Articles | Volume 28, issue 24
https://doi.org/10.5194/hess-28-5459-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-5459-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Technical assessment combined with an extended cost–benefit analysis for the restoration of groundwater and forest ecosystem services – an application for Grand Bahama
Anne Imig
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Chair of Hydrogeology, School of Engineering and Design, Technical University of Munich, Munich, Germany
Francesca Perosa
Chair of Hydrology and River Basin Management, School of Engineering and Design, Technical University of Munich, Munich, Germany
Carolina Iwane Hotta
Chair of Hydrology and River Basin Management, School of Engineering and Design, Technical University of Munich, Munich, Germany
Sophia Klausner
Chair of Hydrogeology, School of Engineering and Design, Technical University of Munich, Munich, Germany
Kristen Welsh
Small Island Sustainability Programme, University of The Bahamas, Nassau, The Bahamas
Geosciences Department, Oberlin College, Oberlin, Ohio, USA
Yan Zheng
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Chair of Hydrogeology, School of Engineering and Design, Technical University of Munich, Munich, Germany
Related authors
No articles found.
Krzysztof Janik, Arno Rein, and Sławomir Sitek
EGUsphere, https://doi.org/10.5194/egusphere-2025-3841, https://doi.org/10.5194/egusphere-2025-3841, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We studied how river water and groundwater mix beneath Tarnów, Poland, by tracking natural physicochemical “fingerprints” in water over a year. Our study shows that the Dunajec River is the main recharge source for the underground reservoir, supplying drinking water to nearly 270,000 people. We present a cost-effective, transferable workflow to trace groundwater origins and flow speed, which promotes sustainable water supply management and ensures faster responses to potential pollution.
Shuhui Zhao, Youlv Wu, Jingning Lv, Dan Zhao, Yan Zheng, and Lian Feng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-438, https://doi.org/10.5194/essd-2025-438, 2025
Preprint under review for ESSD
Short summary
Short summary
We created a 20-year dataset tracking coastal water conditions in China and the United States using satellite images. By improving how the satellite data are processed in areas with complex atmospheric conditions and diverse water properties, we produced more reliable and complete observations. This helps researchers better monitor environmental changes and water quality along coasts that are often difficult to study.
Cited articles
Acuña, V., Díez, J. R., Flores, L., Meleason, M., and Elosegi, A.: Does it make economic sense to restore rivers for their ecosystem services?, J. Appl. Ecol., 50, 988–997, https://doi.org/10.1111/1365-2664.12107, 2013.
Angelis, L. and Stamelos, I.: A Simulation Tool for Efficient Analogy Based Cost Estimation, Empir. Softw. Eng., 5, 35–68, https://doi.org/10.1023/A:1009897800559, 2000.
Ault, T.: Water resources: Island water stress, Nat. Clim. Chang., 6, 1062–1063, https://doi.org/10.1038/nclimate3171, 2016.
Al Baghdadi, L.: Studying the Storm-induced Salinization of the Grand Bahama Island Aquifer due to Hurricane Dorian, University of California Sacramento, 2021.
Bahamas Ministry of Tourism: Expenditure: Yearly Expenditure Comparisons By Qtr &Visitor Type, https://www.tourismtoday.com/statistics/expenditure (last access: 13 December 2024), 2022.
Bahamas National Trust: State of the environment: post hurricane Dorian report, https://bnt.bs/postdorianreport/ (last access: 13 December 2024), 2020.
Bedekar, V. S., Memari, S. S., and Clement, T. P.: Investigation of transient freshwater storage in island aquifers, J. Contam. Hydrol., 221, 98–107, https://doi.org/10.1016/j.jconhyd.2019.02.004, 2019.
Boithias, L., Terrado, M., Corominas, L., Ziv, G., Kumar, V., Marqués, M., Schuhmacher, M., and Acuña, V.: Analysis of the uncertainty in the monetary valuation of ecosystem services – A case study at the river basin scale, Sci. Total Environ., 543, 683–690, https://doi.org/10.1016/j.scitotenv.2015.11.066, 2016.
Bowen-O'Connor, C. and Lynch, E. M.: Discovering third space in citizen science and resource recovery efforts post-hurricane Dorian, American Anthropological Association Annual Meeting, 2022.
Brouwer, R. and Sheremet, O.: The economic value of river restoration, Water Resour. Econ., 17, 1–8, https://doi.org/10.1016/j.wre.2017.02.005, 2017.
Campos, I., Ng, K., Penha-Lopes, G., Pedersen, A. B., Capriolo, A., Olazabal, M., Meyer, V., Gebhardt, O., Weiland, S., Nielsen, H. Ø., Troeltzsch, J., Zandvoort, M., Lorencová, E. K., Harmáčkova, Z. V, Iglesias, P., Iglesias, A., Vizinho, A., Mäenpää, M., Rytkönen, A.-M., den Uyl, R. M., Vačkář, D., and Alves, F. M.: The Diversity of Adaptation in a Multilevel Governance Setting, in: Adapting to Climate Change in Europe, Elsevier, 49–172, https://doi.org/10.1016/B978-0-12-849887-3.00003-4, 2018.
Caribbean Environmental Health Institute (CEHI), Antigua Public Utilities Authority (APUA), The United Nations Environment Programme (UNEP), Caribbean Environmental Health Institute (CEHI), and GWP Consultants LLP: Managed Aquifer Recharge (MAR): Practical Techniques for the Caribbean, 68 pp., 2010.
CDM Camp Dresser & McKee Inc.: Groundwater Supply, Sustainability Yield and Storm Surge Vulnerability, CDM Camp Dresser & McKee Inc, 2011.
Cerulus, T.: Reflection on the Relevance and Use of Ecosystem Sevices to the LNE Department, in: Ecosystem Services: Global Issues, Local Practices, edited by: Jacobs, S., Dendoncker, N., and Keune, H., Elsevier, ISBN 9780124199644, 2014.
Clinch, J. P.: Cost–Benefit Analysis Applied to Energy, in: Encyclopedia of Energy, Elsevier, 715–725, https://doi.org/10.1016/B0-12-176480-X/00237-0, 2004a.
Cohen-Shacham, E., Walters, G., Janzen, C., and Maginnis, S.: Nature-based solutions to address global societal challenges, IUCN, Gland, Switzerland, 97 pp., https://doi.org/10.2305/IUCN.CH.2016.13.en, 2016.
Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., and Grasso, M.: Twenty years of ecosystem services: How far have we come and how far do we still need to go?, Ecosyst. Serv., 28, 1–16, https://doi.org/10.1016/j.ecoser.2017.09.008, 2017.
Costanza, R. and Daly, H. E.: Natural Capital and Sustainable Development, Conserv. Biol., 6, 37–46, https://doi.org/10.1046/j.1523-1739.1992.610037.x, 1992.
DEEPWATER-CE: Collection of good practice and benchmark analysis on MAR solutioins in the EU – D.T1.2.1, https://www.interreg-central.eu/Content.Node/DEEPWATER-CE.html (last access: 28 November 2024), 2020a.
DEEPWATER-CE:Transnational desicion support toolbox for designating potential MAR location in Central Europe – D.T2.4.3, https://www.interreg-central.eu/Content.Node/DEEPWATER-CE.html (last access: 28 November 2024), 2020b.
Department of Statistics: The Commonwealth of The Bahamas: Cenus of Population and Housing 2010, edited by: Mackey, C., Gibson, N., Winters, C., Wilson, L., Saunders, K., Rolle, K., Conyers, C., Storr, L., and Rolle, T., 197 pp., https://www.bahamas.gov.bs/wps/wcm/connect/c0d9fae8-54df-49e3-b4b9-92e29e0b264c/2022+CENSUS+PRELIMINARY+RESULTS_FINAL+April+12+2023.pdf?MOD=AJPERES#:~:text=The Bahamas National Statistical Institute is pleased to release the,192,544 males and 206,770 females (last access: 28 November 2024), 2012.
Diamond, M. G. and Melesse, A. M.: Water Resources Assessment and Geographic Information System (GIS)-Based Stormwater Runoff Estimates for Artificial Recharge of Freshwater Aquifers in New Providence, Bahamas, in: Landscape Dynamics, Soils and Hydrological Processes in Varied Climates, ISBN 9783319187860, Springer, 1st ed. 2016 edition (August 5, 2015), 411–434, 2016.
Dillon, P.: Future management of aquifer recharge, Hydrogeol. J., 13, 313–316, https://doi.org/10.1007/s10040-004-0413-6, 2005.
Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., Rossetto, R., Shamrukh, M., Pavelic, P., Murray, E., Ross, A., Bonilla Valverde, J. P., Palma Nava, A., Ansems, N., Posavec, K., Ha, K., Martin, R., and Sapiano, M.: Sixty years of global progress in managed aquifer recharge, Hydrogeol. J., 27, 1–30, https://doi.org/10.1007/s10040-018-1841-z, 2019.
DIN Deutsche Institut für Normung e.V.: Rainwater harvesting systems Part 1: Planning, installation, operation and maintanance DIN 1989-1:2002-04, German Institute for Standardization or Deutsches Institut für Normung e.V, https://doi.org/10.31030/9240880, 2002.
Dobhal, R., Uniyal, D. P., Gosh, N. C., Grischek, T., and Sandhu, C.: Guidelines on Bank Filtration for Water Supply in India, India and M/s Bishen Singh Mahendra Pal Singh, 23-A, New Connaught Place, Dehra Dun, India, Uttarakhand State Council for Science & Technology (UCOST) Dehra Dun, ISBN 978-81-211-0993-2, 2019
Dominati, E. J., Robinson, D. A., Marchant, S. C., Bristow, K. L., and Mackay, A. D.: Natural Capital, Ecological Infrastructure, and Ecosystem Services in Agroecosystems, in: Encyclopedia of Agriculture and Food Systems, edited by: Van Alfen, N. K., Academic Press, Oxford, 245–264, https://doi.org/10.1016/B978-0-444-52512-3.00243-6, 2014.
Dos Anjos, N. D. F. R.: Source Book of Alternative Technologies for Freshwater Augmentation in Latin America and the Caribbean, Int. J. Water Resour. D., 14, 365–398, https://doi.org/10.1080/07900629849277, 1998.
Elliott, S. D., Blakesley, D., and Hardwick, K.: Restoring Tropical Forests: A Practical Guide, The Royal Botanic Gardens, ISBN 978-1-84246-442-7, 2013.
Ellison, D.: Background Analytical Study 2 Forests and Water Background study prepared for, United nations Forum on Forests, 50, https://www.un.org/esa/forests/wp-content/uploads/2018/04/UNFF13_BkgdStudy_ForestsWater.pdf (last access: 28 November 2024), 2018.
Emanuel, K.: Evidence that hurricanes are getting stronger, P. Natl. Acad. Sci. USA, 117, 13194–13195, https://doi.org/10.1073/pnas.2007742117, 2020.
European Commission: Guide to cost-benefit analysis of investment projects: Economic appraisal tool for cohesion policy 2014–2020, European Union, Luxembourg, https://doi.org/10.2776/97516, 2015.
FAO Food and Agriculture Organization of the United Nations: Ecosystem Services & Biodiversity (ESB) [WWW Document], https://www.fao.org/ecosystem-services-biodiversity/background/cultural-services/en/ (last access: 28 November 2024), 2023.
Feuillette, S., Levrel, H., Boeuf, B., Blanquart, S., Gorin, O., Monaco, G., Penisson, B., and Robichon, S.: The use of cost–benefit analysis in environmental policies: Some issues raised by the Water Framework Directive implementation in France, Environ. Sci. Policy, 57, 79–85, https://doi.org/10.1016/j.envsci.2015.12.002, 2016.
Fisher, B., Turner, K., Zylstra, M., Brouwer, R., de Groot, R., Farber, S., Ferraro, P., Green, R., Hadley, D., Harlow, J., Jefferiss, P., Kirkby, C., Morling, P., Mowatt, S., Naidoo, R., Paavola, J., Strassburg, B., Yu, D., and Balmford, A.: Ecosystem services and economic theory: Integration for policy-relevant research, Ecol. Appl., 18, 2050–2067, 2008.
Gale, I.: Strategies for Managed Aquifer Recharge (MAR) in semi-arid areas, UNESCO's Internationa Hydrological Programme (IHP), 1–33, United Nations Educational, Scientific and Cultural Organization (UNESCO), 2005.
Garfí, M., Cadena, E., Sanchez-Ramos, D., and Ferrer, I.: Life cycle assessment of drinking water: Comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles, J. Clean. Prod., 137, 997–1003, https://doi.org/10.1016/j.jclepro.2016.07.218, 2016.
GBUC: Grand Bahama Utility Company announces new capital investment amidst significant progress towards island-wide potability, https://grandbahamautility.com/news/press-releases/grand-bahama-utility-company-announces-new-capital-investment-amidst-significant-progress-towardsisland-wide-potability/ (last access: 21 December 2022), 2020.
GBUC: $5 million Reverse Osmosis System for Grand Bahama completed by GBUC: https://grandbahamautility.com/news/press-releases/grand-bahama-utility-company-announces-new-capital-investment-amidst-significant-progress-towardsisland-wide-potability/ (last access: 28 November 2024), 2021.
Ghafourian, M., Stanchev, P., Mousavi, A., and Katsou, E.: Economic assessment of nature-based solutions as enablers of circularity in water systems, Sci. Total Environ., 792, 148267, https://doi.org/10.1016/j.scitotenv.2021.148267, 2021.
Grossmann, M.: Economic value of the nutrient retention function of restored floodplain wetlands in the Elbe River basin, Ecol. Econ., 83, 108–117, https://doi.org/10.1016/j.ecolecon.2012.03.008, 2012.
Hamel, P. and Bryant, B. P.: Uncertainty assessment in ecosystem services analyses: Seven challenges and practical responses, Ecosyst. Serv., 24, 1–15, https://doi.org/10.1016/j.ecoser.2016.12.008, 2017.
Hanley, N.: Environmental Cost–Benefit Analysis, in: Encyclopedia of Energy, Natural Resource, and Environmental Economics, Elsevier, 17–24, https://doi.org/10.1016/B978-0-12-375067-9.00103-0, 2013.
Halytsia, O., Vrachioli, M., Janik, K., Sitek, S., Wojtal, G., Imig, A., Rein, A. and Sauer, J.: Assessing Economic Feasibility of Managed Aquifer Recharge Schemes: Evidence from Cost-benefit Analysis in Poland, Water Resour. Manag., 36, 5241–5258, https://doi.org/10.1007/s11269-022-03303-0, 2022.
Hejazian, M., Gurdak, J. J., Swarzenski, P., Odigie, K. O., and Storlazzi, C. D.: Land-use change and managed aquifer recharge effects on the hydrogeochemistry of two contrasting atoll island aquifers, Roi-Namur Island, Republic of the Marshall Islands, Appl. Geochem., 80, 58–71, https://doi.org/10.1016/j.apgeochem.2017.03.006, 2017.
ICF Consulting and BEST Bahamas Environmental Science and Technology Commission: Integrating Management of Watersheds and Coastal Areas in Small Island Developing States of the Caribbean: The Bahamas national report, 66 pp., ICF Consulting and BEST Bahamas Environmental Science and Technology Commission, 2001.
Imig, A., Szabó, Z., Halytsia, O., Vrachioli, M., Kleinert, V. and Rein, A: A review on risk assessment in managed aquifer recharge, Integr. Environ. Asses., 18, 1513–1529, https://doi.org/10.1002/ieam.4584, 2022.
Imig, A., Perosa, F., Hotta, C. I., Klausner, S., Welsh, K., and Rein, A.: Data related to the article: Technical assessment combined with extended cost-benefit analysis for the restoration of groundwater and forest ecosystem services – An application for Grand Bahama, https://doi.org/10.14459/2024mp1755541, 2024.
IPCC: IPCC Guidelines for National Greenhouse Gas Inventories: Volume 4: Agriculture, Forestry and Other Land Use, Eggleston, ISBN 4-88788-032-4, 2006.
IPCC: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, IPCC, Switzerland, ISBN 978-92-9169-139-5, 2014.
Little, B. G., Buckley, D. K., Cant, R., Henry, P. W. T., Jefferiss, A., Mather, J. D., Stark, J., and Young, R. N.: Land resources of the Bahamas: a summary, Tolworth Tower, Surbition, Surrey, 1–133, 1977.
Logar, I., Brouwer, R., and Paillex, A.: Do the societal benefits of river restoration outweigh their costs? A cost-benefit analysis, J. Environ. Manage., 232, 1075–1085, https://doi.org/10.1016/j.jenvman.2018.11.098, 2019.
Lupp, G., Zingraff-Hamed, A., Huang, J. J., Oen, A., and Pauleit, S.: Living labs – a concept for co-designing nature-base solutions, Sustainability (Switzerland), 13, 1–22, https://doi.org/10.3390/su13010188, 2021.
Maliva, R. G: Economics of managed aquifer recharge, Water, 6, 1257–1279, https://doi.org/10.3390/w6051257, 2014.
Martínez-Paz, J., Pellicer-Martínez, F., and Colino, J.: A probabilistic approach for the socioeconomic assessment of urban river rehabilitation projects, Land use policy, 36, 468–477, https://doi.org/10.1016/j.landusepol.2013.09.023, 2014.
MEA Millennium Ecosystem Assessment: Ecosystems and human well-being: Synthesis; a report of the Millennium Ecosystem Assessment, Island Press, Washington, DC, 2005.
Morgan, L. K. and Werner, A. D.: Seawater intrusion vulnerability indicators for freshwater lenses in strip islands, J. Hydrol., 508, 322–327, https://doi.org/10.1016/j.jhydrol.2013.11.002, 2014.
Nautiyal, H. and Goel, V.: Sustainability assessment: Metrics and methods, in: Methods in Sustainability Science Assessment, Prioritization, Improvement, Design and Optimization, edited by: Ren, J., Elsevier, 27–46, https://doi.org/10.1016/B978-0-12-823987-2.00017-9, 2021.
Network Nature: Deliverable 3.5. Report on practical, research and innovation needs WP3 Task 3.3, 17 pp., Network Nature, https://networknature.eu/sites/default/files/uploads/networknature-d35report-practical-research-and-innovation-needs.pdf (last access: 28 November 2024), 2022.
NRMMC-EPHC-AHMC: Australia Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1) Natural Resource Management Ministerial Council; Environment Protection and Heritage Council, Australian Health Ninisters' Conference,415, 2009a.
NRMMC-EPHC-AHMC: Australian Guidelines for Water Recycling – Managed Aquifer Recharge, J. Environ. Manage., 27, 79–88, 2009b.
Peh, K. S. H., Balmford, A. P., Bradbury, R. B., Brown, C., Butchart, S. H. M., Hughes, F. M. R., MacDonald, M. A., Stattersfield, A. J., Thomas, D. H. L., and Trevelyan, R. J.: Toolkit for Ecosystem Service Site-based Assessment (TESSA), https://www.birdlife.org/tessa-tools/ (last access: 28 November 2024), 2017.
Perosa, F., Gelhaus, M., Zwirglmaier, V., Arias-Rodriguez, L. F., Zingraff-Hamed, A., Cyffka, B., and Disse, M.: Integrated Valuation of Nature-Based Solutions Using TESSA: Three Floodplain Restoration Studies in the Danube Catchment, Sustainability, 13, 1482, https://doi.org/10.3390/su13031482, 2021.
Perosa, F., Seitz, L. F., Zingraff-Hamed, A., and Disse, M.: Flood risk management along German rivers – A review of multi-criteria analysis methods and decision-support systems, Environ. Sci. Policy, 135, 191–206, https://doi.org/10.1016/j.envsci.2022.05.004, 2022.
Perosa, F.: Decision-Making Integrating Ecosystem Services for Floodplain Management in the Danube River Basin, Dissertation, https://mediatum.ub.tum.de/1686948 (last access: 28 November 2024), 2023.
Piyathilake, I. D. U. H., Udayakumara, E. P. N., Ranaweera, L. V, and Gunatilake, S. K.: Modeling predictive assessment of carbon storage using InVEST model in Uva province, Sri Lanka, Model. Earth Syst. Environ., 8, 2213–2223, https://doi.org/10.1007/s40808-021-01207-3, 2022.
QGIS.org: QGIS Geographic Information SystemQGIS Association, http://www.qgis.org (last access: 13 December 2024), 2024.
Raicy, M. C., Renganayaki, S. P., Brindha, K., and Elango, L.: Mitigation of seawater intrusion by managed aquifer recharge, Training course material on “Managed Aquifer Recharge: Methods, Hydrogeological requirements, Post and Pre-treatment Systems”, Anna University, Chennai, India, 11 and 12 December 2012, 70–81, 2012.
Ruangpan, L., Vojinovic, Z., Di Sabatino, S., Leo, L. S., Capobianco, V., Oen, A. M. P., McClain, M. E., and Lopez-Gunn, E.: Nature-based solutions for hydro-meteorological risk reduction: a state-of-the-art review of the research area, Nat. Hazards Earth Syst. Sci., 20, 243–270, https://doi.org/10.5194/nhess-20-243-2020, 2020.
Rupérez-Moreno, C., Pérez-Sánchez, J., Senent-Aparicio, J., Flores-Asenjo, P., and Paz-Aparicio, C.: Cost-Benefit Analysis of the Managed Aquifer Recharge System for Irrigation under Climate Change Conditions in Southern Spain, Water, 9, 343, https://doi.org/10.3390/w9050343, 2017.
Ruesch, A. and Gibbs, H. K.: Global ecofloristic zones mapped by the United Nations Food and Agricultural Organization, https://databasin.org/datasets/dc4f6efd1fa84ea99df61ae9c5b3b763/ (last access: 28 November 2024), 2008.
Saarikoski, H., Mustajoki, J., Barton, D. N., Geneletti, D., Langemeyer, J., Gomez-Baggethun, E., Marttunen, M., Antunes, P., Keune, H., and Santos, R.: Multi-Criteria Decision Analysis and Cost-Benefit Analysis: Comparing alternative frameworks for integrated valuation of ecosystem services, Ecosyst. Serv., 22, 238–249, https://doi.org/10.1016/j.ecoser.2016.10.014, 2016.
Sallwey, J., Bonilla Valverde, J. P., Vásquez López, F., Junghanns, R., and Stefan, C.: Suitability maps for managed aquifer recharge: A review of multi-criteria decision analysis studies, Environ. Rev., 27, 138–150, https://doi.org/10.1139/er-2018-0069, 2019.
NCP Natural Capital Project: InVEST 3.10.2 Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences, https://naturalcapitalproject.stanford.edu/software/invest (last access: 13 December 2024), 2024.
SWA and WES, Smart Water Analytics LLC and Water & Earth Science Inc: Fast-Track Assessment of Damages by Hurricane Dorian on the Potable Water Sources and Infrastructure of Grand Bahama Island Technical Memorandum 1 Water Quality and Hydrogeology, 42 pp., 2019.
Soža, M. and Patekar, M.: DEEPWATER-CE WORKPACKAGE T3: Pilot feasibility study for MAR schemes with integrated environmnetal approach in karst geological conditions in semiarid karst region (Croatia), DEEPWATER-CE, https://programme2014-20.interreg-central.eu/Content.Node/DEEPWATER-CE.html (last access: 24 November 2024), 2022.
Sudmeier-Rieux, K., Nehren, U., Sandholz, S., and Doswald, N.: Disasters and Ecosystems: Resilience in a Changing Climate Source Book, Geneva: UNEP and Cologne: TH Köln – University of Applied Sciences, 1–216, https://doi.org/10.5281/zenodo.3493377, 2019.
Sudmeier-Rieux, K., Arce-Mojica, T., Boehmer, H. J., Doswald, N., Emerton, L., Friess, D. A., Galvin, S., Hagenlocher, M., James, H., Laban, P., Lacambra, C., Lange, W., McAdoo, B. G., Moos, C., Mysiak, J., Narvaez, L., Nehren, U., Peduzzi, P., Renaud, F. G., Sandholz, S., Schreyers, L., Sebesvari, Z., Tom, T., Triyanti, A., van Eijk, P., van Staveren, M., Vicarelli, M., and Walz, Y.: Scientific evidence for ecosystem-based disaster risk reduction, Nat. Sustain., 4, 803–810, https://doi.org/10.1038/s41893-021-00732-4, 2021.
Swierc, J., Page, D., and Leeuwen, J. Van: Preliminary Hazard Analysis and Critical Control Points Plan (HACCP) – Salisbury Stormwater to Drinking Water Aquifer Storage Transfer and Recovery (ASTR) Project of Montana, Water, 68 pp., 2005.
Terry, J. P. and Falkland, A. C.: Responses of atoll freshwater lenses to storm-surge overwash in the Northern Cook Islands, Hydrogeol. J., 18, 749–759, https://doi.org/10.1007/s10040-009-0544-x, 2010.
Thomas, A., Baptiste, A., Martyr-Koller, R., Pringle, P., and Rhiney, K.: Climate Change and Small Island Developing States, Annu. Rev. Environ. Resour., 45, 1–27, https://doi.org/10.1146/annurev-environ-012320-083355, 2020.
UNEP United Nations Environment Programme: Progress on Integrated Water Resources Management. Tracking SDG 6 series: global indicator 6.5.1 updates and acceleration needs, ISBN 978-92-807-3878-0, 2021.
United Nations Economic Commission for Latin America and the Caribbean: Assessment of the effects and impacts of hurricane Dorian in the Bahamas, https://doi.org/10.18235/0002582, 2021.
USACE: Water Resources Assessment of the Bahamas, Water Resources Assessment of the Bahamas, 1–114, 2004.
van Oosterzee, P., Liu, H., and Preece, N. D.: Cost benefits of forest restoration in a tropical grazing landscape: Thiaki rainforest restoration project, Global Environ. Chang., 63, 102105, https://doi.org/10.1016/j.gloenvcha.2020.102105, 2020.
Vecchi, G. A., Landsea, C., Zhang, W., Villarini, G., and Knutson, T.: Changes in Atlantic major hurricane frequency since the late-19th century, Nat. Commun., 12, 1–9, https://doi.org/10.1038/s41467-021-24268-5, 2021.
Vining, A. and Weimer, D. L.: An assessment of important issues concerning theapplication of benefit-cost analysis to social policy, Journal of Benefit-Cost Analysis, 1, 1–40. https://doi.org/10.2202/2152-2812.1013, 2010.
Villa, F., Bagstad, K. J., Voigt, B., Johnson, G. W., Portela, R., Honzák, M., and Batker, D.: A methodology for adaptable and robust ecosystem services assessment, PloS One, 9, e91001, https://doi.org/10.1371/journal.pone.0091001, 2014.
Vojinovic, Z., Keerakamolchai, W., Weesakul, S., Pudar, R. S., Medina, N., and Alves, A.: Combining ecosystem services with cost-benefit analysis for selection of green and grey infrastructure for flood protection in a cultural setting, Environments – MDPI, 4, 1–16, https://doi.org/10.3390/environments4010003, 2017.
Vollmer, D., Burkhard, K., Adem Esmail, B., Guerrero, P., and Nagabhatla, N.: Incorporating ecosystem services into water resources management-tools, policies, promisingpathways, Environ. Manage., 69, 627–635, https://doi.org/10.1007/s00267-022-01640-9, 2022.
Wang, W., Mu, J. E., and Ziolkowska, J. R.: Perceived Economic Value of Ecosystem Services in the US Rio Grande Basin, Sustainability, 13, 13798, https://doi.org/10.3390/su132413798, 2021.
Wegner, G. and Pascual, U.: Cost-benefit analysis in the context of ecosystem services for human well-being: A multidisciplinary critique, Global Environ. Change, 21, 492–504, https://doi.org/10.1016/j.gloenvcha.2010.12.008, 2011.
Welsh, K., Bowen-O'Connor, C., Stephens, M., Dokou, Z., Imig, A., Mackey, T., Moxey, A., Nikolopoulos, E., Turner, A., Williams, A., Al Baghdadi, L., Bowleg, J., Chaves, H. M. L., Davis, A., Guberman, G., Hanek, D., Klausner, S., Medlev, D., Mazzoni, N., Miller, I., Williams, L., and Wilchcombe, R.: Potable Water and Terrestrial Resources on Grand Bahama Post-Hurricane Dorian: Opportunities for Climate Resilience, International Journal of Bahamian Studies, 28, 43–66, https://doi.org/10.15362/ijbs.v28i0.467, 2022.
Whitaker, F. F. and Smart, P. L.: Control of Hydraulic Conductivity of Bahamian Limestones, Groundwater, 35, 859–868, https://doi.org/10.1111/j.1745-6584.1997.tb00154.x, 1997a.
Whitaker, F. F. and Smart, P. L.: Hydrogeology of the Bahamian archipelago, in: Geology and Hydrogeology of Carbonate islands, vol. 54, edited by: Vacher, H. L. and Quinn, T., Elsevier B.V., 183–216, https://doi.org/10.1016/S0070-4571(04)80026-8, 1997b.
Whitaker, F. F. and Smart, P. L.: Characterising scale-dependence of hydraulic conductivity in carbonates: Evidence from the Bahamas, J. Geochem. Explor., 69–70, 133–137, https://doi.org/10.1016/S0375-6742(00)00016-9, 2000.
Zegarra, M. A., Schmid, J. P., Palomino, L., and Seminario, B.: Impact of Hurricane Dorian in The Bahamas: A View from the Sky, Washington D.C., 1–13, https://doi.org/10.18235/0002163, 2020.
Short summary
In 2019, Hurricane Dorian led to salinization of groundwater resources on the island of Grand Bahama. We assessed the feasibility of managed aquifer recharge (MAR) for restoring fresh groundwater. Furthermore, we applied a financial and an extended cost–benefit analysis for assessing ecosystem services supported by MAR and reforestation. As a first estimate, MAR could only provide a small contribution to the water demand. Reforestation measures were assessed to be financially profitable.
In 2019, Hurricane Dorian led to salinization of groundwater resources on the island of Grand...