Articles | Volume 28, issue 22
https://doi.org/10.5194/hess-28-4883-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4883-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Processes and controls of regional floods over eastern China
Yixin Yang
School of Geography and Ocean Science, Nanjing University, Nanjing, China
Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
School of Geography and Ocean Science, Nanjing University, Nanjing, China
Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
Jinghan Zhang
School of Geography and Ocean Science, Nanjing University, Nanjing, China
Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
Qiang Wang
School of Geography and Ocean Science, Nanjing University, Nanjing, China
Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
Related authors
No articles found.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Cited articles
Berens, P.: Circular statistics toolbox (directional statistics), MATLAB Central File Exchange [code], https://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics (last access: 9 April 2022), 2024.
Berens, P.: CircStat: a MATLAB toolbox for circular statistics, J. Stat. Softw., 31, 1–21, http://www.jstatsoft.org/v31/i10 (last access: 25 August 2021), 2009.
Berghuijs, W. R., Allen, S. T., Harrigan, S., and Kirchner, J. W.: Growing spatial scales of synchronous river flooding in Europe, Geophys. Res. Lett., 46, 1423–1428, https://doi.org/10.1029/2018gl081883, 2019.
Blöschl, G.: Flood generation: process patterns from the raindrop to the ocean, Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022, 2022.
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., and Borga, M.: Changing climate shifts timing of European floods, Science, 357, 588–590, https://doi.org/10.1126/science.aan2506, 2017.
Blöschl, G., Hall, J., Viglione, A., Perdigao, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Bohac, M., Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnova, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Sraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Zivkovic, N.: Changing climate both increases and decreases European river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019.
Boyd, M. J.: A storage-routing model relating drainage basin hydrology and geomorphology, Water Resour. Res., 14, 921–928, https://doi.org/10.1029/WR014i005p00921, 1978.
Brakenridge, G.: Global active archive of large flood events. DFO – Flood Observatory, University of Colorado, USA [data set], http://floodobservatory.colorado.edu/Archives (last access: 9 January 2024), 2016.
Brunner, M. I.: Reservoir regulation affects droughts and floods at local and regional scales, Environ. Res. Lett., 16, 124016, https://doi.org/10.1088/1748-9326/ac36f6, 2021.
Brunner, M. I. and Dougherty, E. M.: Varying importance of storm types and antecedent conditions for local and regional floods, Water Resour. Res., 58, e2022WR033249, https://doi.org/10.1029/2022WR033249, 2022.
Brunner, M. I., Furrer, R., and Favre, A.-C.: Modeling the spatial dependence of floods using the Fisher copula, Hydrol. Earth Syst. Sci., 23, 107–124, https://doi.org/10.5194/hess-23-107-2019, 2019.
Brunner, M. I., Papalexiou, S., Clark, M. P., and Gilleland, E.: How probable is widespread flooding in the United States?, Water Resour. Res., 56, e2020WR028096, https://doi.org/10.1029/2020WR028096, 2020a.
Brunner, M. I., Gilleland, E., Wood, A., Swain, D. L., and Clark, M.: Spatial dependence of floods shaped by spatiotemporal variations in meteorological and land-surface processes, Geophys. Res. Lett., 47, e2020GL088000, https://doi.org/10.1029/2020gl088000, 2020b.
Buck, J. L.: The 1931 flood in China: an economic survey by the Department of Agricultural Economics, College of Agriculture and Forestry, the University of Nanking, in cooperation with the National Flood Relief Commission, The University of Nanking, 74 pp., 1932.
Carozza, D. A. and Boudreault, M.: A global flood risk modeling framework built with climate models and machine learning, J. Adv. Model. Earth Sy., 13, e2020MS002221, https://doi.org/10.1029/2020ms002221, 2021.
Chen, X., Leung, L. R., Gao, Y., Liu, Y., and Wigmosta, M.: Sharpening of cold-season storms over the western United States, Nat. Clim. Change, 13, 167–173, https://doi.org/10.1038/s41558-022-01578-0, 2023.
Dai, P. and Nie, J.: Robust expansion of extreme midlatitude storms under global warming, Geophys. Res. Lett., 49, e2022GL099007, https://doi.org/10.1029/2022gl099007, 2022.
Davies, D. L. and Bouldin, D. W.: A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1, 224–227, https://doi.org/10.1109/TPAMI.1979.4766909, 1979.
De Luca, P., Hillier, J. K., Wilby, R. L., Quinn, N. W., and Harrigan, S.: Extreme multi-basin flooding linked with extra-tropical cyclones, Environ. Res. Lett., 12, 114009, https://doi.org/10.1088/1748-9326/aa868e, 2017.
Debeer, D. and Strobl, C.: Conditional permutation importance revisited, BMC Bioinformatics, 21, 307, https://doi.org/10.1186/s12859-020-03622-2, 2020.
Del Rio Amador, L., Boudreault, M., and Carozza, D. A.: Global asymmetries in the influence of ENSO on flood risk based on 1,600 years of hybrid simulations, Geophys. Res. Lett., 50, e2022GL102027, https://doi.org/10.1029/2022gl102027, 2023.
Dottori, F., Salamon, P., Bianchi, A., Alfieri, L., Hirpa, F. A., and Feyen, L.: Development and evaluation of a framework for global flood hazard mapping, Adv. Water Resour., 94, 87–102, https://doi.org/10.1016/j.advwatres.2016.05.002, 2016.
Ester, M., Kriegel, H. P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, United States, 2 August 1996, 226–231, https://dl.acm.org/doi/10.5555/3001460.3001507 (last access: 9 June 2021), 1996.
Everitt, B., Landau, S., Leese, M., and Stahl, D.: Cluster analysis, Wiley Online Library, https://doi.org/10.1002/9780470977811, 2011.
Falter, D., Schröter, K., Dung, N. V., Vorogushyn, S., Kreibich, H., Hundecha, Y., Apel, H., and Merz, B.: Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain, J. Hydrol., 524, 182–193, https://doi.org/10.1016/j.jhydrol.2015.02.021, 2015.
Gahtan, J., Knapp, k. R., Schreck, C. J., Diamond, H. J., Kossin, J. P., and Kruk, M. C.: International best tack archive for climate stewardship (IBTrACS) project, Version 4r01, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/82ty-9e16, 2024.
Gao, R., Song, L., and Zhong, H.: Characteristics of extreme precipitation in China during the 2016 flood season and comparison with the 1998 situation, Meteor. Mon., 44, 699–703, 2018 (in Chinese).
Gaona, M. F. R., Villarini, G., Zhang, W., and Vecchi, G. A.: The added value of IMERG in characterizing rainfall in tropical cyclones, Atmos. Res., 209, 95–102, https://doi.org/10.1016/j.atmosres.2018.03.008, 2018.
Gnann, S., Reinecke, R., Stein, L., Wada, Y., Thiery, W., Müller Schmied, H., Satoh, Y., Pokhrel, Y., Ostberg, S., Koutroulis, A., Hanasaki, N., Grillakis, M., Gosling, S. N., Burek, P., Bierkens, M. F. P., and Wagener, T.: Functional relationships reveal differences in the water cycle representation of global water models, Nature Water, 1, 1079–1090, https://doi.org/10.1038/s44221-023-00160-y, 2023.
Guha-Sapir, D.: EM-DAT, maintained by Centre for Research on the Epidemiology of Disasters/University of Louvain, Brussels, Belgium [data set], https://www.emdat.be (last access: 21 March 2023), 2018.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
He, W., Kim, S., Wasko, C., and Sharma, A.: A global assessment of change in flood volume with surface air temperature, Adv. Water Resour., 165, 104241, https://doi.org/10.1016/j.advwatres.2022.104241, 2022.
Heffernan, J. E. and Tawn, J. A.: A conditional approach for multivariate extreme values (with discussion), J. Roy. Stat. Soc. B, 66, 497–546, https://doi.org/10.1111/j.1467-9868.2004.02050.x, 2004.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Herschy, R. W.: The world's maximum observed flood, Flow Meas. Instrum., 13, 231–235, https://doi.org/10.1016/S0955-5986(02)00054-7, 2002.
Houze, R. A.: Orographic effects on precipitating clouds, Rev. Geophys., 50, RG1001, https://doi.org/10.1029/2011rg000365, 2012.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for the globe Version 4, CGIAR-CSI SRTM 90m Database [data set], http://srtm.csi.cgiar.org (last access: 17 November 2019), 2008.
Keef, C., Svensson, C., and Tawn, J. A.: Spatial dependence in extreme river flows and precipitation for Great Britain, J. Hydrol., 378, 240–252, https://doi.org/10.1016/j.jhydrol.2009.09.026, 2009a.
Keef, C., Tawn, J., and Svensson, C.: Spatial risk assessment for extreme river flows, J. R. Stat. Soc. C-Appl., 58, 601–618, https://www.jstor.org/stable/40541617 (last access: 6 June 2023), 2009b.
Keef, C., Tawn, J. A., and Lamb, R.: Estimating the probability of widespread flood events, Environmetrics, 24, 13–21, https://doi.org/10.1002/env.2190, 2013.
Kemter, M., Merz, B., Marwan, N., Vorogushyn, S., and Blöschl, G.: Joint trends in flood magnitudes and spatial extents across Europe, Geophys. Res. Lett., 47, e2020GL087464, https://doi.org/10.1029/2020gl087464, 2020.
Kron, W., Steuer, M., Löw, P., and Wirtz, A.: How to deal properly with a natural catastrophe database – analysis of flood losses, Nat. Hazards Earth Syst. Sci., 12, 535–550, https://doi.org/10.5194/nhess-12-535-2012, 2012.
Lamb, R., Keef, C., Tawn, J., Laeger, S., Meadowcroft, I., Surendran, S., Dunning, P., and Batstone, C.: A new method to assess the risk of local and widespread flooding on rivers and coasts, J. Flood Risk Manag., 3, 323–336, https://doi.org/10.1111/j.1753-318X.2010.01081.x, 2010.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne elevation data, Eos Trans. AGU, 89, 93–94, https://doi.org/10.1029/2008EO100001, 2008 (data available at: https://www.hydrosheds.org/hydrosheds-core-downloads (last access: 24 June 2022).
Lei, L., Sun, J., He, N., Liu, Z., and Zeng, J.: A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016, Acta Meteorol. Sin., 75, 685–699, https://doi.org/10.11676/qxxb2017.054, 2017 (in Chinese).
Li, C., Wang, G., and Li, R.: Maximum observed floods in China, Hydrolog. Si. J., 58, 728–735, https://doi.org/10.1080/02626667.2013.772299, 2013.
Li, M., Wu, P., and Ma, Z.: A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets, Int. J. Climatol., 40, 5744–5766, https://doi.org/10.1002/joc.6549, 2020a.
Li, M., Wu, P., Ma, Z., Lv, M., and Yang, Q.: Changes in soil moisture persistence in China over the past 40 years under a warming climate, J. Climate, 33, 9531–9550, https://doi.org/10.1175/jcli-d-19-0900.1, 2020b.
Liu, C. and Shi, R.: Boundary data of East Asia Summer Monsoon Geo_Eco_region (EASMBND) [dataset], https://doi.org/10.3974/geodb.2015.01.12.V1, 2015.
Liu, W., Wei, X., Fan, H., Guo, X., Liu, Y., Zhang, M., and Li, Q.: Response of flow regimes to deforestation and reforestation in a rain-dominated large watershed of subtropical China, Hydrolog. Process., 29, 5003–5015, https://doi.org/10.1002/hyp.10459, 2015.
Lu, M., Yu, Z., Hua, J., Kang, C., and Lin, Z.: Spatial dependence of floods shaped by extreme rainfall under the influence of urbanization, Sci. Total Environ., 857, 159134, https://doi.org/10.1016/j.scitotenv.2022.159134, 2023.
Lu, P., Smith, J. A., and Lin, N.: Spatial characterization of flood magnitudes over the drainage network of the Delaware River basin, J. Hydrometeorol., 18, 957–976, https://doi.org/10.1175/jhm-d-16-0071.1, 2017.
Metin, A. D., Dung, N. V., Schröter, K., Vorogushyn, S., Guse, B., Kreibich, H., and Merz, B.: The role of spatial dependence for large-scale flood risk estimation, Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, 2020.
Nanditha, J. S. and Mishra, V.: Multiday precipitation is a prominent driver of floods in Indian river basins, Water Resour. Res., 58, e2022WR032723, https://doi.org/10.1029/2022WR032723, 2022.
Neal, J., Keef, C., Bates, P., Beven, K., and Leedal, D.: Probabilistic flood risk mapping including spatial dependence, Hydrol. Process., 27, 1349–1363, https://doi.org/10.1002/hyp.9572, 2013.
Nguyen, V. D., Metin, A. D., Alfieri, L., Vorogushyn, S., and Merz, B.: Biases in national and continental flood risk assessments by ignoring spatial dependence, Sci. Rep., 10, 19387, https://doi.org/10.1038/s41598-020-76523-2, 2020.
Pewsey, A., Neuhäuser, M., and Ruxton, G. D.: Circular Statistics in R, OUP Oxford, Oxford University Press, ISBN 9780199671137, 2013.
Qing, D., Thibodeau, J. G., Williams, M. R., Dai, Q., Yi, M., and Topping, A. R. (Eds.): The river dragon has come!: Three Gorges Dam and the fate of China’s Yangtze River and its people, Routledge, ISBN 978-0765602060, 2016.
Quinn, N., Bates, P. D., Neal, J., Smith, A., Wing, O., Sampson, C., Smith, J., and Heffernan, J.: The spatial dependence of flood hazard and risk in the United States, Water Resour. Res., 55, 1890–1911, https://doi.org/10.1029/2018wr024205, 2019.
Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987.
Roxy, M. K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., Terray, P., and Rajeevan, M.: A threefold rise in widespread extreme rain events over central India, Nat. Commun., 8, 708, https://doi.org/10.1038/s41467-017-00744-9, 2017.
Smith, J. A., Baeck, M. L., Su, Y., Liu, M., and Vecchi, G. A.: Strange storms: Rainfall extremes from the remnants of Hurricane Ida (2021) in the northeastern US, Water Resour. Res., 59, e2022WR033934, https://doi.org/10.1029/2022wr033934, 2023.
Smith, J. A., Cox, A. A., Baeck, M. L., Yang, L., and Bates, P.: Strange floods: The upper tail of flood peaks in the United States, Water Resour. Res., 54, 6510–6542, https://doi.org/10.1029/2018wr022539, 2018.
Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., and Zeileis, A.: Conditional variable importance for random forests, BMC Bioinformatics, 9, 307, https://doi.org/10.1186/1471-2105-9-307, 2008.
Sun, G., Hu, Z., Ma, Y., Xie, Z., Sun, F., Wang, J., and Yang, S.: Analysis of local land atmosphere coupling characteristics over Tibetan Plateau in the dry and rainy seasons using observational data and ERA5, Sci. Total Environ., 774, 145138, https://doi.org/10.1016/j.scitotenv.2021.145138, 2021.
Tan, X., Wu, X., and Liu, B.: Global changes in the spatial extents of precipitation extremes, Environ. Res. Lett., 16, 054017, https://doi.org/10.1088/1748-9326/abf462, 2021.
Tang, Y., Huang, A., Wu, P., Huang, D., Xue, D., and Wu, Y.: Drivers of summer extreme precipitation events over East China, Geophys. Res. Lett., 48, e2021GL093670, https://doi.org/10.1029/2021gl093670, 2021.
Tarouilly, E., Li, D., and Lettenmaier, D. P.: Western U.S. superfloods in the recent instrumental record, Water Resour. Res., 57, e2020WR029287, https://doi.org/10.1029/2020wr029287, 2021.
Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R., Erickson, T. A., and Slayback, D. A.: Satellite imaging reveals increased proportion of population exposed to floods, Nature, 596, 80–86, https://doi.org/10.1038/s41586-021-03695-w, 2021.
Timonina, A., Hochrainer-Stigler, S., Pflug, G., Jongman, B., and Rojas, R.: Structured coupling of probability loss distributions: assessing joint flood risk in multiple river basins, Risk Anal., 35, 2102–2119, https://doi.org/10.1111/risa.12382, 2015.
Turner-Gillespie, D. F., Smith, J. A., and Bates, P. D.: Attenuating reaches and the regional flood response of an urbanizing drainage basin, Adv. Water Resour., 26, 673–684, https://doi.org/10.1016/s0309-1708(03)00017-4, 2003.
Tyralis, H., Papacharalampous, G., and Langousis, A.: A brief review of random forests for water scientists and practitioners and their recent history in water resources, Water, 11, 910, https://doi.org/10.3390/w11050910, 2019.
Uhlemann, S., Thieken, A. H., and Merz, B.: A consistent set of trans-basin floods in Germany between 1952–2002, Hydrol. Earth Syst. Sci., 14, 1277–1295, https://doi.org/10.5194/hess-14-1277-2010, 2010.
Villarini, G., Smith, J. A., Baeck, M. L., Marchok, T., and Vecchi, G. A.: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004), J. Geophys. Res.-Atmos., 116, D23116, https://doi.org/10.1029/2011jd016175, 2011.
Wang, S., Zhang, L., Wang, G., She, D., Zhang, Q., Xia, J., and Zhang, Y.: More intense and longer torrential rain and flood events during the recent past decade in Eurasia, Water Resour. Res., 59, e2022WR033314, https://doi.org/10.1029/2022wr033314, 2023.
Wu, J. and Gao, X.: A gridded daily observation dataset over China region and comparison with the other datasets, Chinese Journal of Geophysics, 56, 1102–1111, https://doi.org/10.6038/cjg20130406, 2013 (in Chinese).
Xie, Z., Bueh, C., Ji, L., and Sun, S.: The cold vortex circulation over northeastern China and regional rainstorm events, Atmos. Ocean. Sci. Lett., 5, 134–139, https://doi.org/10.1080/16742834.2012.11446979, 2015.
Xu, X., Liu, J., Zhang, S., Li, R., Yan, C., and Wu, S.: China multi period land use remote sensing monitoring dataset (CNLUCC), Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences [data set], https://doi.org/10.12078/2018070201, 2018.
Yang, L., Yang, Y., and Smith, J.: The upper tail of flood peaks over China: Hydrology, hydrometeorology, and hydroclimatology, Water Resour. Res., 57, e2021WR030883, https://doi.org/10.1029/2021WR030883, 2021a.
Yang, L., Liu, M., Smith, J. A., and Tian, F.: Typhoon Nina and the August 1975 flood over central China, J. Hydrometeorol., 18, 451–472, https://doi.org/10.1175/jhm-d-16-0152.1, 2017.
Yang, L., Wang, L., Li, X., and Gao, J.: On the flood peak distributions over China, Hydrol. Earth Syst. Sci., 23, 5133–5149, https://doi.org/10.5194/hess-23-5133-2019, 2019.
Yang, L., Villarini, G., Zeng, Z., Smith, J., Liu, M., Li, X., Wang, L., and Hou, A.: Riverine flooding and landfalling tropical cyclones over China, Earth's Future, 8, e2019EF001451, https://doi.org/10.1029/2019ef001451, 2020.
Yang, L., Yang, Y., Villarini, G., Li, X., Hu, H., Wang, L., Blöschl, G., and Tian, F.: Climate more important for Chinese flood changes than reservoirs and land use, Geophys. Res. Lett., 48, e2021GL093061, https://doi.org/10.1029/2021gl093061, 2021b.
Yang, Y., Yang, L., Chen, X., Wang, Q., and Tian, F.: Climate leads to reversed latitudinal changes in Chinese flood peak timing, Earth's Future, 10, e2022EF002726, https://doi.org/10.1029/2022ef002726, 2022.
Yang, Y., Yang, L., Zhang, J., and Wang, Q.: YangEtAl_2023_Dataset_Regional flood catalog, figshare [data set], https://doi.org/10.6084/m9.figshare.24636153.v1, 2023a.
Yang, Y., Yang, L., Zhang, J., and Wang, Q.: YangEtAl_2023_Scripts_RegionalFloodAnalyses, figshare [code], https://doi.org/10.6084/m9.figshare.24637266.v1, 2023b.
Yuan, Y., Gao, H., Li, W., Liu, Y., Chen, L., Zhou, B., and Ding, Y.: The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998, J. Meteorol. Res., 31, 261–277, https://doi.org/10.1007/s13351-017-6192-5, 2017.
Zeileis, A., Hothorn, T., and Hornik, K.: Model-based recursive partitioning, J. Comput. Graph. Stat., 17, 492–514, https://doi.org/10.1198/106186008X319331, 2008.
Zhao, Y., Chen, D., Li, J., Chen, D., Chang, Y., Li, J., and Qin, R.: Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings, Clim. Dynam., 54, 2713–2730, https://doi.org/10.1007/s00382-020-05139-z, 2020.
Zhou, Y., Zhou, T., Jiang, J., Chen, X., Wu, B., Hu, S., and Wu, M.: Understanding the forcing mechanisms of the 1931 summer flood along the Yangtze River, the world's deadliest flood on record, J. Climate, 36, 6577–6596, https://doi.org/10.1175/jcli-d-22-0771.1, 2023.
Short summary
We introduce a machine-learning framework to study spatial characteristics and drivers of regional floods in eastern China, using 38 years of flood peak data from a vast gauging network. Our analyses provide better understanding of contrasting flood behaviors by explicitly characterizing their spatial extents. This knowledge can help improve flood risk management.
We introduce a machine-learning framework to study spatial characteristics and drivers of...