Articles | Volume 28, issue 18
https://doi.org/10.5194/hess-28-4349-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4349-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating the sensitivity of the Priestley–Taylor coefficient to air temperature and humidity
Ziwei Liu
State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Changming Li
State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Taihua Wang
State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China
Related authors
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Xu Shan, Xingdong Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-283, https://doi.org/10.5194/hess-2019-283, 2019
Manuscript not accepted for further review
Short summary
Short summary
The Budyko hypothesis has been generally used to quantify how much precipitation transforms into evaporation in one catchment. To approach this hypothesis, previous studies proposed analytical formulas derived based on mathematic reasoning. Differently, this study drew a new derivation for this hypothesis based on fundamental physical principles. It clearly reveals the underlying assumptions in the previous mathematic reasoning and promotes hydrologic understanding on this hypothesis.
Xu Shan, Xindong Li, and Hanbo Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-598, https://doi.org/10.5194/hess-2018-598, 2018
Manuscript not accepted for further review
Short summary
Short summary
The Budyko hypothesis has been generally used to quantify how much precipitation transforms into evaporation in one catchment. To approach this hypothesis, previous studies proposed analytical formulas derived based on mathematic reasoning. Differently, this study drew a new derivation for this hypothesis based on fundamental physical principles. It clearly reveals the underlying assumptions in the previous mathematic reasoning and promotes hydrologic understanding on this hypothesis.
Zhongwang Chen, Huimin Lei, Hanbo Yang, Dawen Yang, and Yongqiang Cao
Hydrol. Earth Syst. Sci., 21, 2233–2248, https://doi.org/10.5194/hess-21-2233-2017, https://doi.org/10.5194/hess-21-2233-2017, 2017
Short summary
Short summary
The significant climate changes remind us to characterize the hydrological response to it. Based on the long-term observed hydrological and meteorological data in 291 catchments across China, we find a pattern of the response stating that
drier regions are more likely to become drier, whereas wetter regions are more likely to become wetter. We also reveal that the precipitation changes play the most significant role in this process.
Tingting Gong, Huimin Lei, Dawen Yang, Yang Jiao, and Hanbo Yang
Hydrol. Earth Syst. Sci., 21, 863–877, https://doi.org/10.5194/hess-21-863-2017, https://doi.org/10.5194/hess-21-863-2017, 2017
Short summary
Short summary
Seasonal and inter-annual features of ET were analyzed over four periods. A normalization method was adopted to exclude the effects of potential evapotranspiration and soil water stress on ET. During the land degradation process, when natural vegetation (including leaves and branches), sand dunes, dry sand layers, and BSCs were all bulldozed, ET was observed to increase at a mild rate. In a vegetation rehabilitation process with sufficient groundwater, ET also increased at a faster rate.
Zhongwei Huang, Hanbo Yang, and Dawen Yang
Hydrol. Earth Syst. Sci., 20, 2573–2587, https://doi.org/10.5194/hess-20-2573-2016, https://doi.org/10.5194/hess-20-2573-2016, 2016
Short summary
Short summary
The hydrologic processes have been influenced by different climatic factors. However, the dominant climatic factor driving annual runoff change is still unknown in many catchments in China. By using the climate elasticity method proposed by Yang and Yang (2011), the elasticity of runoff to climatic factors was estimated, and the dominant climatic factors driving annual runoff change were detected at catchment scale over China.
T. T. Gong, H. M. Lei, D. W. Yang, Y. Jiao, and H. B. Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-13571-2014, https://doi.org/10.5194/hessd-11-13571-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Global hydrology | Techniques and Approaches: Theory development
A hydrologist's guide to open science
From mythology to science: the development of scientific hydrological concepts in Greek antiquity and its relevance to modern hydrology
Comment on: “A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions” by Han and Tian (2020)
Global distribution of hydrologic controls on forest growth
Inter-annual variability of the global terrestrial water cycle
Using R in hydrology: a review of recent developments and future directions
Multivariate stochastic bias corrections with optimal transport
A simple tool for refining GCM water availability projections, applied to Chinese catchments
Necessary storage as a signature of discharge variability: towards global maps
Should seasonal rainfall forecasts be used for flood preparedness?
Hydroclimatic variability and predictability: a survey of recent research
HESS Opinions: A planetary boundary on freshwater use is misleading
Controls on hydrologic drought duration in near-natural streamflow in Europe and the USA
Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches
Action-based flood forecasting for triggering humanitarian action
Improving together: better science writing through peer learning
A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation
Hydrological recurrence as a measure for large river basin classification and process understanding
Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature
Accounting for environmental flow requirements in global water assessments
Hydroclimatic regimes: a distributed water-balance framework for hydrologic assessment, classification, and management
HESS Opinions "A perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation"
Estimates of the climatological land surface energy and water balance derived from maximum convective power
A general framework for understanding the response of the water cycle to global warming over land and ocean
A physically based approach for the estimation of root-zone soil moisture from surface measurements
Globalization of agricultural pollution due to international trade
Data-driven scale extrapolation: estimating yearly discharge for a large region by small sub-basins
Hydrologic benchmarking of meteorological drought indices at interannual to climate change timescales: a case study over the Amazon and Mississippi river basins
A worldwide analysis of trends in water-balance evapotranspiration
Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications
Hydrological drought across the world: impact of climate and physical catchment structure
Global hydrobelts and hydroregions: improved reporting scale for water-related issues?
Evaluation of water-energy balance frameworks to predict the sensitivity of streamflow to climate change
Technical note: Towards a continuous classification of climate using bivariate colour mapping
Recycling of moisture in Europe: contribution of evaporation to variability in very wet and dry years
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022, https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary
Short summary
Impactful open, accessible, reusable, and reproducible hydrologic research practices are being embraced by individuals and the community, but taking the plunge can seem overwhelming. We present the Open Hydrology Principles and Practical Guide to help hydrologists move toward open science, research, and education. We discuss the benefits and how hydrologists can overcome common challenges. We encourage all hydrologists to join the open science community (https://open-hydrology.github.io).
Demetris Koutsoyiannis and Nikos Mamassis
Hydrol. Earth Syst. Sci., 25, 2419–2444, https://doi.org/10.5194/hess-25-2419-2021, https://doi.org/10.5194/hess-25-2419-2021, 2021
Short summary
Short summary
This paper is the result of new research of ancient and early modern sources about the developments of the concept of the hydrological cycle and of hydrology in general. It shows that the flooding of the Nile was the first geophysical problem formulated in scientific terms in the cradle of natural philosophy and science in the 6th century BC. Aristotle was able to find the correct solution to the problem, which he tested through what it appears to be the first scientific expedition in history.
Richard D. Crago, Jozsef Szilagyi, and Russell Qualls
Hydrol. Earth Syst. Sci., 25, 63–68, https://doi.org/10.5194/hess-25-63-2021, https://doi.org/10.5194/hess-25-63-2021, 2021
Short summary
Short summary
The sigmoid-shaped complementary relationship (CR) for regional evaporation proposed by Han and Tian (2018, 2020) is reconsidered in terms of (1) its ability to give reasonable evaporation results from sites worldwide, (2) evidence for the three-state evaporation process it posits, (3) the validity of the proof provided by Han and Tian (2018), and (4) the relevance of model studies that seem to support it. Arguments for the sigmoid shape deserve to be taken seriously but remain unconvincing.
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020, https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary
Short summary
Vegetation is a principal component in the Earth system models that are used for weather, climate and other environmental predictions. Water is one of the main drivers of vegetation; however, the global distribution of how water influences vegetation is not well understood. This study looks at spatial patterns of photosynthesis and water sources (rain and groundwater) to obtain a first understanding of water access and limitations for the growth of global forests (proxy for natural vegetation).
Dongqin Yin and Michael L. Roderick
Hydrol. Earth Syst. Sci., 24, 381–396, https://doi.org/10.5194/hess-24-381-2020, https://doi.org/10.5194/hess-24-381-2020, 2020
Short summary
Short summary
We focus on the initial analysis of inter-annual variability in the global terrestrial water cycle, which is key to understanding hydro-climate extremes. We find that (1) the partitioning of inter-annual variability is totally different with the mean state partitioning; (2) the magnitude of covariances can be large and negative, indicating the variability in the sinks can exceed variability in the source; and (3) the partitioning is relevant to the water storage capacity and snow/ice presence.
Louise J. Slater, Guillaume Thirel, Shaun Harrigan, Olivier Delaigue, Alexander Hurley, Abdou Khouakhi, Ilaria Prosdocimi, Claudia Vitolo, and Katie Smith
Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, https://doi.org/10.5194/hess-23-2939-2019, 2019
Short summary
Short summary
This paper explores the benefits and advantages of R's usage in hydrology. We provide an overview of a typical hydrological workflow based on reproducible principles and packages for retrieval of hydro-meteorological data, spatial analysis, hydrological modelling, statistics, and the design of static and dynamic visualizations and documents. We discuss some of the challenges that arise when using R in hydrology as well as a roadmap for R’s future within the discipline.
Yoann Robin, Mathieu Vrac, Philippe Naveau, and Pascal Yiou
Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019, https://doi.org/10.5194/hess-23-773-2019, 2019
Short summary
Short summary
Bias correction methods are used to calibrate climate model outputs with respect to observations. In this article, a non-stationary, multivariate and stochastic bias correction method is developed based on optimal transport, accounting for inter-site and inter-variable correlations. Optimal transport allows us to construct a joint distribution that minimizes energy spent in bias correction. Our methodology is tested on precipitation and temperatures over 12 locations in southern France.
Joe M. Osborne and F. Hugo Lambert
Hydrol. Earth Syst. Sci., 22, 6043–6057, https://doi.org/10.5194/hess-22-6043-2018, https://doi.org/10.5194/hess-22-6043-2018, 2018
Short summary
Short summary
We want to estimate how much water will be available in a river basin (runoff) at the end of the 21st century. Climate models alone are considered unsuitable for this task due to biases in representing the present-day climate. We show that the output from these models can be corrected using a simple mathematical framework. This approach narrows the range of future runoff projections for the Yellow river in China by 34 %. It serves as a quick tool for updating projections from climate models.
Kuniyoshi Takeuchi and Muhammad Masood
Hydrol. Earth Syst. Sci., 21, 4495–4516, https://doi.org/10.5194/hess-21-4495-2017, https://doi.org/10.5194/hess-21-4495-2017, 2017
Short summary
Short summary
There are many global maps of hydrology and water resources, but none on necessary storage to smooth out discharge variability. This paper provides a methodology to create such a map, taking the Ganges–Brahmaputra–Meghna basin as an example. Necessary storage is calculated by a new method, intensity–duration–frequency curves of flood and drought (FDC–DDC). Necessary storage serves as a signature of hydrological variability and its geographical distribution provides new insights for hydrology.
Erin Coughlan de Perez, Elisabeth Stephens, Konstantinos Bischiniotis, Maarten van Aalst, Bart van den Hurk, Simon Mason, Hannah Nissan, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 21, 4517–4524, https://doi.org/10.5194/hess-21-4517-2017, https://doi.org/10.5194/hess-21-4517-2017, 2017
Short summary
Short summary
Disaster managers would like to use seasonal forecasts to anticipate flooding months in advance. However, current seasonal forecasts give information on rainfall instead of flooding. Here, we find that the number of extreme events, rather than total rainfall, is most related to flooding in different regions of Africa. We recommend several forecast adjustments and research opportunities that would improve flood information at the seasonal timescale in different regions.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Maik Heistermann
Hydrol. Earth Syst. Sci., 21, 3455–3461, https://doi.org/10.5194/hess-21-3455-2017, https://doi.org/10.5194/hess-21-3455-2017, 2017
Short summary
Short summary
In 2009, the "planetary boundaries" were introduced. They consist of nine global control variables and corresponding "thresholds which, if crossed, could generate unacceptable environmental change". The idea has been very successful, but also controversial. This paper picks up the debate with regard to the boundary on "global freshwater use": it argues that such a boundary is based on mere speculation, and that any exercise of assigning actual numbers is arbitrary, premature, and misleading.
Erik Tijdeman, Sophie Bachmair, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 20, 4043–4059, https://doi.org/10.5194/hess-20-4043-2016, https://doi.org/10.5194/hess-20-4043-2016, 2016
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
Erin Coughlan de Perez, Bart van den Hurk, Maarten K. van Aalst, Irene Amuron, Deus Bamanya, Tristan Hauser, Brenden Jongma, Ana Lopez, Simon Mason, Janot Mendler de Suarez, Florian Pappenberger, Alexandra Rueth, Elisabeth Stephens, Pablo Suarez, Jurjen Wagemaker, and Ervin Zsoter
Hydrol. Earth Syst. Sci., 20, 3549–3560, https://doi.org/10.5194/hess-20-3549-2016, https://doi.org/10.5194/hess-20-3549-2016, 2016
Short summary
Short summary
Many flood disaster impacts could be avoided by preventative action; however, early action is not guaranteed. This article demonstrates the design of a new system of forecast-based financing, which automatically triggers action when a flood forecast arrives, before a potential disaster. We establish "action triggers" for northern Uganda based on a global flood forecasting system, verifying these forecasts and assessing the uncertainties inherent in setting a trigger in a data-scarce location.
Mathew A. Stiller-Reeve, Céline Heuzé, William T. Ball, Rachel H. White, Gabriele Messori, Karin van der Wiel, Iselin Medhaug, Annemarie H. Eckes, Amee O'Callaghan, Mike J. Newland, Sian R. Williams, Matthew Kasoar, Hella Elisa Wittmeier, and Valerie Kumer
Hydrol. Earth Syst. Sci., 20, 2965–2973, https://doi.org/10.5194/hess-20-2965-2016, https://doi.org/10.5194/hess-20-2965-2016, 2016
Short summary
Short summary
Scientific writing must improve and the key to long-term improvement of scientific writing lies with the early-career scientist (ECS). We introduce the ClimateSnack project, which aims to motivate ECSs to start writing groups around the world to improve their skills together. Writing groups offer many benefits but can be a challenge to keep going. Several ClimateSnack writing groups formed, and this paper examines why some of the groups flourished and others dissolved.
Peter Greve, Lukas Gudmundsson, Boris Orlowsky, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 20, 2195–2205, https://doi.org/10.5194/hess-20-2195-2016, https://doi.org/10.5194/hess-20-2195-2016, 2016
Short summary
Short summary
The widely used Budyko framework is by definition limited to steady-state conditions. In this study we analytically derive a new, two-parameter formulation of the Budyko framework that represents conditions under which evapotranspiration exceeds precipitation. This is technically achieved by rotating the water supply limit within the Budyko space. The new formulation is shown to be capable to represent first-order seasonal dynamics within the hydroclimatological system.
R. Fernandez and T. Sayama
Hydrol. Earth Syst. Sci., 19, 1919–1942, https://doi.org/10.5194/hess-19-1919-2015, https://doi.org/10.5194/hess-19-1919-2015, 2015
P. Molnar, S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando
Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, https://doi.org/10.5194/hess-19-1753-2015, 2015
Short summary
Short summary
We present an empirical study of the rates of increase in precipitation intensity with air temperature using high-resolution 10 min precipitation records in Switzerland. We estimated the scaling rates for lightning (convective) and non-lightning event subsets and show that scaling rates are between 7 and 14%/C for convective rain and that mixing of storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set.
A. V. Pastor, F. Ludwig, H. Biemans, H. Hoff, and P. Kabat
Hydrol. Earth Syst. Sci., 18, 5041–5059, https://doi.org/10.5194/hess-18-5041-2014, https://doi.org/10.5194/hess-18-5041-2014, 2014
Short summary
Short summary
Freshwater ecosystems encompass the most threatened species on earth. Environmental flow requirements need to be addressed globally to provide sufficient water for humans and nature. We present a comparison of five environmental flow methods validated with locally calculated EFRs. We showed that methods based on monthly average flow such as the variable monthly flow method are more reliable than methods based on annual thresholds. A range of EFRs was calculated for large river basins.
P. K. Weiskel, D. M. Wolock, P. J. Zarriello, R. M. Vogel, S. B. Levin, and R. M. Lent
Hydrol. Earth Syst. Sci., 18, 3855–3872, https://doi.org/10.5194/hess-18-3855-2014, https://doi.org/10.5194/hess-18-3855-2014, 2014
S. J. Sutanto, B. van den Hurk, P. A. Dirmeyer, S. I. Seneviratne, T. Röckmann, K. E. Trenberth, E. M. Blyth, J. Wenninger, and G. Hoffmann
Hydrol. Earth Syst. Sci., 18, 2815–2827, https://doi.org/10.5194/hess-18-2815-2014, https://doi.org/10.5194/hess-18-2815-2014, 2014
A. Kleidon, M. Renner, and P. Porada
Hydrol. Earth Syst. Sci., 18, 2201–2218, https://doi.org/10.5194/hess-18-2201-2014, https://doi.org/10.5194/hess-18-2201-2014, 2014
M. L. Roderick, F. Sun, W. H. Lim, and G. D. Farquhar
Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, https://doi.org/10.5194/hess-18-1575-2014, 2014
S. Manfreda, L. Brocca, T. Moramarco, F. Melone, and J. Sheffield
Hydrol. Earth Syst. Sci., 18, 1199–1212, https://doi.org/10.5194/hess-18-1199-2014, https://doi.org/10.5194/hess-18-1199-2014, 2014
C. O'Bannon, J. Carr, D. A. Seekell, and P. D'Odorico
Hydrol. Earth Syst. Sci., 18, 503–510, https://doi.org/10.5194/hess-18-503-2014, https://doi.org/10.5194/hess-18-503-2014, 2014
L. Gong
Hydrol. Earth Syst. Sci., 18, 343–352, https://doi.org/10.5194/hess-18-343-2014, https://doi.org/10.5194/hess-18-343-2014, 2014
E. Joetzjer, H. Douville, C. Delire, P. Ciais, B. Decharme, and S. Tyteca
Hydrol. Earth Syst. Sci., 17, 4885–4895, https://doi.org/10.5194/hess-17-4885-2013, https://doi.org/10.5194/hess-17-4885-2013, 2013
A. M. Ukkola and I. C. Prentice
Hydrol. Earth Syst. Sci., 17, 4177–4187, https://doi.org/10.5194/hess-17-4177-2013, https://doi.org/10.5194/hess-17-4177-2013, 2013
A. Kleidon and M. Renner
Hydrol. Earth Syst. Sci., 17, 2873–2892, https://doi.org/10.5194/hess-17-2873-2013, https://doi.org/10.5194/hess-17-2873-2013, 2013
H. A. J. Van Lanen, N. Wanders, L. M. Tallaksen, and A. F. Van Loon
Hydrol. Earth Syst. Sci., 17, 1715–1732, https://doi.org/10.5194/hess-17-1715-2013, https://doi.org/10.5194/hess-17-1715-2013, 2013
M. Meybeck, M. Kummu, and H. H. Dürr
Hydrol. Earth Syst. Sci., 17, 1093–1111, https://doi.org/10.5194/hess-17-1093-2013, https://doi.org/10.5194/hess-17-1093-2013, 2013
M. Renner, R. Seppelt, and C. Bernhofer
Hydrol. Earth Syst. Sci., 16, 1419–1433, https://doi.org/10.5194/hess-16-1419-2012, https://doi.org/10.5194/hess-16-1419-2012, 2012
A. J. Teuling
Hydrol. Earth Syst. Sci., 15, 3071–3075, https://doi.org/10.5194/hess-15-3071-2011, https://doi.org/10.5194/hess-15-3071-2011, 2011
B. Bisselink and A. J. Dolman
Hydrol. Earth Syst. Sci., 13, 1685–1697, https://doi.org/10.5194/hess-13-1685-2009, https://doi.org/10.5194/hess-13-1685-2009, 2009
Cited articles
Andreas, E. L. and Cash, B. A.: A new formulation for the Bowen ratio over saturated surfaces, J. Appl. Meteorol., 35, 1279–1289, https://doi.org/10.1175/1520-0450(1996)035<1279:anfftb>2.0.co;2, 1996.
AsiaFlux: SWL:Suwa Lake Site, AsiaFlux [data set], http://asiaflux.net/index.php?page_id=1355, 2020.
Assouline, S., Li, D., Tyler, S., Tanny, J., Cohen, S., Bou-Zeid, E., Parlange, M., and Katul, G. G.: On the variability of the Priestley-Taylor coefficient over water bodies, Water Resour. Res., 52, 150–163, https://doi.org/10.1002/2015wr017504, 2016.
Bowen, I. S.: The ratio of heat losses by conduction and by evaporation from any water surface, Phys. Rev., 27, 779–787, https://doi.org/10.1103/PhysRev.27.779, 1926.
Brutsaert, W. and Stricker, H.: An advection-aridity approach to estimate actual regional evapotranspiration, Water Resour. Res., 15, 443–450, 1979.
Crago, R. D., Szilagyi, J., and Qualls, R. J.: What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses, Hydrol. Earth Syst. Sci., 27, 3205–3220, https://doi.org/10.5194/hess-27-3205-2023, 2023.
De Bruin, H. and Holtslag, A.: A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept, J. Appl. Meteorol. Clim., 21, 1610–1621, 1982.
De Bruin, H. A. R.: Temperature and energy balance of a water reservoir determined from standard weather data of a land station, J. Hydrol., 59, 261–274, https://doi.org/10.1016/0022-1694(82)90091-9, 1982.
De Bruin, H. A. R. and Keijman, J. Q.: Priestley-taylor evaporation model applied to a large, shallow lake in the netherlands, J. Appl. Meteorol., 18, 898–903, https://doi.org/10.1175/1520-0450(1979)018<0898:tptema>2.0.co;2, 1979.
Du, Q., Liu, H. Z., Liu, Y., Wang, L., Xu, L. J., Sun, J. H., and Xu, A. L.: Factors controlling evaporation and the CO2 flux over an open water lake in southwest of China on multiple temporal scales, Int. J. Climatol., 38, 4723–4739, https://doi.org/10.1002/joc.5692, 2018.
Eichinger, W. E., Parlange, M. B., and Stricker, H.: On the concept of equilibrium evaporation and the value of the Priestley-Taylor coefficient, Water Resour. Res., 32, 161–164, 1996.
ESGF: CMIP6 GCM data, ESGF [data set], https://esgf-node.llnl.gov, 2022.
Gan, G. and Liu, Y.: Heat Storage Effect on Evaporation Estimates of China's Largest Freshwater Lake, J. Geophys. Res.-Atmos. 125, e2019JD032334, https://doi.org/10.1029/2019JD032334, 2020 (data available at: https://figshare.com/articles/figure/Heat_storage_data/13011917).
Greve, P., Roderick, M. L., Ukkola, A. M., and Wada, Y.: The aridity Index under global warming, Environ. Res. Lett., 14, 124006, https://doi.org/10.1088/1748-9326/ab5046, 2019.
Guo, X., Liu, H., and Yang, K.: On the application of the Priestley–Taylor relation on sub-daily time scales, Bound.-Lay. Meteorol., 156, 489–499, 2015.
Han, S. and Guo, F.: Evaporation From Six Water Bodies of Various Sizes in East Asia: An Analysis on Size Dependency, Water Resour. Res., 59, e2022WR032650, https://doi.org/10.1029/2022wr032650, 2023.
Hicks, B. B. and Hess, G. D.: On the Bowen Ratio and Surface Temperature at Sea, J. Phys. Oceanogr., 7, 141–145, https://doi.org/10.1175/1520-0485(1977)007<0141:otbras>2.0.co;2, 1977.
Jury, W. and Tanner, C.: Advection Modification of the Priestley and Taylor Evapotranspiration Formula 1, Agron. J., 67, 840–842, 1975.
Lee, X., Liu, S., Xiao, W., Wang, W., Gao, Z., Cao, C., Hu, C., Hu, Z., Shen, S., Wang, Y., Wen, X., Xiao, Q., Xu, J., Yang, J., and Zhang, M.: THE TAIHU EDDY FLUX NETWORK An Observational Program on Energy, Water, and Greenhouse Gas Fluxes of a Large Freshwater Lake, B. Am. Meteorol. Soc., 95, 1583–1594, https://doi.org/10.1175/bams-d-13-00136.1, 2014.
Lhomme, J. P.: An examination of the Priestley-Taylor equation using a convective boundary layer model, Water Resour. Res., 33, 2571–2578, 1997a.
Lhomme, J. P.: A theoretical basis for the Priestley-Taylor coefficient, Bound.-Lay. Meteorol., 82, 179–191, 1997b.
Liu, X., Liu, C., and Brutsaert, W.: Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle, Water Resour. Res., 52, 9511–9521, https://doi.org/10.1002/2016WR019340, 2016.
Liu, Z. and Yang, H.: Estimation of Water Surface Energy Partitioning With a Conceptual Atmospheric Boundary Layer Model, Geophys. Res. Lett., 48, e2021GL092643, https://doi.org/10.1029/2021GL092643, 2021.
Liu, Z., Han, J., and Yang, H.: Assessing the ability of potential evaporation models to capture the sensitivity to temperature, Agr. Forest Meteorol., 317, 108886, https://doi.org/10.1016/j.agrformet.2022.108886, 2022.
Maes, W. H., Gentine, P., Verhoest, N. E. C., and Miralles, D. G.: Potential evaporation at eddy-covariance sites across the globe, Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, 2019.
McColl, K. A.: Practical and theoretical benefits of an alternative to the Penman‐Monteith evapotranspiration equation, Water Resour. Res., 56, e2020WR027106, https://doi.org/10.1029/2020WR027106, 2020.
McColl, K. A. and Tang, L. I.: An analytic theory of near-surface relative humidity over land, J. Climate, 37, 1213–1230, https://doi.org/10.1175/JCLI-D-23-0342.1, 2023.
McNaughton, K. and Spriggs, T.: A Mixed-Layer Model for Regional Evaporation, Bound.-Lay. Meteorol., 34, 243–262, https://doi.org/10.1007/bf00122381, 1986.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Penman, H. L.: Natural evaporation from open water, bare soil and grass, P. Roy. Soc. Lond. A Mat., 193, 120–145, https://doi.org/10.1098/rspa.1948.0037, 1948.
Pimentel, R., Arheimer, B., Crochemore, L., Andersson, J. C. M., Pechlivanidis, I. G., and Gustafsson, D.: Which Potential Evapotranspiration Formula to Use in Hydrological Modeling World-Wide?, Water Resour. Res., 59, e2022WR033447, https://doi.org/10.1029/2022WR033447, 2023.
Priestley, C. H. B. and Taylor, R. J.: Assessment of surface heat-flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2, 1972.
Raupach, M. R.: Equilibrium evaporation and the convective boundary layer, Bound.-Lay. Meteorol., 96, 107–141, https://doi.org/10.1023/a:1002675729075, 2000.
Raupach, M. R.: Combination theory and equilibrium evaporation, Q. J. Roy. Meteor. Soc., 127, 1149–1181, https://doi.org/10.1002/qj.49712757402, 2001.
Roderick, M. L., Sun, F., Lim, W. H., and Farquhar, G. D.: A general framework for understanding the response of the water cycle to global warming over land and ocean, Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, 2014.
Shuttleworth, W. J.: Evaporation, in: Handbook of hydrology, edited by: Maidment, D. R., Inc. New York, ISBN 0070397325, 1993.
Slatyer, R. O. and McIlroy, I. C.: Practical microclimatology: with special reference to the water factor in soil-plant-atmosphere relationships, Commonwealth Scientific and Industrial Research Organisation, Melbourne: CSIRO, 1961.
Su, Q. and Singh, V. P.: Calibration-Free Priestley-Taylor Method for Reference Evapotranspiration Estimation, 59, e2022WR033198, https://doi.org/10.1029/2022WR033198, 2023.
Taoka, T., Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., and Itoh, M.: Environmental Controls of Diffusive and Ebullitive Methane Emissions at a Subdaily Time Scale in the Littoral Zone of a Midlatitude Shallow Lake, J. Geophys. Res.-Biogeo., 125, e2020JG005753, https://doi.org/10.1029/2020jg005753, 2020.
Thornthwaite, C. W. and Holzman, B.: Evaporation from land and water surfaces, Mon. Weather Rev., 67, 4–11, https://doi.org/10.1175/1520-0493(1939)67<4:tdoefl>2.0.co;2, 1939.
van Heerwaarden, C. C., de Arellano, J. V. G., Moene, A. F., and Holtslag, A. A. M.: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development, Q. J. Roy. Meteor. Soc., 135, 1277–1291, https://doi.org/10.1002/qj.431, 2009.
Xiao, W., Zhang, Z., Wang, W., Zhang, M., Liu, Q., Hu, Y., Huang, W., Liu, S., and Lee, X.: Radiation Controls the Interannual Variability of Evaporation of a Subtropical Lake, J. Geophys. Res.-Atmos., 125, e2019JD031264, https://doi.org/10.1029/2019jd031264, 2020.
Yang, Y. and Roderick, M. L.: Radiation, surface temperature and evaporation over wet surfaces, Q. J. Roy. Meteor. Soc., 145, 1118–1129, https://doi.org/10.1002/qj.3481, 2019.
Zhang, Z., Zhang, M., Cao, C., Wang, W., Xiao, W., Xie, C., Chu, H., Wang, J., Zhao, J., Jia, L., Liu, Q., Huang, W., Zhang, W., Lu, Y., Xie, Y., Wang, Y., Pu, Y., Hu, Y., Chen, Z., Qin, Z., and Lee, X.: A dataset of microclimate and radiation and energy fluxes from the Lake Taihu Eddy Flux Network, V2, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/HEWCWM, 2020.
Zhao, J., Zhang, M., Xiao, W., Wang, W., Zhang, Z., Yu, Z., Xiao, Q., Cao, Z., Xu, J., Zhang, X., Liu, S., and Lee, X.: An evaluation of the flux-gradient and the eddy covariance method to measure CH4, CO2, and H2O fluxes from small ponds, Agr. Forest Meteorol., 275, 255–264, https://doi.org/10.1016/j.agrformet.2019.05.032, 2019.
Zhao, X. and Liu, Y.: Variability of Surface Heat Fluxes and Its Driving Forces at Different Time Scales Over a Large Ephemeral Lake in China, J. Geophys. Res.-Atmos., 123, 4939–4957, https://doi.org/10.1029/2017jd027437, 2018 (data available at: https://doi.org/10.6084/m9.figshare.5208595).
Short summary
The determination of the coefficient α in the Priestley–Taylor equation is empirical. Based on an atmospheric boundary layer model, we derived a physically clear and parameter-free expression to investigate the behavior of α. We showed that the temperature dominates changes in α and emphasized that the variation of α with temperature should be considered for long-term hydrological predictions. Our works advance and promote the most classical models in the field.
The determination of the coefficient α in the Priestley–Taylor equation is empirical. Based on...