Articles | Volume 28, issue 24
https://doi.org/10.5194/hess-28-5419-2024
https://doi.org/10.5194/hess-28-5419-2024
Research article
 | 
17 Dec 2024
Research article |  | 17 Dec 2024

Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model

Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-1548', Anonymous Referee #1, 29 Aug 2023
    • AC1: 'Reply on RC1', Eshrat Fatima, 02 Nov 2023
  • RC2: 'Comment on egusphere-2023-1548', Anonymous Referee #2, 12 Sep 2023
    • AC2: 'Reply on RC2', Eshrat Fatima, 02 Nov 2023
  • CC1: 'Comment on egusphere-2023-1548', Markus Köhli, 13 Sep 2023
    • AC3: 'Reply on CC1', Eshrat Fatima, 02 Nov 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (13 Dec 2023) by Nunzio Romano
AR by Eshrat Fatima on behalf of the Authors (24 Jan 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (30 Jan 2024) by Nunzio Romano
RR by Anonymous Referee #3 (26 Feb 2024)
RR by Anonymous Referee #2 (01 Apr 2024)
ED: Reconsider after major revisions (further review by editor and referees) (10 Apr 2024) by Nunzio Romano
AR by Eshrat Fatima on behalf of the Authors (26 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (27 Sep 2024) by Nunzio Romano
AR by Eshrat Fatima on behalf of the Authors (02 Oct 2024)  Manuscript 
Download
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.