Articles | Volume 29, issue 8
https://doi.org/10.5194/hess-29-2059-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-2059-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A local thermal non-equilibrium model for rain-on-snow events
Institute of Geology, Mineralogy and Geophysics, Ruhr University Bochum, Bochum, Germany
Related authors
Julian Bauer, Sebastian Müller, Thomas Heinze, Homa Khanahmadi Bafghi, and Ivo Baselt
EGUsphere, https://doi.org/10.5194/egusphere-2025-5473, https://doi.org/10.5194/egusphere-2025-5473, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how rainwater infiltrates frozen slopes. Using large experiments on an artificial soil slope, we found that natural cracks and channels first speed up infiltration, but later refreeze and block the flow. These results explain when frozen slopes absorb or shed rainwater and help improve predictions of runoff and slope stability in cold regions.
Julian Bauer, Sebastian Müller, Thomas Heinze, Homa Khanahmadi Bafghi, and Ivo Baselt
EGUsphere, https://doi.org/10.5194/egusphere-2025-5473, https://doi.org/10.5194/egusphere-2025-5473, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how rainwater infiltrates frozen slopes. Using large experiments on an artificial soil slope, we found that natural cracks and channels first speed up infiltration, but later refreeze and block the flow. These results explain when frozen slopes absorb or shed rainwater and help improve predictions of runoff and slope stability in cold regions.
Cited articles
Adolph, A. and Albert, M. R.: An Improved Technique to Measure Firn Diffusivity, Int. J. Heat Mass Trans., 61, 598–604, https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.029, 2013. a
Adolph, A. C. and Albert, M. R.: Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties, The Cryosphere, 8, 319–328, https://doi.org/10.5194/tc-8-319-2014, 2014. a
Akan, A. O.: Simulation of Runoff From Snow-Covered Hillslopes, Water Resour. Res., 20, 707–713, https://doi.org/10.1029/WR020i006p00707, 1984. a
Albert, M. R. and Shultz, E. F.: Snow and Firn Properties and Air–Snow Transport Processes at Summit, Greenland, Atmos. Environ., 36, 2789–2797, https://doi.org/10.1016/S1352-2310(02)00119-X, 2002. a
Baggi, S. and Schweizer, J.: Characteristics of Wet-Snow Avalanche Activity: 20 Years of Observations from a High Alpine Valley (Dischma, Switzerland), Nat. Hazards, 50, 97–108, https://doi.org/10.1007/s11069-008-9322-7, 2009. a
Barraclough, T. W., Blackford, J. R., Liebenstein, S., Sandfeld, S., Stratford, T. J., Weinländer, G., and Zaiser, M.: Propagating Compaction Bands in Confined Compression of Snow, Nat. Phys., 13, 272–275, https://doi.org/10.1038/nphys3966, 2017. a
Baselt, I. and Heinze, T.: Rain, Snow and Frozen Soil: Open Questions from a Porescale Perspective with Implications for Geohazards, Geosciences, 11, 375, https://doi.org/10.3390/geosciences11090375, 2021. a
Bertle, F. A.: Effect of snow compaction on runoff from rain on snow, 35, US Department of the Interior, Bureau of Reclamation, 1966. a
Cagnati, A., Crepaz, A., Macelloni, G., Pampaloni, P., Ranzi, R., Tedesco, M., Tomirotti, M., and Valt, M.: Study of the Snow Melt–Freeze Cycle Using Multi-Sensor Data and Snow Modeling, J. Glaciol., 50, 419–426, https://doi.org/10.3189/172756504781830006, 2004. a
Carman, P.: Fluid Flow through Granular Beds, Chem. Eng. Res. Des., 75, S32–S48, https://doi.org/10.1016/S0263-8762(97)80003-2, 1937. a
Carrier, W. D.: Goodbye, Hazen; Hello, Kozeny-Carman, J. Geotech. Geoenviron., 129, 1054–1056, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1054), 2003. a
Clifton, A., Manes, C., Rüedi, J.-D., Guala, M., and Lehning, M.: On Shear-Driven Ventilation of Snow, Bound.-Lay. Meteorol., 126, 249–261, https://doi.org/10.1007/s10546-007-9235-0, 2008. a
Colbeck, S. C.: A Theory of Water Percolation in Snow, J. Glaciol., 11, 369–385, https://doi.org/10.3189/S0022143000022346, 1972. a
Colbeck, S. C.: The Physical Aspects of Water Flow Through Snow, in: Advances in Hydroscience, vol. 11, Elsevier, https://doi.org/10.1016/B978-0-12-021811-0.50008-5, pp. 165–206, 1978. a
Colbeck, S. C.: Water Flow through Heterogeneous Snow, Cold Reg. Sci. Technol., 1, 37–45, https://doi.org/10.1016/0165-232X(79)90017-X, 1979. a
Colbeck, S. C. and Anderson, E. A.: The Permeability of a Melting Snow Cover, Water Resour. Res., 18, 904–908, https://doi.org/10.1029/WR018i004p00904, 1982. a, b
Daanen, R. P. and Nieber, J. L.: Model for Coupled Liquid Water Flow and Heat Transport with Phase Change in a Snowpack, J. Cold Reg. Eng., 23, 43–68, https://doi.org/10.1061/(ASCE)0887-381X(2009)23:2(43), 2009. a
Dall'Amico, M., Endrizzi, S., Gruber, S., and Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil, The Cryosphere, 5, 469–484, https://doi.org/10.5194/tc-5-469-2011, 2011. a, b, c
D'Amboise, C. J. L., Müller, K., Oxarango, L., Morin, S., and Schuler, T. V.: Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model, Geosci. Model Dev., 10, 3547–3566, https://doi.org/10.5194/gmd-10-3547-2017, 2017. a, b
Dunne, T., Price, A. G., and Colbeck, S. C.: The Generation of Runoff from Subarctic Snowpacks, Water Resour. Res., 12, 677–685, https://doi.org/10.1029/WR012i004p00677, 1976. a
Eiriksson, D., Whitson, M., Luce, C. H., Marshall, H. P., Bradford, J., Benner, S. G., Black, T., Hetrick, H., and McNamara, J. P.: An Evaluation of the Hydrologic Relevance of Lateral Flow in Snow at Hillslope and Catchment Scales: LATERAL FLOW IN SNOW, Hydrol. Process., 27, 640–654, https://doi.org/10.1002/hyp.9666, 2013. a
Farthing, M. W. and Ogden, F. L.: Numerical Solution of Richards' Equation: A Review of Advances and Challenges, Soil Sci. Soc. Am. J., 81, 1257–1269, https://doi.org/10.2136/sssaj2017.02.0058, 2017. a, b, c
Gossler, M. A., Bayer, P., and Zosseder, K.: Experimental Investigation of Thermal Retardation and Local Thermal Non-Equilibrium Effects on Heat Transport in Highly Permeable, Porous Aquifers, J. Hydrol., 578, 124097, https://doi.org/10.1016/j.jhydrol.2019.124097, 2019. a
Gossler, M. A., Bayer, P., Rau, G. C., Einsiedl, F., and Zosseder, K.: On the Limitations and Implications of Modeling Heat Transport in Porous Aquifers by Assuming Local Thermal Equilibrium, Water Resour. Res., 56, e2020WR027772, https://doi.org/10.1029/2020WR027772, 2020. a
Grenier, C., Anbergen, H., Bense, V., Chanzy, Q., Coon, E., Collier, N., Costard, F., Ferry, M., Frampton, A., Frederick, J., Gonçalvès, J., Holmén, J., Jost, A., Kokh, S., Kurylyk, B., McKenzie, J., Molson, J., Mouche, E., Orgogozo, L., Pannetier, R., Rivière, A., Roux, N., Rühaak, W., Scheidegger, J., Selroos, J.-O., Therrien, R., Vidstrand, P., and Voss, C.: Groundwater Flow and Heat Transport for Systems Undergoing Freeze-Thaw: Intercomparison of Numerical Simulators for 2D Test Cases, Adv. Water Resour., 114, 196–218, https://doi.org/10.1016/j.advwatres.2018.02.001, 2018. a
Hansson, K., Šimůnek, J., Mizoguchi, M., Lundin, L.-C., and van Genuchten, M. T.: Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze-Thaw Applications, Vadose Zone J., 3, 693–704, https://doi.org/10.2136/vzj2004.0693, 2004. a, b, c, d
Hazen, A.: Some Physical Properties of Sands and Gravels: With Special Reference to Their Use in Filtration, Massachusetts State Board of Healt, 1892. a
Heinze, T.: Matlab code simulating water flow and heat transfer in a snowpack (1D), Zenodo [code], https://doi.org/10.5281/zenodo.14904100, 2025. a, b
Heinze, T. and Blöcher, J. R.: A Model of Local Thermal Non-Equilibrium during Infiltration, Adv. Water Resour., 132, 103394, https://doi.org/10.1016/j.advwatres.2019.103394, 2019. a, b, c, d
Heinze, T. and Hamidi, S.: Heat Transfer and Parameterization in Local Thermal Non-Equilibrium for Dual Porosity Continua, Appl. Therm. Eng., 114, 645–652, https://doi.org/10.1016/j.applthermaleng.2016.12.015, 2017. a
Hirashima, H., Yamaguchi, S., Sato, A., and Lehning, M.: Numerical Modeling of Liquid Water Movement through Layered Snow Based on New Measurements of the Water Retention Curve, Cold Reg. Sci. Technol., 64, 94–103, https://doi.org/10.1016/j.coldregions.2010.09.003, 2010. a
Hirashima, H., Avanzi, F., and Yamaguchi, S.: Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments, Hydrol. Earth Syst. Sci., 21, 5503–5515, https://doi.org/10.5194/hess-21-5503-2017, 2017. a
Hommel, J., Coltman, E., and Class, H.: Porosity–Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)Geochemically Altered Porous Media, Transport Porous Med., 124, 589–629, https://doi.org/10.1007/s11242-018-1086-2, 2018. a
Jeong, D. I. and Sushama, L.: Rain-on-Snow Events over North America Based on Two Canadian Regional Climate Models, Clim. Dynam., 50, 303–316, https://doi.org/10.1007/s00382-017-3609-x, 2018. a
Juras, R., Würzer, S., Pavlásek, J., Vitvar, T., and Jonas, T.: Rainwater propagation through snowpack during rain-on-snow sprinkling experiments under different snow conditions, Hydrol. Earth Syst. Sci., 21, 4973–4987, https://doi.org/10.5194/hess-21-4973-2017, 2017. a
Juras, R., Blöcher, J. R., Jenicek, M., Hotovy, O., and Markonis, Y.: What Affects the Hydrological Response of Rain-on-Snow Events in Low-Altitude Mountain Ranges in Central Europe?, J. Hydrol., 603, 127002, https://doi.org/10.1016/j.jhydrol.2021.127002, 2021. a, b, c
Katsushima, T., Adachi, S., Yamaguchi, S., Ozeki, T., and Kumakura, T.: Nondestructive Three-Dimensional Observations of Flow Finger and Lateral Flow Development in Dry Snow Using Magnetic Resonance Imaging, Cold Reg. Sci. Technol., 170, 102956, https://doi.org/10.1016/j.coldregions.2019.102956, 2020. a
Kelleners, T.: Coupled Water Flow and Heat Transport in Seasonally Frozen Soils with Snow Accumulation, Vadose Zone J., 12, vzj2012.0162, https://doi.org/10.2136/vzj2012.0162, 2013. a
Kelleners, T. J., Chandler, D. G., McNamara, J. P., Gribb, M. M., and Seyfried, M. S.: Modeling the Water and Energy Balance of Vegetated Areas with Snow Accumulation, Vadose Zone J., 8, 1013–1030, https://doi.org/10.2136/vzj2008.0183, 2009. a
Kinar, N. J. and Pomeroy, J. W.: Measurement of the Physical Properties of the Snowpack, Rev. Geophys., 53, 481–544, https://doi.org/10.1002/2015RG000481, 2015. a, b
Kozeny, J.: Über Kapillare Leitung Des Wassers Im Boden: (Aufstieg, Versickerung u. Anwendung Auf Die Bewässerg); Gedr. Mit Unterstützg Aus d. Jerome u. Margaret Stonborsugh-Fonds, Hölder-Pichler-Tempsky, A.-G. [Abt.:] Akad. d. Wiss., 1927. a
Langford, J. E., Schincariol, R. A., Nagare, R. M., Quinton, W. L., and Mohammed, A. A.: Transient and Transition Factors in Modeling Permafrost Thaw and Groundwater Flow, Groundwater, 58, 258–268, https://doi.org/10.1111/gwat.12903, 2020. a
Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., and Zappa, M.: ALPINE3D: A Detailed Model of Mountain Surface Processes and Its Application to Snow Hydrology, Hydrol. Process., 20, 2111–2128, https://doi.org/10.1002/hyp.6204, 2006. a
Leroux, N. R. and Pomeroy, J. W.: Modelling capillary hysteresis effects on preferential flow through melting and cold layered snowpacks, Adv. Water Resour., 107, 250–264, https://doi.org/10.1016/j.advwatres.2017.06.024, 2017. a
Leuther, F. and Schlüter, S.: Impact of freeze–thaw cycles on soil structure and soil hydraulic properties, SOIL, 7, 179–191, https://doi.org/10.5194/soil-7-179-2021, 2021. a
Li, D., Lettenmaier, D. P., Margulis, S. A., and Andreadis, K.: The Role of Rain–on–Snow in Flooding Over the Conterminous United States, Water Resour. Res., 55, 8492–8513, https://doi.org/10.1029/2019WR024950, 2019. a
Magnin, F., Josnin, J.-Y., Ravanel, L., Pergaud, J., Pohl, B., and Deline, P.: Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century, The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, 2017. a
Marshall, H., Conway, H., and Rasmussen, L.: Snow Densification during Rain, Cold Reg. Sci. Technol., 30, 35–41, https://doi.org/10.1016/S0165-232X(99)00011-7, 1999. a, b
Mathias, S. A., Skaggs, T. H., Quinn, S. A., Egan, S. N. C., Finch, L. E., and Oldham, C. D.: A Soil Moisture Accounting-Procedure with a Richards' Equation-Based Soil Texture-Dependent Parameterization, Water Resour. Res., 51, 506–523, https://doi.org/10.1002/2014WR016144, 2015. a
Mazurkiewicz, A. B., Callery, D. G., and McDonnell, J. J.: Assessing the Controls of the Snow Energy Balance and Water Available for Runoff in a Rain-on-Snow Environment, J. Hydrol., 354, 1–14, https://doi.org/10.1016/j.jhydrol.2007.12.027, 2008. a, b, c
McCabe, G. J., Clark, M. P., and Hay, L. E.: Rain-on-Snow Events in the Western United States, B. Am. Meteorol. Soc., 88, 319–328, https://doi.org/10.1175/BAMS-88-3-319, 2007. a
Meyer, C. R. and Hewitt, I. J.: A continuum model for meltwater flow through compacting snow, The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017, 2017. a
Meyer, C. R., Keegan, K. M., Baker, I., and Hawley, R. L.: A model for French-press experiments of dry snow compaction, The Cryosphere, 14, 1449–1458, https://doi.org/10.5194/tc-14-1449-2020, 2020. a, b
Morris, E. M.: Physics-Based Models of Snow, in: Recent Advances in the Modeling of Hydrologic Systems, edited by: Bowles, D. S. and O'Connell, P. E., Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-011-3480-4_5, pp. 85–112, 1991. a
Mostaghimi, P., Blunt, M. J., and Bijeljic, B.: Computations of Absolute Permeability on Micro-CT Images, Math. Geosci., 45, 103–125, https://doi.org/10.1007/s11004-012-9431-4, 2013. a
Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu, C., Barlage, M., and Rasmussen, R.: Projected Increases and Shifts in Rain-on-Snow Flood Risk over Western North America, Nat. Clim. Change, 8, 808–812, https://doi.org/10.1038/s41558-018-0236-4, 2018. a
Nield, D. A. and Bejan, A.: Heat Transfer Through a Porous Medium, Springer New York, New York, NY, https://doi.org/10.1007/978-1-4614-5541-7_2, pp. 31–46, 2013. a, b
Ohara, N.: Finger Flow Modeling in Snow Porous Media Based on Lagrangian Mechanics, Adv. Water Resour., 185, 104634, https://doi.org/10.1016/j.advwatres.2024.104634, 2024. a
Peng, Z., Tian, F., Wu, J., Huang, J., Hu, H., and Darnault, C. J. G.: A Numerical Model for Water and Heat Transport in Freezing Soils with Nonequilibrium Ice-Water Interfaces: Modeling Water Movement in Freezing Soils, Water Resour. Res., 52, 7366–7381, https://doi.org/10.1002/2016WR019116, 2016. a, b
Pfeffer, W. T., Illangasekare, T. H., and Meier, M. F.: Analysis and Modeling of Melt-Water Refreezing in Dry Snow, J. Glaciol., 36, 238–246, https://doi.org/10.3189/S0022143000009497, 1990. a, b
Raymond, C. F. and Tusima, K.: Grain Coarsening of Water-Saturated Snow, J. Glaciol., 22, 83–105, https://doi.org/10.3189/S0022143000014076, 1979. a
Richards, A.: Capillary Conduction of Liquids through Porous Mediums, Physics, 1, 318–333, 1931. a
Roshan, H., Cuthbert, M., Andersen, M., and Acworth, R.: Local Thermal Non-Equilibrium in Sediments: Implications for Temperature Dynamics and the Use of Heat as a Tracer, Adv. Water Resour., 73, 176–184, https://doi.org/10.1016/j.advwatres.2014.08.002, 2014. a
Rössler, O., Froidevaux, P., Börst, U., Rickli, R., Martius, O., and Weingartner, R.: Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps – a matter of model limitations or unpredictable nature?, Hydrol. Earth Syst. Sci., 18, 2265–2285, https://doi.org/10.5194/hess-18-2265-2014, 2014. a
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: Rosetta : A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions, J. Hydrol., 251, 163–176, https://doi.org/10.1016/S0022-1694(01)00466-8, 2001. a
Schlumpf, M., Hendrikx, J., Stormont, J., and Webb, R.: Quantifying Short-Term Changes in Snow Strength Due to Increasing Liquid Water Content above Hydraulic Barriers, Cold Reg. Sci. Technol., 218, 104056, https://doi.org/10.1016/j.coldregions.2023.104056, 2024. a
Sezen, C., Šraj, M., Medved, A., and Bezak, N.: Investigation of Rain-On-Snow Floods under Climate Change, Appl. Sci., 10, 1242, https://doi.org/10.3390/app10041242, 2020. a
Shea, C., Jamieson, B., and Birkeland, K. W.: Use of a thermal imager for snow pit temperatures, The Cryosphere, 6, 287–299, https://doi.org/10.5194/tc-6-287-2012, 2012. a, b
Singh, P., Spitzbart, G., Hubl, H., and Weinmeister, H. W.: Hydrological Response of Snowpack under Rain-on-Snow Events: A Field Study, J. Hydrol., 202, 1–20, https://doi.org/10.1016/S0022-1694(97)00004-8, 1997. a
Spaans, E. J. A. and Baker, J. M.: The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic, Soil Sci. Soc. Am. J., 60, 13–19, https://doi.org/10.2136/sssaj1996.03615995006000010005x, 1996. a
Stähli, M., Bayard, D., Wydler, H., and Flühler, H.: Snowmelt Infiltration into Alpine Soils Visualized by Dye Tracer Technique, Arct. Antarct. Alp. Res, 36, 128–135, https://doi.org/10.1657/1523-0430(2004)036[0128:SIIASV]2.0.CO;2, 2004. a
Viallon-Galinier, L., Hagenmuller, P., and Lafaysse, M.: Forcing and evaluating detailed snow cover models with stratigraphy observations, Cold Reg. Sci. Technol., 180, 103163, https://doi.org/10.1016/j.coldregions.2020.103163, 2020. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a
Wakao, N., Kaguei, S., and Funazkri, T.: Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds, Chem. Eng. Sci., 34, 325–336, https://doi.org/10.1016/0009-2509(79)85064-2, 1979. a, b, c
Wang, X., Pu, W., Ren, Y., Zhang, X., Zhang, X., Shi, J., Jin, H., Dai, M., and Chen, Q.: Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey, Atmos. Chem. Phys., 17, 2279–2296, https://doi.org/10.5194/acp-17-2279-2017, 2017. a, b, c
Watanabe, K. and Kugisaki, Y.: Effect of Macropores on Soil Freezing and Thawing with Infiltration: Effect of Macropores on Soil Freezing and Thawing with Infiltration, Hydrol. Process., 31, 270–278, https://doi.org/10.1002/hyp.10939, 2017a. a
Watanabe, K. and Kugisaki, Y.: Effect of macropores on soil freezing and thawing with infiltration, Hydrol. Process., 31, 270–278, https://doi.org/10.1002/hyp.10939, 2017b. a
Wei, W. and Gao, C.: Studies of ice-snow melt debris flows in the western Tian shan Mountains, China, in: Erosion, debris flows and environment in mountain regions, edited by Des Walling, E., IAHS publication, IAHS Press, Wallington, Oxfordsh., 329–336, ISBN 13: 9780947571382, 1992. a
Wever, N., Fierz, C., Mitterer, C., Hirashima, H., and Lehning, M.: Solving Richards Equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model, The Cryosphere, 8, 257–274, https://doi.org/10.5194/tc-8-257-2014, 2014. a, b
Wever, N., Würzer, S., Fierz, C., and Lehning, M.: Simulating ice layer formation under the presence of preferential flow in layered snowpacks, The Cryosphere, 10, 2731–2744, https://doi.org/10.5194/tc-10-2731-2016, 2016. a, b
Würzer, S., Wever, N., Juras, R., Lehning, M., and Jonas, T.: Modelling liquid water transport in snow under rain-on-snow conditions – considering preferential flow, Hydrol. Earth Syst. Sci., 21, 1741–1756, https://doi.org/10.5194/hess-21-1741-2017, 2017. a, b
Yamaguchi, S., Katsushima, T., Sato, A., and Kumakura, T.: Water retention curve of snow with different grain sizes, Cold Reg. Sci. Technol., 64, 87–93, https://doi.org/10.1016/j.coldregions.2010.05.008, international Snow Science Workshop 2009 Davos, 2010. a, b, c
Yamaguchi, S., Watanabe, K., Katsushima, T., Sato, A., and Kumakura, T.: Dependence of the water retention curve of snow on snow characteristics, Ann. Glaciol., 53, 6–12, https://doi.org/10.3189/2012AoG61A001, 2012. a
Zhou, G., Cui, M., Wan, J., and Zhang, S.: A Review on Snowmelt Models: Progress and Prospect, Sustainability, 13, 11485, https://doi.org/10.3390/su132011485, 2021. a
Short summary
When water infiltrates into a snowpack, it alters the thermal state of the system. This work presents a first-of-its-kind multi-phase heat transfer model for local thermal non-equilibrium scenarios of water infiltration into an existing snowpack, such as during rain-on-snow events. The model can be used to calculate the formation of ice layers, as well as partial melting of the snow. Hence, it can support hazard assessment for flash floods and snow avalanches.
When water infiltrates into a snowpack, it alters the thermal state of the system. This work...