Barraclough, T. W., Blackford, J. R., Liebenstein, S., Sandfeld, S., Stratford, T. J., Weinländer, G., and Zaiser, M.: Propagating Compaction Bands in Confined Compression of Snow, Nat. Phys., 13, 272–275,
https://doi.org/10.1038/nphys3966, 2017.
a
Bertle, F. A.: Effect of snow compaction on runoff from rain on snow, 35, US Department of the Interior, Bureau of Reclamation, 1966. a
Cagnati, A., Crepaz, A., Macelloni, G., Pampaloni, P., Ranzi, R., Tedesco, M., Tomirotti, M., and Valt, M.: Study of the Snow Melt–Freeze Cycle Using Multi-Sensor Data and Snow Modeling, J. Glaciol., 50, 419–426,
https://doi.org/10.3189/172756504781830006, 2004.
a
Clifton, A., Manes, C., Rüedi, J.-D., Guala, M., and Lehning, M.: On Shear-Driven Ventilation of Snow, Bound.-Lay. Meteorol., 126, 249–261,
https://doi.org/10.1007/s10546-007-9235-0, 2008.
a
Conway, H. and Benedict, R.: Infiltration of water into snow, Water Resour. Res., 30, 641–649,
https://doi.org/10.1029/93WR03247, 1994.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m
Dall'Amico, M., Endrizzi, S., Gruber, S., and Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil, The Cryosphere, 5, 469–484,
https://doi.org/10.5194/tc-5-469-2011, 2011.
a,
b,
c
D'Amboise, C. J. L., Müller, K., Oxarango, L., Morin, S., and Schuler, T. V.: Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model, Geosci. Model Dev., 10, 3547–3566,
https://doi.org/10.5194/gmd-10-3547-2017, 2017.
a,
b
Dunne, T., Price, A. G., and Colbeck, S. C.: The Generation of Runoff from Subarctic Snowpacks, Water Resour. Res., 12, 677–685,
https://doi.org/10.1029/WR012i004p00677, 1976.
a
Eiriksson, D., Whitson, M., Luce, C. H., Marshall, H. P., Bradford, J., Benner, S. G., Black, T., Hetrick, H., and McNamara, J. P.: An Evaluation of the Hydrologic Relevance of Lateral Flow in Snow at Hillslope and Catchment Scales: LATERAL FLOW IN SNOW, Hydrol. Process., 27, 640–654,
https://doi.org/10.1002/hyp.9666, 2013.
a
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The international classification for seasonal snow on the ground, UNESCO, 2009.
a,
b
Gossler, M. A., Bayer, P., and Zosseder, K.: Experimental Investigation of Thermal Retardation and Local Thermal Non-Equilibrium Effects on Heat Transport in Highly Permeable, Porous Aquifers, J. Hydrol., 578, 124097,
https://doi.org/10.1016/j.jhydrol.2019.124097, 2019.
a
Gossler, M. A., Bayer, P., Rau, G. C., Einsiedl, F., and Zosseder, K.: On the Limitations and Implications of Modeling Heat Transport in Porous Aquifers by Assuming Local Thermal Equilibrium, Water Resour. Res., 56, e2020WR027772,
https://doi.org/10.1029/2020WR027772, 2020.
a
Grenier, C., Anbergen, H., Bense, V., Chanzy, Q., Coon, E., Collier, N., Costard, F., Ferry, M., Frampton, A., Frederick, J., Gonçalvès, J., Holmén, J., Jost, A., Kokh, S., Kurylyk, B., McKenzie, J., Molson, J., Mouche, E., Orgogozo, L., Pannetier, R., Rivière, A., Roux, N., Rühaak, W., Scheidegger, J., Selroos, J.-O., Therrien, R., Vidstrand, P., and Voss, C.: Groundwater Flow and Heat Transport for Systems Undergoing Freeze-Thaw: Intercomparison of Numerical Simulators for 2D Test Cases, Adv. Water Resour., 114, 196–218,
https://doi.org/10.1016/j.advwatres.2018.02.001, 2018.
a
Hansson, K., Šimůnek, J., Mizoguchi, M., Lundin, L.-C., and van Genuchten, M. T.: Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze-Thaw Applications, Vadose Zone J., 3, 693–704,
https://doi.org/10.2136/vzj2004.0693, 2004.
a,
b,
c,
d
Hazen, A.: Some Physical Properties of Sands and Gravels: With Special Reference to Their Use in Filtration, Massachusetts State Board of Healt, 1892. a
Heinze, T.: A Multi-Phase Heat Transfer Model for Water Infiltration Into Frozen Soil, Water Resour. Res., 57, e2021WR030067,
https://doi.org/10.1029/2021WR030067, 2021.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n
Heinze, T. and Blöcher, J. R.: A Model of Local Thermal Non-Equilibrium during Infiltration, Adv. Water Resour., 132, 103394,
https://doi.org/10.1016/j.advwatres.2019.103394, 2019.
a,
b,
c,
d
Hirashima, H., Yamaguchi, S., Sato, A., and Lehning, M.: Numerical Modeling of Liquid Water Movement through Layered Snow Based on New Measurements of the Water Retention Curve, Cold Reg. Sci. Technol., 64, 94–103,
https://doi.org/10.1016/j.coldregions.2010.09.003, 2010.
a
Hirashima, H., Avanzi, F., and Yamaguchi, S.: Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments, Hydrol. Earth Syst. Sci., 21, 5503–5515,
https://doi.org/10.5194/hess-21-5503-2017, 2017.
a
Hommel, J., Coltman, E., and Class, H.: Porosity–Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)Geochemically Altered Porous Media, Transport Porous Med., 124, 589–629,
https://doi.org/10.1007/s11242-018-1086-2, 2018.
a
Juras, R., Würzer, S., Pavlásek, J., Vitvar, T., and Jonas, T.: Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions, Hydrol. Earth Syst. Sci., 21, 4973–4987,
https://doi.org/10.5194/hess-21-4973-2017, 2017.
a
Juras, R., Blöcher, J. R., Jenicek, M., Hotovy, O., and Markonis, Y.: What Affects the Hydrological Response of Rain-on-Snow Events in Low-Altitude Mountain Ranges in Central Europe?, J. Hydrol., 603, 127002,
https://doi.org/10.1016/j.jhydrol.2021.127002, 2021.
a,
b,
c
Katsushima, T., Adachi, S., Yamaguchi, S., Ozeki, T., and Kumakura, T.: Nondestructive Three-Dimensional Observations of Flow Finger and Lateral Flow Development in Dry Snow Using Magnetic Resonance Imaging, Cold Reg. Sci. Technol., 170, 102956,
https://doi.org/10.1016/j.coldregions.2019.102956, 2020.
a
Kelleners, T. J., Chandler, D. G., McNamara, J. P., Gribb, M. M., and Seyfried, M. S.: Modeling the Water and Energy Balance of Vegetated Areas with Snow Accumulation, Vadose Zone J., 8, 1013–1030,
https://doi.org/10.2136/vzj2008.0183, 2009.
a
Kelleners, T. J., Koonce, J., Shillito, R., Dijkema, J., Berli, M., Young, M. H., Frank, J. M., and Massman, W.: Numerical Modeling of Coupled Water Flow and Heat Transport in Soil and Snow, Soil Sci. Soc. Am. J., 80, 247–263,
https://doi.org/10.2136/sssaj2015.07.0279, 2016.
a,
b,
c,
d,
e
Kozeny, J.: Über Kapillare Leitung Des Wassers Im Boden: (Aufstieg, Versickerung u. Anwendung Auf Die Bewässerg); Gedr. Mit Unterstützg Aus d. Jerome u. Margaret Stonborsugh-Fonds, Hölder-Pichler-Tempsky, A.-G. [Abt.:] Akad. d. Wiss., 1927. a
Langford, J. E., Schincariol, R. A., Nagare, R. M., Quinton, W. L., and Mohammed, A. A.: Transient and Transition Factors in Modeling Permafrost Thaw and Groundwater Flow, Groundwater, 58, 258–268,
https://doi.org/10.1111/gwat.12903, 2020.
a
Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., and Zappa, M.: ALPINE3D: A Detailed Model of Mountain Surface Processes and Its Application to Snow Hydrology, Hydrol. Process., 20, 2111–2128,
https://doi.org/10.1002/hyp.6204, 2006.
a
Li, D., Lettenmaier, D. P., Margulis, S. A., and Andreadis, K.: The Role of Rain–on–Snow in Flooding Over the Conterminous United States, Water Resour. Res., 55, 8492–8513,
https://doi.org/10.1029/2019WR024950, 2019.
a
Magnin, F., Josnin, J.-Y., Ravanel, L., Pergaud, J., Pohl, B., and Deline, P.: Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century, The Cryosphere, 11, 1813–1834,
https://doi.org/10.5194/tc-11-1813-2017, 2017.
a
Marshall, H., Conway, H., and Rasmussen, L.: Snow Densification during Rain, Cold Reg. Sci. Technol., 30, 35–41,
https://doi.org/10.1016/S0165-232X(99)00011-7, 1999.
a,
b
Mathias, S. A., Skaggs, T. H., Quinn, S. A., Egan, S. N. C., Finch, L. E., and Oldham, C. D.: A Soil Moisture Accounting-Procedure with a Richards' Equation-Based Soil Texture-Dependent Parameterization, Water Resour. Res., 51, 506–523,
https://doi.org/10.1002/2014WR016144, 2015.
a
Mazurkiewicz, A. B., Callery, D. G., and McDonnell, J. J.: Assessing the Controls of the Snow Energy Balance and Water Available for Runoff in a Rain-on-Snow Environment, J. Hydrol., 354, 1–14,
https://doi.org/10.1016/j.jhydrol.2007.12.027, 2008.
a,
b,
c
McCabe, G. J., Clark, M. P., and Hay, L. E.: Rain-on-Snow Events in the Western United States, B. Am. Meteorol. Soc., 88, 319–328,
https://doi.org/10.1175/BAMS-88-3-319, 2007.
a
Meyer, C. R., Keegan, K. M., Baker, I., and Hawley, R. L.: A model for French-press experiments of dry snow compaction, The Cryosphere, 14, 1449–1458,
https://doi.org/10.5194/tc-14-1449-2020, 2020.
a,
b
Morris, E. M.: Physics-Based Models of Snow, in: Recent Advances in the Modeling of Hydrologic Systems, edited by: Bowles, D. S. and O'Connell, P. E., Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-011-3480-4_5, pp. 85–112, 1991.
a
Mostaghimi, P., Blunt, M. J., and Bijeljic, B.: Computations of Absolute Permeability on Micro-CT Images, Math. Geosci., 45, 103–125,
https://doi.org/10.1007/s11004-012-9431-4, 2013.
a
Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu, C., Barlage, M., and Rasmussen, R.: Projected Increases and Shifts in Rain-on-Snow Flood Risk over Western North America, Nat. Clim. Change, 8, 808–812,
https://doi.org/10.1038/s41558-018-0236-4, 2018.
a
Peng, Z., Tian, F., Wu, J., Huang, J., Hu, H., and Darnault, C. J. G.: A Numerical Model for Water and Heat Transport in Freezing Soils with Nonequilibrium Ice-Water Interfaces: Modeling Water Movement in Freezing Soils, Water Resour. Res., 52, 7366–7381,
https://doi.org/10.1002/2016WR019116, 2016.
a,
b
Pfeffer, W. T., Illangasekare, T. H., and Meier, M. F.: Analysis and Modeling of Melt-Water Refreezing in Dry Snow, J. Glaciol., 36, 238–246,
https://doi.org/10.3189/S0022143000009497, 1990.
a,
b
Richards, A.: Capillary Conduction of Liquids through Porous Mediums, Physics, 1, 318–333, 1931. a
Roshan, H., Cuthbert, M., Andersen, M., and Acworth, R.: Local Thermal Non-Equilibrium in Sediments: Implications for Temperature Dynamics and the Use of Heat as a Tracer, Adv. Water Resour., 73, 176–184,
https://doi.org/10.1016/j.advwatres.2014.08.002, 2014.
a
Rössler, O., Froidevaux, P., Börst, U., Rickli, R., Martius, O., and Weingartner, R.: Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps – a matter of model limitations or unpredictable nature?, Hydrol. Earth Syst. Sci., 18, 2265–2285,
https://doi.org/10.5194/hess-18-2265-2014, 2014.
a
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: Rosetta : A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions, J. Hydrol., 251, 163–176,
https://doi.org/10.1016/S0022-1694(01)00466-8, 2001.
a
Schlumpf, M., Hendrikx, J., Stormont, J., and Webb, R.: Quantifying Short-Term Changes in Snow Strength Due to Increasing Liquid Water Content above Hydraulic Barriers, Cold Reg. Sci. Technol., 218, 104056,
https://doi.org/10.1016/j.coldregions.2023.104056, 2024.
a
Sezen, C., Šraj, M., Medved, A., and Bezak, N.: Investigation of Rain-On-Snow Floods under Climate Change, Appl. Sci., 10, 1242,
https://doi.org/10.3390/app10041242, 2020.
a
Shea, C., Jamieson, B., and Birkeland, K. W.: Use of a thermal imager for snow pit temperatures, The Cryosphere, 6, 287–299,
https://doi.org/10.5194/tc-6-287-2012, 2012.
a,
b
Singh, P., Spitzbart, G., Hubl, H., and Weinmeister, H. W.: Hydrological Response of Snowpack under Rain-on-Snow Events: A Field Study, J. Hydrol., 202, 1–20,
https://doi.org/10.1016/S0022-1694(97)00004-8, 1997.
a
Stähli, M., Bayard, D., Wydler, H., and Flühler, H.: Snowmelt Infiltration into Alpine Soils Visualized by Dye Tracer Technique, Arct. Antarct. Alp. Res, 36, 128–135,
https://doi.org/10.1657/1523-0430(2004)036[0128:SIIASV]2.0.CO;2, 2004.
a
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
a,
b,
c
Viallon-Galinier, L., Hagenmuller, P., and Lafaysse, M.: Forcing and evaluating detailed snow cover models with stratigraphy observations, Cold Reg. Sci. Technol., 180, 103163,
https://doi.org/10.1016/j.coldregions.2020.103163, 2020.
a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791,
https://doi.org/10.5194/gmd-5-773-2012, 2012.
a
Wakao, N., Kaguei, S., and Funazkri, T.: Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds, Chem. Eng. Sci., 34, 325–336,
https://doi.org/10.1016/0009-2509(79)85064-2, 1979.
a,
b,
c
Wang, X., Pu, W., Ren, Y., Zhang, X., Zhang, X., Shi, J., Jin, H., Dai, M., and Chen, Q.: Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey, Atmos. Chem. Phys., 17, 2279–2296,
https://doi.org/10.5194/acp-17-2279-2017, 2017.
a,
b,
c
Watanabe, K. and Kugisaki, Y.: Effect of Macropores on Soil Freezing and Thawing with Infiltration: Effect of Macropores on Soil Freezing and Thawing with Infiltration, Hydrol. Process., 31, 270–278,
https://doi.org/10.1002/hyp.10939, 2017a.
a
Watanabe, K. and Kugisaki, Y.: Effect of macropores on soil freezing and thawing with infiltration, Hydrol. Process., 31, 270–278,
https://doi.org/10.1002/hyp.10939, 2017b.
a
Wei, W. and Gao, C.: Studies of ice-snow melt debris flows in the western Tian shan Mountains, China, in: Erosion, debris flows and environment in mountain regions, edited by Des Walling, E., IAHS publication, IAHS Press, Wallington, Oxfordsh., 329–336, ISBN 13: 9780947571382, 1992. a
Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257–274,
https://doi.org/10.5194/tc-8-257-2014, 2014.
a,
b
Wever, N., Würzer, S., Fierz, C., and Lehning, M.: Simulating ice layer formation under the presence of preferential flow in layered snowpacks, The Cryosphere, 10, 2731–2744,
https://doi.org/10.5194/tc-10-2731-2016, 2016.
a,
b
Würzer, S., Wever, N., Juras, R., Lehning, M., and Jonas, T.: Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow, Hydrol. Earth Syst. Sci., 21, 1741–1756,
https://doi.org/10.5194/hess-21-1741-2017, 2017.
a,
b
Yamaguchi, S., Katsushima, T., Sato, A., and Kumakura, T.: Water retention curve of snow with different grain sizes, Cold Reg. Sci. Technol., 64, 87–93,
https://doi.org/10.1016/j.coldregions.2010.05.008, international Snow Science Workshop 2009 Davos, 2010.
a,
b,
c
Yamaguchi, S., Watanabe, K., Katsushima, T., Sato, A., and Kumakura, T.: Dependence of the water retention curve of snow on snow characteristics, Ann. Glaciol., 53, 6–12,
https://doi.org/10.3189/2012AoG61A001, 2012.
a
Zhou, G., Cui, M., Wan, J., and Zhang, S.: A Review on Snowmelt Models: Progress and Prospect, Sustainability, 13, 11485,
https://doi.org/10.3390/su132011485, 2021.
a