Articles | Volume 28, issue 24
https://doi.org/10.5194/hess-28-5353-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-5353-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
Catalan Institute for Water Research (ICRA – CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
Xavier Garcia
Catalan Institute for Water Research (ICRA – CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
Joan Saló-Grau
Catalan Institute for Water Research (ICRA – CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
Rafael Marcé
Catalan Institute for Water Research (ICRA – CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
current address: Integrative Freshwater Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
Antoni Munné
Catalan Water Agency (ACA), Carrer Provença 260, 08008 Barcelona, Spain
Vicenç Acuña
Catalan Institute for Water Research (ICRA – CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
Related authors
No articles found.
Daniel Mercado-Bettín, Ricardo Paíz, Valerie McCarthy, Eleanor Jennings, Elvira de Eyto, Angeles M. Gallegos, Mary Dillanee, Juan C. Garcia, José J. Rodríguez, and Rafael Marcé
EGUsphere, https://doi.org/10.5194/egusphere-2025-4049, https://doi.org/10.5194/egusphere-2025-4049, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Understanding what shapes lake water quality is vital in a changing world. We studied dissolved organic matter, a key part of water quality in lakes and the carbon cycle, to analyse its environmental drivers and make predictions, by using machine learning. Tested in lakes in Ireland and Spain, it showed predictive potential, even when relying only on global climate and soil data. This helps explain how land and climate conditions influence freshwater resources. It can be reproduced worldwide.
Victoria Frutos Aragón, Sandra Brucet, Rafael Marcé, Tuba Bucak, Thomas Alexander Davidson, Louisa-Marie von Plüskow, Pieter Lemmens, and Carolina Trochine
EGUsphere, https://doi.org/10.5194/egusphere-2025-3725, https://doi.org/10.5194/egusphere-2025-3725, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Pond sediments emit substantial CO2 during dry phases, often overlooked despite climate change increasing dry periods. We measured emissions in 30 ponds across Mediterranean and Temperate regions, finding higher emissions in summer and in ponds with longer hydroperiods, especially in Mediterranean climates. Emissions peaked at moderate sediment water content and warm temperatures, highlighting the need to include dry-phase emissions in carbon flux assessments.
Ana I. Ayala, José L. Hinostroza, Daniel Mercado-Bettín, Rafael Marcé, Simon N. Gosling, Donald C. Pierson, and Sebastian Sobek
EGUsphere, https://doi.org/10.5194/egusphere-2025-3126, https://doi.org/10.5194/egusphere-2025-3126, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Climate change affect lakes by including not just the lakes themselves but also the land areas that drain into them. These surrounding areas influence how much water and nutrients flow into lakes which in turn impact water quality. Here, water fluxes from land, derived from a global hydrological model where water fluxes are modelled at the grid scale, were used to estimate streamflow inputs to lakes from their catchments. Using data from 71 Swedish lakes, we showed that our method works well.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Cited articles
Abbaspour, K., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., and Kløve, B.: A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model, J. Hydrol., 524, 733–752, https://doi.org/10.1016/J.JHYDROL.2015.03.027, 2015.
Abbaspour, K., Vaghefi, S. A., and Srinivasan, R.: A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference, Water, 10, 6, https://doi.org/10.3390/W10010006, 2018.
Alcaraz-Hernández, J. D., Soler, J., Mezger, G., Corrochano Codorníu, A., Calleja Arriero, B., and Magdaleno, F.: Hydrological classification of non-perennial Mediterranean rivers and streams: A new insight for their management within the water framework directive, River Res. Appl., 39, 675–691, https://doi.org/10.1002/RRA.4095, 2023.
Ali, E., Cramer, W., Carnicer, J., Georgopoulou, E., Hilmi, N. J. M., Le Cozannet, G., and Lionello, P.: Cross-Chapter Paper 4: Mediterranean Region, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mitenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2233–2272, https://doi.org/10.1017/9781009325844.021, 2022.
Arnold, J. G., Bieger, K., White, M. J., Srinivasan, R., Dunbar, J. A., and Allen, P. M.: Use of Decision Tables to Simulate Management in SWAT+, Water, 10, 713, https://doi.org/10.3390/W10060713, 2018.
Bailey, R. T., Bieger, K., Arnold, J. G., and Bosch, D. D.: A New Physically-Based Spatially-Distributed Groundwater Flow Module for SWAT+, Hydrology, 7, 75, https://doi.org/10.3390/HYDROLOGY7040075, 2020.
Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., and Andreassian, V.: Characterising performance of environmental models, Environ. Modell. Softw., 40, 1–20, https://doi.org/10.1016/J.ENVSOFT.2012.09.011, 2013.
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., and Srinivasan, R.: Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool, J. Am. Water Resour. As., 53, 115–130, https://doi.org/10.1111/1752-1688.12482, 2017.
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., and Allen, P. M.: Representing the Connectivity of Upland Areas to Floodplains and Streams in SWAT+, J. Am. Water Resour. As., 55, 578–590, https://doi.org/10.1111/1752-1688.12728, 2019.
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.: Changing climate both increases and decreases European river floods, Nature, 573, 108–111, https://doi.org/10.1038/S41586-019-1495-6, 2019.
Boithias, L., Sauvage, S., Lenica, A., Roux, H., Abbaspour, K. C., Larnier, K., Dartus, D., and Sánchez-Pérez, J. M.: Simulating Flash Floods at Hourly Time-Step Using the SWAT Model, Water, 9, 929, https://doi.org/10.3390/W9120929, 2017.
Bots, P. W. G., Bijlsma, R., Von Korff, Y., Van Der Fluit, N., and Wolters, H.: Supporting the Constructive Use of Existing Hydrological Models in Participatory Settings: a Set of “Rules of the Game,” Ecol. Soc., 16, 16, https://doi.org/10.5751/ES-03643-160216, 2011.
Bouadila, A., Tzoraki, O., and Benaabidate, L.: Hydrological modeling of three rivers under Mediterranean climate in Chile, Greece, and Morocco: study of high flow trends by indicator calculation, Arab. J. Geosci., 13, 1–17, https://doi.org/10.1007/s12517-020-06013-2, 2020.
Bremberg, N., Cramer, W., Dessì, A., Philippe, D., Fusco, F., Guiot, J., Pariente-David, S., and Raineri, L.: Climate Change and Security in the Mediterranean: Exploring the Nexus, Unpacking International Policy Responses, edited by: Dessì, A. and Fusco, F., Nuova Cultura, Rome, 146 pp., ISBN 9788833654584, 2022.
Brouziyne, Y., De Girolamo, A. M., Aboubdillah, A., Benaabidate, L., Bouchaou, L., and Chehbouni, A.: Modeling alterations in flow regimes under changing climate in a Mediterranean watershed: An analysis of ecologically-relevant hydrological indicators, Ecol. Inform., 61, 101219, https://doi.org/10.1016/j.ecoinf.2021.101219, 2021.
Buendia, C., Batalla, R. J., Sabater, S., Palau, A., and Marcé, R.: Runoff Trends Driven by Climate and Afforestation in a Pyrenean Basin, Land Degrad. Dev., 27, 823–838, https://doi.org/10.1002/LDR.2384, 2016.
Caretta, M. A., Mukherji, A., Arfanuzzaman, M., Betts, R. A., Gelfan, A., Hirabayashi, Y., Lissner, T. K., Liu, J., Lopez Gunn, E., Morgan, R., Mwanga, S., and Supratid, S.: Water, in: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mitenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 551–712, https://doi.org/10.1017/9781009325844.006, 2022.
Castellanos-Osorio, G., López-Ballesteros, A., Pérez-Sánchez, J., and Senent-Aparicio, J.: Disaggregated monthly SWAT+ model versus daily SWAT+ model for estimating environmental flows in Peninsular Spain, J. Hydrol., 623, 129837, https://doi.org/10.1016/j.jhydrol.2023.129837, 2023.
Catalan Water Agency (ACA): Pla de gestió del districte de conca fluvial de Catalunya 2022–2027, https://info.aca.gencat.cat/ca/aca/informacio/geco/plans-programes/PDG/CA/01-00-Pla-de-gestio-2022-27.pdf (last access: 8 December 2024), 2021.
Cervera, T., Pino, J., Marull, J., Padró, R., and Tello, E.: Understanding the long-term dynamics of forest transition: From deforestation to afforestation in a Mediterranean landscape (Catalonia, 1868–2005), Land Use Policy, 80, 318–331, https://doi.org/10.1016/J.LANDUSEPOL.2016.10.006, 2019.
Chawanda, C. J., Arnold, J., Thiery, W., and van Griensven, A.: Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+, Climatic Change, 163, 1307–1327, https://doi.org/10.1007/s10584-020-02924-x, 2020.
Clavera-Gispert, R., Quintana-Seguí, P., Palazón, L., Zabaleta, A., Cenobio, O., Barella-Ortiz, A., and Beguería, S.: Streamflow trends of the Pyrenees using observations and multi-model approach (1980–2013), J. Hydrol. Reg. Stud., 46, 101322, https://doi.org/10.1016/J.EJRH.2023.101322, 2023.
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M. N., and Xoplaki, E.: Climate change and interconnected risks to sustainable development in the Mediterranean, Nat. Clim. Change, 8, 972–980, https://doi.org/10.1038/s41558-018-0299-2, 2018.
Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G., and Schaibly, J. H.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory, J. Chem. Phys., 59, 3873–3878, https://doi.org/10.1063/1.1680571, 1973.
Daggupati, P., Pai, N., Ale, S., Douglas-Mankin, K. R., Zeckoski, R. W., Jeong, J., Parajuli, P. B., Saraswat, D., and Youssef, M. A.: A Recommended Calibration and Validation Strategy for Hydrologic and Water Quality Models, T. ASABE, 58, 1705–1719, https://doi.org/10.13031/TRANS.58.10712, 2015.
Dai, A., Zhao, T., and Chen, J.: Climate Change and Drought: a Precipitation and Evaporation Perspective, Curr. Clim. Chang. Reports, 4, 301–312, https://doi.org/10.1007/S40641-018-0101-6, 2018.
Dakhlaoui, H., Ruelland, D., and Tramblay, Y.: A bootstrap-based differential split-sample test to assess the transferability of conceptual rainfall-runoff models under past and future climate variability, J. Hydrol., 575, 470–486, https://doi.org/10.1016/J.JHYDROL.2019.05.056, 2019.
De Girolamo, A. M., Barca, E., Leone, M., and Lo Porto, A.: Impact of long-term climate change on flow regime in a Mediterranean basin, J. Hydrol. Reg. Stud., 41, 101061, https://doi.org/10.1016/J.EJRH.2022.101061, 2022.
Dennedy-Frank, P. J. and Gorelick, S. M.: Insights on expected streamflow response to land-cover restoration, J. Hydrol., 589, 125121, https://doi.org/10.1016/j.jhydrol.2020.125121, 2020.
Döll, P. and Schmied, H. M.: How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis, Environ. Res. Lett., 7, 014037, https://doi.org/10.1088/1748-9326/7/1/014037, 2012.
EEA – European Environment Agency: Corine Land Cover (CLC) 2000, Version 2020_20u1, https://land.copernicus.eu/en/products/corine-land-cover/clc-2000 (last access: 13 December 2023), 2000.
EEA – European Environment Agency: Corine Land Cover (CLC) 2018, Version 2020_20u1, https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (last access: 13 December 2023), 2018.
Eekhout, J. P. C., Boix-Fayos, C., Pérez-Cutillas, P., and De Vente, J.: The impact of reservoir construction and changes in land use and climate on ecosystem services in a large Mediterranean catchment, J. Hydrol., 590, 125208, https://doi.org/10.1016/j.jhydrol.2020.125208, 2020.
Estrada, L.: SWAT+CRBD source code, Zenodo [code], https://doi.org/10.5281/zenodo.10362245, 2023.
Folton, N., Martin, E., Arnaud, P., L'Hermite, P., and Tolsa, M.: A 50 year analysis of hydrological trends and processes in a Mediterranean catchment, Hydrol. Earth Syst. Sci., 23, 2699–2714, https://doi.org/10.5194/hess-23-2699-2019, 2019.
Frey, S. K., Miller, K., Khader, O., Taylor, A., Morrison, D., Xu, X., Berg, S. J., Hwang, H. T., Sudicky, E. A., and Lapen, D. R.: Evaluating landscape influences on hydrologic behavior with a fully-integrated groundwater – surface water model, J. Hydrol., 602, 126758, https://doi.org/10.1016/J.JHYDROL.2021.126758, 2021.
Gallart, F. and Llorens, P.: Observations on land cover changes and water resources in the headwaters of the Ebro catchment, Iberian Peninsula, Phys. Chem. Earth, 29, 769–773, https://doi.org/10.1016/j.pce.2004.05.004, 2004.
Gallart, F., Delgado, J., Beatson, S. J. V., Posner, H., Llorens, P., and Marcé, R.: Analysing the effect of global change on the historical trends of water resources in the headwaters of the Llobregat and Ter river basins (Catalonia, Spain), Phys. Chem. Earth Parts A/B/C, 36, 655–661, https://doi.org/10.1016/J.PCE.2011.04.009, 2011.
Garcia, X., Estrada, L., Saló, J., and Acuña, V.: Blueing green water from forests as strategy to cope with climate change in water scarce regions: The case of the Catalan river basin District, J. Environ. Manage., 353, 120249, https://doi.org/10.1016/J.JENVMAN.2024.120249, 2024.
Gassman, P. W., Sadeghi, A. M., and Srinivasan, R.: Applications of the SWAT Model Special Section: Overview and Insights, J. Environ. Qual., 43, 1–8, https://doi.org/10.2134/JEQ2013.11.0466, 2014.
Gudmundsson, L., Seneviratne, S. I., and Zhang, X.: Anthropogenic climate change detected in European renewable freshwater resources, Nat. Clim. Change, 7, 813–816, https://doi.org/10.1038/NCLIMATE3416, 2017.
Gudmundsson, L., Leonard, M., Do, H. X., Westra, S., and Seneviratne, S. I.: Observed Trends in Global Indicators of Mean and Extreme Streamflow, Geophys. Res. Lett., 46, 756–766, https://doi.org/10.1029/2018GL079725, 2019.
Gudmundsson, L., Boulange, J., Do, H. X., Gosling, S. N., Grillakis, M. G., Koutroulis, A. G., Leonard, M., Liu, J., Schmied, H. M., Papadimitriou, L., Pokhrel, Y., Seneviratne, S. I., Satoh, Y., Thiery, W., Westra, S., and Zhang, X.: Globally observed trends in mean and extreme river flow attributed to climate change, Science, 371, 1159–1162, https://doi.org/10.1594/PANGAEA.887470, 2021.
Gupta, H. V., Kling, H., Yilmaz, K. K., Martinez, G. F., and Kling, H.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Guse, B., Reusser, D. E., and Fohrer, N.: How to improve the representation of hydrological processes in SWAT for a lowland catchment – temporal analysis of parameter sensitivity and model performance, Hydrol. Process., 28, 2651–2670, https://doi.org/10.1002/HYP.9777, 2014.
Haro-Monteagudo, D., Palazón, L., and Beguería, S.: Long-term sustainability of large water resource systems under climate change: A cascade modeling approach, J. Hydrol., 582, 124546, https://doi.org/10.1016/j.jhydrol.2020.124546, 2020.
Højberg, A. L., Troldborg, L., Stisen, S., Christensen, B. B. S., and Henriksen, H. J.: Stakeholder driven update and improvement of a national water resources model, Environ. Modell. Softw., 40, 202–213, https://doi.org/10.1016/J.ENVSOFT.2012.09.010, 2013.
ICGC – Cartographic and Geological Institute of Catalonia: Land Cover Map of Catalonia, https://www.icgc.cat/en/Sustainable-territory/Land-cover (last access: 9 December 2024), 2018.
Khorchani, M., Nadal-Romero, E., Lasanta, T., and Tague, C.: Natural revegetation and afforestation in abandoned cropland areas: Hydrological trends and changes in Mediterranean mountains, Hydrol. Process., 35, e14191, https://doi.org/10.1002/HYP.14191, 2021.
Lana, X., Casas-Castillo, M. C., Rodríguez-Solà, R., Serra, C., Martínez, M. D., and Kirchner, R.: Rainfall regime trends at annual and monthly scales in Catalonia (NE Spain) and indications of CO2 emissions effects, Theor. Appl. Climatol., 146, 981–996, https://doi.org/10.1007/S00704-021-03773-Z, 2021.
Llanos-Paez, O., Estrada, L., Pastén-Zapata, E., Boithias, L., Jorda-Capdevila, D., Sabater, S., and Acuña, V.: Spatial and temporal patterns of flow intermittency in a Mediterranean basin using the SWAT+ model, Hydrolog. Sci. J., 68, 276–289, https://doi.org/10.1080/02626667.2022.2155523, 2023.
López-Ballesteros, A., Nielsen, A., Castellanos-Osorio, G., Trolle, D., and Senent-Aparicio, J.: DSOLMap, a novel high-resolution global digital soil property map for the SWAT+ model: Development and hydrological evaluation, CATENA, 231, 107339, https://doi.org/10.1016/J.CATENA.2023.107339, 2023.
Loucks, D. P. and van Beek, E.: Water Resource Systems Modeling: Its Role in Planning and Management, in: Water Resource Systems Planning and Management, Springer, Cham, 51–72, https://doi.org/10.1007/978-3-319-44234-1_2, 2017.
Lutz, S. R., Mallucci, S., Diamantini, E., Majone, B., Bellin, A., and Merz, R.: Hydroclimatic and water quality trends across three Mediterranean river basins, Sci. Total Environ., 571, 1392–1406, https://doi.org/10.1016/J.SCITOTENV.2016.07.102, 2016.
Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., and Samaniego, L.: Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C, Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, 2018.
Masseroni, D., Camici, S., Cislaghi, A., Vacchiano, G., Massari, C., and Brocca, L.: The 63 year changes in annual streamflow volumes across Europe with a focus on the Mediterranean basin, Hydrol. Earth Syst. Sci., 25, 5589–5601, https://doi.org/10.5194/hess-25-5589-2021, 2021.
MedECC: Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. First Mediterranean Assessment Report, edited by: Cramer, W., Guiot, J., and Marini, K., Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, 632 pp., https://doi.org/10.5281/ZENODO.7224821, 2020.
Meteocat – Servei Metereológic de Catalunya: Butlletí Anual d'Indicadors Climátics 2022, https://www.meteo.cat/wpweb/climatologia/butlletins-i-episodis-meteorologics/butlleti-anual/#anualanterior (last access: 8 December 2024), 2023.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Musa, S. M. S. S., Noorani, M. S. M., Razak, F. A., Ismail, M., and Alias, M. A.: Streamflow Data Analysis for Flood Detection using Persistent Homology, Sains Malays., 51, 2211–2222, https://doi.org/10.17576/jsm-2022-5107-22, 2022.
Myers, D. T., Ficklin, D. L., Robeson, S. M., Neupane, R. P., Botero-Acosta, A., and Avellaneda, P. M.: Choosing an arbitrary calibration period for hydrologic models: How much does it influence water balance simulations?, Hydrol. Process., 35, e14045, https://doi.org/10.1002/HYP.14045, 2021.
Odusanya, A. E., Schulz, K., Biao, E. I., Degan, B. A. S., and Mehdi-Schulz, B.: Evaluating the performance of streamflow simulated by an eco-hydrological model calibrated and validated with global land surface actual evapotranspiration from remote sensing at a catchment scale in West Africa, J. Hydrol. Reg. Stud., 37, 100893, https://doi.org/10.1016/J.EJRH.2021.100893, 2021.
Pandey, V. P., Dhaubanjar, S., Bharati, L., and Thapa, B. R.: Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: Hydrological model development using multi-site calibration approach (Part-A), J. Hydrol. Reg. Stud., 29, 100690, https://doi.org/10.1016/J.EJRH.2020.100690, 2020.
Peña-Angulo, D., Vicente-Serrano, S. M., Domínguez-Castro, F., Murphy, C., Reig, F., Tramblay, Y., Trigo, R. M., Luna, M. Y., Turco, M., Noguera, I., Aznárez-Balta, M., García-Herrera, R., Tomas-Burguera, M., and El Kenawy, A.: Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing, Environ. Res. Lett., 15, 094070, https://doi.org/10.1088/1748-9326/AB9C4F, 2020.
Pezij, M., Augustijn, D. C. M., Hendriks, D. M. D., and Hulscher, S. J. M. H.: The role of evidence-based information in regional operational water management in the Netherlands, Environ. Sci. Policy, 93, 75–82, https://doi.org/10.1016/J.ENVSCI.2018.12.025, 2019.
Piniewski, M. and Okruszko, T.: Multi-Site Calibration and Validation of the Hydrological Component of SWAT in a Large Lowland Catchment, in: Modelling of Hydrological Processes in the Narew Catchment, edited by: Świątek, D. and Okruszko, T., Springer, Berlin, Heidelberg, 15–41, https://doi.org/10.1007/978-3-642-19059-9_2, 2011.
Pletterbauer, F., Melcher, A., and Graf, W.: Climate Change Impacts in Riverine Ecosystems, in: Riverine Ecosystem Management, edited by: Schmutz, S. and Sendzimir, J., Springer, Cham, 203–223, https://doi.org/10.1007/978-3-319-73250-3_11, 2018.
Pulighe, G., Lupia, F., Chen, H., and Yin, H.: Modeling Climate Change Impacts on Water Balance of a Mediterranean Watershed Using SWAT+, Hydrology, 8, 157, https://doi.org/10.3390/hydrology8040157, 2021.
Reusser, D.: Fast: Implementation of the Fourier Amplitude Sensitivity Test (FAST), https://cran.r-project.org/package=fast (last access: 9 December 2024), 2015.
Richter, B. D., Baumgartner, J. V., Powell, J., Braun, D. P., and Braunt, D. P.: A Method for Assessing Hydrologic Alteration within Ecosystems, Conserv. Biol., 10, 1163–1174, https://doi.org/10.1046/j.1523-1739.1996.10041163.x, 1996.
Samimi, M., Mirchi, A., Moriasi, D., Ahn, S., Alian, S., Taghvaeian, S., and Sheng, Z.: Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: Applications, challenges, and solution strategies, J. Hydrol., 590, 125418, https://doi.org/10.1016/j.jhydrol.2020.125418, 2020.
Schürz, C.: SWATplusR: Running SWAT2012 and SWAT+ Projects in R, R Package Version 0.6, Zenodo [code], https://doi.org/10.5281/zenodo.6517027, 2022.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau, J. Am. Stat. Assoc., 63, 1379, https://doi.org/10.2307/2285891, 1968.
Senent-Aparicio, J., Jimeno-Sáez, P., López-Ballesteros, A., Giménez, J. G., Pérez-Sánchez, J., Cecilia, J. M., and Srinivasan, R.: Impacts of swat weather generator statistics from high-resolution datasets on monthly streamflow simulation over Peninsular Spain, J. Hydrol. Reg. Stud., 35, 100826, https://doi.org/10.1016/J.EJRH.2021.100826, 2021.
Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., and Xu, C.: Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications, J. Hydrol., 523, 739–757, https://doi.org/10.1016/j.jhydrol.2015.02.013, 2015.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will drought events become more frequent and severe in Europe?, Int. J. Climatol., 38, 1718–1736, https://doi.org/10.1002/JOC.5291, 2018.
Stahl, K., Hisdal, H., Hannaford, J., Tallaksen, L. M., van Lanen, H. A. J., Sauquet, E., Demuth, S., Fendekova, M., and Jódar, J.: Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci., 14, 2367–2382, https://doi.org/10.5194/hess-14-2367-2010, 2010.
Stahl, K., Tallaksen, L. M., Hannaford, J., and van Lanen, H. A. J.: Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble, Hydrol. Earth Syst. Sci., 16, 2035–2047, https://doi.org/10.5194/hess-16-2035-2012, 2012.
Swain, S. S., Mishra, A., Sahoo, B., and Chatterjee, C.: Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach, J. Hydrol., 590, 125260, https://doi.org/10.1016/j.jhydrol.2020.125260, 2020.
Tanner, J., Mantel, S., Paxton, B., Slaughter, A., and Hughes, D.: Impacts of climate change on rivers and biodiversity in a water-scarce semi-arid region of the Western Cape, South Africa, Front. Water, 4, 949901, https://doi.org/10.3389/frwa.2022.949901, 2022.
Theil, H.: A Rank-Invariant Method of Linear and Polynomial Regression Analysis, in: Henri Theil's Contributions to Economics and Econometrics, edited by: Raj, B. and Koerts, J., Springer, Dordrecht, 345–381, https://doi.org/10.1007/978-94-011-2546-8_20, 1992.
Tramblay, Y., Rutkowska, A., Sauquet, E., Sefton, C., Laaha, G., Osuch, M., Albuquerque, T., Alves, M. H., Banasik, K., Beaufort, A., Brocca, L., Camici, S., Csabai, Z., Dakhlaoui, H., DeGirolamo, A. M., Dörflinger, G., Gallart, F., Gauster, T., Hanich, L., Kohnová, S., Mediero, L., Plamen, N., Parry, S., Quintana-Seguí, P., Tzoraki, O., and Datry, T.: Trends in flow intermittence for European rivers, Hydrolog. Sci. J., 66, 37–49, https://doi.org/10.1080/02626667.2020.1849708, 2021.
Varlas, G., Papadaki, C., Stefanidis, K., Mentzafou, A., Pechlivanidis, I., Papadopoulos, A., and Dimitriou, E.: Increasing Trends in Discharge Maxima of a Mediterranean River during Early Autumn, Water, 15, 1022, https://doi.org/10.3390/W15061022, 2023.
Vicente-Serrano, S. M., Peña-Angulo, D., Beguería, S., Domínguez-Castro, F., Tomás-Burguera, M., Noguera, I., Gimeno-Sotelo, L., and El Kenawy, A.: Global drought trends and future projections, Philos. T. Roy. Soc. A, 380, 20210285, https://doi.org/10.1098/RSTA.2021.0285, 2022.
Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., and Yao, A.: Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China, Hydrol. Earth Syst. Sci., 16, 4621–4632, https://doi.org/10.5194/hess-16-4621-2012, 2012.
Wi, S., Yang, Y. C. E., Steinschneider, S., Khalil, A., and Brown, C. M.: Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrol. Earth Syst. Sci., 19, 857–876, https://doi.org/10.5194/hess-19-857-2015, 2015.
Yue, S. and Wang, C. Y.: The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series, Water Resour. Manag., 18, 201–218, https://doi.org/10.1023/B:WARM.0000043140.61082.60, 2004.
Zittis, G., Bruggeman, A., and Lelieveld, J.: Revisiting future extreme precipitation trends in the Mediterranean, Weather Clim. Extrem., 34, 100380, https://doi.org/10.1016/j.wace.2021.100380, 2021.
Zribi, M., Brocca, L., Tramblay, Y., and Molle, F.: Water Resources in the Mediterranean Region, Elsevier, Amsterdam, the Netherlands, https://doi.org/10.1016/C2018-0-02971-0, 2020.
Short summary
Hydrological modelling is a powerful tool to support decision-making. We assessed spatio-temporal patterns and trends of streamflow for 2001–2022 with a hydrological model, integrating stakeholder expert knowledge on management operations. The results provide insight into how climate change and anthropogenic pressures affect water resources availability in regions vulnerable to water scarcity, thus raising the need for sustainable management practices and integrated hydrological modelling.
Hydrological modelling is a powerful tool to support decision-making. We assessed...