted plow sole on saturation excess runoff, Soil Till. Res., 96, 292–302, https://doi.org/10.1016/j.still.2007.07.002, 2007.
Veste, M., Littmann, T., Kunneke, A., du Toit, B., and Seifert, T.: Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa, Plant Soil Environ., 66, 119–127, https://doi.org/10.17221/616/2019-PSE, 2020.
Wendt, H.: Der Einfluß der Hecken auf den landwirtschaftlichen Ertrag [The influence of hedgerows on the agricultural yield], Erdkunde 5, 115–125, 1951.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., and Roberts, N. M.: Future changes to the intensity and frequency of short-duration extreme rainfall, Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464, 2014.
Wigmosta, M. S., Nijssen, B., and Storck, P.: The distributed hydrology soil vegetation model, in: Mathematical Models of Small Watershed Hydrology and Applications 1, edited by: Singh, V. P. and Frevert, D. K., Water Resouce Publications, Littleton, 7–42, https://www.pnnl.gov/sites/default/files/media/file/The-distributed-hydrology-soil-vegetation-model.pdf (last access: 12 April 2025), 2002.
Willems, W., Stockel, H., Haberlandt, U., Shehu, B., Junghänel, T., Ostermöller, J., and Deutschländer T.: Betrachtungen zur Instationarität extremer Niederschläge in Deutschland [Reflection on the instationarity of extreme rainfalls in Germany], Hydrol. Wasserbewirts., 67, 151–159, 2023.
Winterrath, T.: Jährlicher (2001–2019) R-Faktor [N/h/yr] auf Basis der stündlichen Niederschlagszeitreihen der RADKLIM-Version 2017.002 [R Factor [N/h/yr] Based on Hourly Rainfall Series of RADKLIM, Version 2017.002], https://opendata.dwd.de/climate_environment/CDC/grids_germany/annual/erosivity/precip_radklim/2017_002/ (last access: 15 May 2023), 2023.
Wischmeier, W. H.: A rainfall erosion index for a universal soil-loss equation, Soil Sci. Soc. Am. Pro., 23, 246–249, 1959.
Wischmeier, W. H. and Smith, D. D.: Rainfall energy and its relationship to soil loss, EOS T. Am. Geophys. Un., 39, 285–291, 1958.
Wolters, T., McNamara, I., Tetzlaff, B., and Wendland, F.: Germany-wide high-resolution water balance modelling to characterise runoff components as input pathways for the analysis of nutrient fluxes, Water-Switzerland, 15, 3468, https://doi.org/10.3390/w15193468, 2023.
Woodward, D. E., Hawkins, R. H., and Quan, Q. D.: Curve number method: Origins, applications and limitations, in: Hydrologic Modeling for the 21st Century: 2nd Federal Interagency Hydrologic Modeling Conf., Las Vegas, NV, https://www.studypool.com/documents/7310093/curve-number-method-origins-applications-and-limitations (last access: 12 April 2025), 2002.
Woolhiser, D. A., Smith, R. E., and Giraldez, J. V.: Effects of spatial variability of saturated hydraulic conductivity on Hortonian overland flow, Water Resour. Res., 32, 671–678, 1996.
Yan, H., Wu, F., and Dong, L.: Influence of a large urban park on the local urban thermal environment, Sci. Total Environ., 622–623, 882–891, 2018.
Zerbe, S.: Rivers and floodplains, in: Restoration of Ecosystems – Bridging Nature and Humans, Springer, https://doi.org/10.1007/978-3-662-65658-7, 2023.
Zimmermann, L. and Zimmermann, F.: Fog deposition to Norway spruce stands at high elevations sites in the eastern Erzgebirge (Germany), J. Hydrol., 256, 166–175, 2002.
Zipper, S. C., Schatz, J., Kucharik, C. J., and Loheide, S. P.: Urban heat island-induced increases in evapotranspirative demand, Geophys. Res. Lett., 44, 873–881, 2017.
Short summary
Floods, droughts, and heatwaves are increasing globally. This is often attributed to CO2-driven climate change. However, at the global scale, CO2-driven climate change neither reduces precipitation nor adequately explains droughts. Land-use change, particularly soil sealing, compaction, and drainage, is likely to be more significant for water losses by runoff leading to flooding and water scarcity and is therefore an important part of the solution to mitigate floods, droughts, and heatwaves.
Floods, droughts, and heatwaves are increasing globally. This is often attributed to CO2-driven...
Special issue