Articles | Volume 28, issue 18
https://doi.org/10.5194/hess-28-4275-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4275-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal variation of modern lake, stream, and soil water isotopes in Iceland
David J. Harning
CORRESPONDING AUTHOR
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
Jonathan H. Raberg
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
Faculty of Earth Sciences, University of Iceland, 101 Reykjavík, Iceland
Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
Jamie M. McFarlin
Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA
Yarrow Axford
Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA
Christopher R. Florian
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
Faculty of Earth Sciences, University of Iceland, 101 Reykjavík, Iceland
National Ecological Observatory Network, Battelle, Boulder, CO 80301, USA
Kristín B. Ólafsdóttir
Icelandic Meteorological Office, 150 Reykjavík, Iceland
Sebastian Kopf
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
Julio Sepúlveda
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
Gifford H. Miller
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
Áslaug Geirsdóttir
Faculty of Earth Sciences, University of Iceland, 101 Reykjavík, Iceland
Related authors
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
David J. Harning, Christopher R. Florian, Áslaug Geirsdóttir, Thor Thordarson, Gifford H. Miller, Yarrow Axford, and Sædís Ólafsdóttir
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-26, https://doi.org/10.5194/cp-2024-26, 2024
Revised manuscript under review for CP
Short summary
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial scale record of landscape and algal productivity from a lake in north Iceland. Along with high-resolution age constraint that covers the last ~12000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Joshua Coupe, Nicole S. Lovenduski, Luise S. Gleason, Michael N. Levy, Kristen Krumhardt, Keith Lindsay, Charles Bardeen, Clay Tabor, Cheryl Harrison, Kenneth G. MacLeod, Siddhartha Mitra, and Julio Sepúlveda
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-94, https://doi.org/10.5194/gmd-2024-94, 2024
Preprint under review for GMD
Short summary
Short summary
We develop a new feature in the atmosphere and ocean components of the Community Earth System Model version 2. We have implemented ultraviolet (UV) radiation inhibition of photosynthesis of four marine phytoplankton functional groups represented in the Marine Biogeochemistry Library. The new feature is tested with varying levels of UV radiation. The new feature will enable an analysis of an asteroid impact’s effect on the ozone layer and how that affects the base of the marine food web.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Nicolò Ardenghi, David J. Harning, Jonathan H. Raberg, Brooke R. Holman, Thorvaldur Thordarson, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Clim. Past, 20, 1087–1123, https://doi.org/10.5194/cp-20-1087-2024, https://doi.org/10.5194/cp-20-1087-2024, 2024
Short summary
Short summary
Analysing a sediment record from Stóra Viðarvatn (NE Iceland), we reveal how natural factors and human activities influenced environmental changes (erosion, wildfires) over the last 11 000 years. We found increased fire activity around 3000 and 1500 years ago, predating human settlement, likely driven by natural factors like precipitation shifts. Declining summer temperatures increased erosion vulnerability, exacerbated by farming and animal husbandry, which in turn may have reduced wildfires.
David J. Harning, Christopher R. Florian, Áslaug Geirsdóttir, Thor Thordarson, Gifford H. Miller, Yarrow Axford, and Sædís Ólafsdóttir
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-26, https://doi.org/10.5194/cp-2024-26, 2024
Revised manuscript under review for CP
Short summary
Short summary
Questions remain about the past climate in Iceland, including the relative impacts of natural and human factors on vegetation change and soil erosion. We present a sub-centennial scale record of landscape and algal productivity from a lake in north Iceland. Along with high-resolution age constraint that covers the last ~12000 years, our record provides an environmental template for the region and novel insight into the sensitivity of the Icelandic ecosystem to natural and human impacts.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
Peter J. K. Puleo and Yarrow Axford
Clim. Past, 19, 1777–1791, https://doi.org/10.5194/cp-19-1777-2023, https://doi.org/10.5194/cp-19-1777-2023, 2023
Short summary
Short summary
We used two lake sediment records at different elevations and landscape evidence to find that a southern Greenland outlet glacier advanced ~ 3700 years ago and then retreated ~ 1600 years ago. This retreat is unlike other nearby outlet glaciers, possibly because of the complex local ice structure or greater sensitivity to snowfall. We also find that the advanced ice surface had an elevation of ~ 670 m a.s.l. (~ 250 m higher than today) from ~ 3700 to 1600 years ago.
Rachel E. Havranek, Kathryn Snell, Sebastian Kopf, Brett Davidheiser-Kroll, Valerie Morris, and Bruce Vaughn
Hydrol. Earth Syst. Sci., 27, 2951–2971, https://doi.org/10.5194/hess-27-2951-2023, https://doi.org/10.5194/hess-27-2951-2023, 2023
Short summary
Short summary
We present an automated, field-ready system that collects soil water vapor for stable isotope analysis. This system can be used to determine soil water evolution through time, which is helpful for understanding crop water use, water vapor fluxes to the atmosphere, and geologic proxy development. Our system can automatically collect soil water vapor and then store it for up to 30 d, which allows researchers to collect datasets from historically understudied, remote locations.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences, 20, 229–249, https://doi.org/10.5194/bg-20-229-2023, https://doi.org/10.5194/bg-20-229-2023, 2023
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence or absence. Our local temperature calibrations for GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
David Harning, Thor Thordarson, Áslaug Geirsdóttir, Gifford Miller, and Christopher Florian
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-26, https://doi.org/10.5194/gchron-2022-26, 2022
Preprint withdrawn
Short summary
Short summary
Volcanic ash layers are a common tool to synchronize records of past climate, and their estimated age relies on external dating methods. Here, we show that the chemical composition of the well-known, 12000 year-old Vedde Ash is indistinguishable with several other ash layers in Iceland that are ~1000 years younger. Therefore, chemical composition alone cannot be used to identify the Vedde Ash in sedimentary records.
Laura J. Larocca and Yarrow Axford
Clim. Past, 18, 579–606, https://doi.org/10.5194/cp-18-579-2022, https://doi.org/10.5194/cp-18-579-2022, 2022
Short summary
Short summary
This paper synthesizes 66 records of glacier variations over the Holocene from lake archives across seven Arctic regions. We find that summers only moderately warmer than today drove major environmental change across the Arctic in the early Holocene, including the widespread loss of glaciers. In comparison, future projections of Arctic temperature change far exceed estimated early Holocene values in most locations, portending the eventual loss of most of the Arctic's small glaciers.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
David J. Harning, Brooke Holman, Lineke Woelders, Anne E. Jennings, and Julio Sepúlveda
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-177, https://doi.org/10.5194/bg-2021-177, 2021
Manuscript not accepted for further review
Short summary
Short summary
In order to better reconstruct the geologic history of the North Water Polynya, we provide modern validations and calibrations of lipid biomarker proxies in Baffin Bay. We find that sterols, rather than HBIs, most accurately capture the current extent of the North Water Polynya and will be a valuable tool to reconstruct its past presence/absence. Our local temperature calibrations for alkenones, GDGTs and OH-GDGTs reduce the uncertainty present in global temperature calibrations.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
David J. Harning, Anne E. Jennings, Denizcan Köseoğlu, Simon T. Belt, Áslaug Geirsdóttir, and Julio Sepúlveda
Clim. Past, 17, 379–396, https://doi.org/10.5194/cp-17-379-2021, https://doi.org/10.5194/cp-17-379-2021, 2021
Short summary
Short summary
Today, the waters north of Iceland are characterized by high productivity that supports a diverse food web. However, it is not known how this may change and impact Iceland's economy with future climate change. Therefore, we explored how the local productivity has changed in the past 8000 years through fossil and biogeochemical indicators preserved in Icelandic marine mud. We show that this productivity relies on the mixing of Atlantic and Arctic waters, which migrate north under warming.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Áslaug Geirsdóttir, Gifford H. Miller, John T. Andrews, David J. Harning, Leif S. Anderson, Christopher Florian, Darren J. Larsen, and Thor Thordarson
Clim. Past, 15, 25–40, https://doi.org/10.5194/cp-15-25-2019, https://doi.org/10.5194/cp-15-25-2019, 2019
Short summary
Short summary
Compositing climate proxies in sediment from seven Iceland lakes documents abrupt summer cooling between 4.5 and 4.0 ka, statistically indistinguishable from 4.2 ka. Although the decline in summer insolation was an important factor, a combination of superposed changes in ocean circulation and explosive Icelandic volcanism were likely responsible for the abrupt perturbation recorded by our proxies. Lake and catchment proxies recovered to a colder equilibrium state following the perturbation.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Theory development
Impacts of science on society and policy in major river basins globally
Conceptualising surface water–groundwater exchange in braided river systems
Evaporation and sublimation measurement and modeling of an alpine saline lake influenced by freeze–thaw on the Qinghai–Tibet Plateau
Rediscovering Robert E. Horton's lake evaporation formulae: new directions for evaporation physics
Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow
Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model
Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate
Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders
Integrating network topology metrics into studies of catchment-level effects on river characteristics
Estimating the effect of rainfall on the surface temperature of a tropical lake
Toward a conceptual framework of hyporheic exchange across spatial scales
HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists
River water quality changes in New Zealand over 26 years: response to land use intensity
A review of current and possible future human–water dynamics in Myanmar's river basins
A century-scale, human-induced ecohydrological evolution of wetlands of two large river basins in Australia (Murray) and China (Yangtze)
An index of floodplain surface complexity
Hydroclimatological influences on recently increased droughts in China's largest freshwater lake
Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake
Reconstruction of flood events based on documentary data and transnational flood risk analysis of the Upper Rhine and its French and German tributaries since AD 1480
A methodological approach of estimating resistance to flow under unsteady flow conditions
Quantitative historical hydrology in Europe
Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach
Variations in quantity, composition and grain size of Changjiang sediment discharging into the sea in response to human activities
The KULTURisk Regional Risk Assessment methodology for water-related natural hazards – Part 1: Physical–environmental assessment
The use of taxation records in assessing historical floods in South Moravia, Czech Republic
New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru
Dissolved and particulate nutrient transport dynamics of a small Irish catchment: the River Owenabue
Water balance of selected floodplain lake basins in the Middle Bug River valley
Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover
Inverse streamflow routing
A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage
Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden
A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota
Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden)
Physical and chemical consequences of artificially deepened thermocline in a small humic lake – a paired whole-lake climate change experiment
A flume experiment on the effect of constriction shape on the formation of forced pools
Shuanglei Wu and Yongping Wei
Hydrol. Earth Syst. Sci., 28, 3871–3895, https://doi.org/10.5194/hess-28-3871-2024, https://doi.org/10.5194/hess-28-3871-2024, 2024
Short summary
Short summary
This study developed a framework to understand the structures of knowledge development in 72 river basins globally from 1962–2017 using Web of Science. It was found that the knowledge systems were characterized by increasingly interconnected management issues addressed by limited disciplines and were linked more strongly to societal impacts than that to policy. Understanding the current state of knowledge casts a light on sustainable knowledge transformations for river basin management.
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024, https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Fangzhong Shi, Xiaoyan Li, Shaojie Zhao, Yujun Ma, Junqi Wei, Qiwen Liao, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 163–178, https://doi.org/10.5194/hess-28-163-2024, https://doi.org/10.5194/hess-28-163-2024, 2024
Short summary
Short summary
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
Solomon Vimal and Vijay P. Singh
Hydrol. Earth Syst. Sci., 26, 445–467, https://doi.org/10.5194/hess-26-445-2022, https://doi.org/10.5194/hess-26-445-2022, 2022
Short summary
Short summary
Evaporation from open water is a well-studied problem in hydrology. Robert E. Horton, unknown to most investigators on the subject, studied it in great detail by conducting experiments and relating them to physical laws. His work furthered known theories of lake evaporation but was not recognized. This is unfortunate because it performs better than five variously complex methods across scales (local to continental; 30 min–2 months) and seems quite relevant for climate-change-era problems.
Shannon M. Sterling, Sarah MacLeod, Lobke Rotteveel, Kristin Hart, Thomas A. Clair, Edmund A. Halfyard, and Nicole L. O'Brien
Hydrol. Earth Syst. Sci., 24, 4763–4775, https://doi.org/10.5194/hess-24-4763-2020, https://doi.org/10.5194/hess-24-4763-2020, 2020
Short summary
Short summary
Wild salmon numbers in Nova Scotia, Canada, have been plummeting in recent decades. In 2014, we launched an ionic aluminium monitoring program in Nova Scotia to see if this toxic element was a threat to salmon populations. We found that all 10 monitored rivers had ionic aluminium concentrations that exceeded the threshold for aquatic health. Our results demonstrate that elevated aluminium still threatens aquatic ecosystems and that delays in recovery from acid rain remains a critical issue.
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020, https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Short summary
We found that heat transported from Lake Baikal to its ice cover is up to 10 times higher than traditionally assumed and strongly affects the ice melting. The heat is transported by under-ice currents on the background of a strong temperature gradient between the ice base and warmer waters beneath. To parameterize this newly quantified transport mechanism, an original boundary layer model was developed. The results are crucial for understanding seasonal ice dynamics on lakes and marginal seas.
Jennifer C. Murphy
Hydrol. Earth Syst. Sci., 24, 991–1010, https://doi.org/10.5194/hess-24-991-2020, https://doi.org/10.5194/hess-24-991-2020, 2020
Short summary
Short summary
Between 1992 and 2012, concentrations of suspended sediment decreased at about 60 % of 137 US stream sites, with increases at only 17 % of sites. Sediment trends were primarily attributed to changes in land management, but streamflow changes also contributed to these trends at > 50 % of sites. At many sites, decreases in sediment occurred despite small-to-moderate increases in the amount of anthropogenic land use, suggesting sediment reduction activities across the US may be seeing some success.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Eleanore L. Heasley, Nicholas J. Clifford, and James D. A. Millington
Hydrol. Earth Syst. Sci., 23, 2305–2319, https://doi.org/10.5194/hess-23-2305-2019, https://doi.org/10.5194/hess-23-2305-2019, 2019
Short summary
Short summary
River network structure is an overlooked feature of catchments. We demonstrate that network structure impacts broad spatial patterns of river characteristics in catchments using regulatory data. River habitat quality increased with network density, but other characteristics responded differently between study catchments. Network density was quantified using a method that can easily be applied to any catchment. We suggest that river network structure should be included in catchment-level studies.
Gabriel Gerard Rooney, Nicole van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 6357–6369, https://doi.org/10.5194/hess-22-6357-2018, https://doi.org/10.5194/hess-22-6357-2018, 2018
Short summary
Short summary
This paper uses a unique observational dataset of a tropical African lake (L. Kivu) to assess the effect of rain on lake surface temperature. Data from 4 years were categorised by daily rain amount and total net radiation to show that heavy rain may reduce the end-of-day lake temperature by about 0.3 K. This is important since lake surface temperature may influence local weather on short timescales, but the effect of rain on lake temperature has been little studied or parametrised previously.
Chiara Magliozzi, Robert C. Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci., 22, 6163–6185, https://doi.org/10.5194/hess-22-6163-2018, https://doi.org/10.5194/hess-22-6163-2018, 2018
Short summary
Short summary
The hyporheic zone is the area below riverbeds where surfacewater and groundwater mix. Hyporheic flow is linked to river processes and functions, but research to date has not sufficiently addressed how factors operating at different scales in time and space drive hyporheic flow variations at reach and larger scales. This review presents the scale-specific processes and interactions that control hyporheic flow, and a case study showing how valley factors affect its expression at the reach scale.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Jason P. Julian, Kirsten M. de Beurs, Braden Owsley, Robert J. Davies-Colley, and Anne-Gaelle E. Ausseil
Hydrol. Earth Syst. Sci., 21, 1149–1171, https://doi.org/10.5194/hess-21-1149-2017, https://doi.org/10.5194/hess-21-1149-2017, 2017
Short summary
Short summary
New Zealand is a natural laboratory for investigating water quality responses to land use intensity because it has one of the highest rates of agricultural intensification globally over recent decades. We interpreted water quality state and trends (1989–2014) of 77 river sites across NZ. We show that the greatest long-term negative impacts on river water quality have been increased cattle densities and legacy nutrients from intensively managed grasslands and plantation forests.
Linda Taft and Mariele Evers
Hydrol. Earth Syst. Sci., 20, 4913–4928, https://doi.org/10.5194/hess-20-4913-2016, https://doi.org/10.5194/hess-20-4913-2016, 2016
Short summary
Short summary
The country of Myanmar and its abundant water resources are facing major challenges due to political and economic reforms, massive investments from neighbouring countries and climate change impacts. Publications on current and future impacts from human activities and climate change on Myanmar's river basins have been reviewed in order to gain an overview of the key drivers in these human–water dynamics. The review reveals the relevance of this information with regard to human–water interactions.
Giri R. Kattel, Xuhui Dong, and Xiangdong Yang
Hydrol. Earth Syst. Sci., 20, 2151–2168, https://doi.org/10.5194/hess-20-2151-2016, https://doi.org/10.5194/hess-20-2151-2016, 2016
M. W. Scown, M. C. Thoms, and N. R. De Jager
Hydrol. Earth Syst. Sci., 20, 431–441, https://doi.org/10.5194/hess-20-431-2016, https://doi.org/10.5194/hess-20-431-2016, 2016
Short summary
Short summary
An index of floodplain surface complexity is developed in this paper and applied to eight floodplains from different geographic settings. Floodplain width and sediment yield were associated with the index or with sub-indicators, whereas hydrology was not. These findings suggest that valley and sediment conditions are important determinants of floodplain surface complexity, and these should complement hydrology as a focus of floodplain research and management.
Y. Liu and G. Wu
Hydrol. Earth Syst. Sci., 20, 93–107, https://doi.org/10.5194/hess-20-93-2016, https://doi.org/10.5194/hess-20-93-2016, 2016
Short summary
Short summary
Lake droughts result in significant hydrological, ecological and economic consequences. This study proposes approaches for quantifying the lake drought features and estimating the contributions from individual factors, taking China’s largest freshwater lake as a case examination. Our results showed that the recently increased lake droughts were due to hydroclimatic effects, with less important contributions from the water impoundments of the world’s largest dam affecting the lake outflows.
E. Nixdorf and B. Boehrer
Hydrol. Earth Syst. Sci., 19, 4505–4515, https://doi.org/10.5194/hess-19-4505-2015, https://doi.org/10.5194/hess-19-4505-2015, 2015
I. Himmelsbach, R. Glaser, J. Schoenbein, D. Riemann, and B. Martin
Hydrol. Earth Syst. Sci., 19, 4149–4164, https://doi.org/10.5194/hess-19-4149-2015, https://doi.org/10.5194/hess-19-4149-2015, 2015
Short summary
Short summary
The article presents a long-term analysis of flood occurrence along the southern part of the Upper Rhine River system and of 14 of its tributaries in France and Germany since 1480 BC. Special focus is given to temporal and spatial variations of flood events and their underlying meteorological causes over time, knowledge about the historical aspects of flood protection and flood vulnerability, while comparing selected historical and modern extreme events, establishing a common evaluation scheme.
M. M. Mrokowska, P. M. Rowiński, and M. B. Kalinowska
Hydrol. Earth Syst. Sci., 19, 4041–4053, https://doi.org/10.5194/hess-19-4041-2015, https://doi.org/10.5194/hess-19-4041-2015, 2015
Short summary
Short summary
This paper presents evaluation of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. Theoretical description is facilitated with the analysis of field data from artificial dam-break flood waves in a small lowland watercourse. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The study shows the Manning coefficient is less sensitive to simplified relations than other parameters.
G. Benito, R. Brázdil, J. Herget, and M. J. Machado
Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, https://doi.org/10.5194/hess-19-3517-2015, 2015
Short summary
Short summary
Historical hydrology combines documentary data with hydrological methods to lengthen flow records to the past centuries. We describe the methodological evolution of historical hydrology under the influence of developments in hydraulics and statistics. Analysis of 45 case studies in Europe show that present flood magnitudes are not unusual in the context of the past, whereas flood frequency has decreased, although some rivers show a reactivation of rare floods over the last two decades.
E. Isokangas, K. Rozanski, P. M. Rossi, A.-K. Ronkanen, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1247–1262, https://doi.org/10.5194/hess-19-1247-2015, https://doi.org/10.5194/hess-19-1247-2015, 2015
Short summary
Short summary
An iterative isotope mass balance approach was used to quantify the groundwater dependence of 67 kettle lakes and ponds. A quantitative measure for the dependence of a lake on groundwater (G index) introduced in this study revealed generally large groundwater dependency among the lakes. The isotope mass balance approach proved to be especially useful when the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions needs to be determined.
J. H. Gao, J. Jia, Y. P. Wang, Y. Yang, J. Li, F. Bai, X. Zou, and S. Gao
Hydrol. Earth Syst. Sci., 19, 645–655, https://doi.org/10.5194/hess-19-645-2015, https://doi.org/10.5194/hess-19-645-2015, 2015
P. Ronco, V. Gallina, S. Torresan, A. Zabeo, E. Semenzin, A. Critto, and A. Marcomini
Hydrol. Earth Syst. Sci., 18, 5399–5414, https://doi.org/10.5194/hess-18-5399-2014, https://doi.org/10.5194/hess-18-5399-2014, 2014
Short summary
Short summary
This paper proposes a methodology, shaped by the EU Flood Directive, for the integrated assessment of flood risk at the regional scale for multiple receptors (i.e. people, economic activities, natural and semi-natural systems and cultural heritage) based on the subsequent assessment of hazards, exposure and vulnerability. By means of MCDA and GIS tools, it supports the ranking of the area, sub-areas and hotspots at risk, in order to evaluate the benefits of different risk prevention scenarios.
R. Brázdil, K. Chromá, L. Řezníčková, H. Valášek, L. Dolák, Z. Stachoň, E. Soukalová, and P. Dobrovolný
Hydrol. Earth Syst. Sci., 18, 3873–3889, https://doi.org/10.5194/hess-18-3873-2014, https://doi.org/10.5194/hess-18-3873-2014, 2014
A. Emmer and V. Vilímek
Hydrol. Earth Syst. Sci., 18, 3461–3479, https://doi.org/10.5194/hess-18-3461-2014, https://doi.org/10.5194/hess-18-3461-2014, 2014
S. T. Harrington and J. R. Harrington
Hydrol. Earth Syst. Sci., 18, 2191–2200, https://doi.org/10.5194/hess-18-2191-2014, https://doi.org/10.5194/hess-18-2191-2014, 2014
J. Dawidek and B. Ferencz
Hydrol. Earth Syst. Sci., 18, 1457–1465, https://doi.org/10.5194/hess-18-1457-2014, https://doi.org/10.5194/hess-18-1457-2014, 2014
J. A. Leach and R. D. Moore
Hydrol. Earth Syst. Sci., 18, 819–838, https://doi.org/10.5194/hess-18-819-2014, https://doi.org/10.5194/hess-18-819-2014, 2014
M. Pan and E. F. Wood
Hydrol. Earth Syst. Sci., 17, 4577–4588, https://doi.org/10.5194/hess-17-4577-2013, https://doi.org/10.5194/hess-17-4577-2013, 2013
T. R. Jackson, R. Haggerty, and S. V. Apte
Hydrol. Earth Syst. Sci., 17, 2747–2779, https://doi.org/10.5194/hess-17-2747-2013, https://doi.org/10.5194/hess-17-2747-2013, 2013
G. Göransson, M. Larson, and D. Bendz
Hydrol. Earth Syst. Sci., 17, 2529–2542, https://doi.org/10.5194/hess-17-2529-2013, https://doi.org/10.5194/hess-17-2529-2013, 2013
F. Gallart, N. Prat, E. M. García-Roger, J. Latron, M. Rieradevall, P. Llorens, G. G. Barberá, D. Brito, A. M. De Girolamo, A. Lo Porto, A. Buffagni, S. Erba, R. Neves, N. P. Nikolaidis, J. L. Perrin, E. P. Querner, J. M. Quiñonero, M. G. Tournoud, O. Tzoraki, N. Skoulikidis, R. Gómez, M. M. Sánchez-Montoya, and J. Froebrich
Hydrol. Earth Syst. Sci., 16, 3165–3182, https://doi.org/10.5194/hess-16-3165-2012, https://doi.org/10.5194/hess-16-3165-2012, 2012
G. Göransson, M. Larson, D. Bendz, and M. Åkesson
Hydrol. Earth Syst. Sci., 16, 1879–1893, https://doi.org/10.5194/hess-16-1879-2012, https://doi.org/10.5194/hess-16-1879-2012, 2012
M. Forsius, T. Saloranta, L. Arvola, S. Salo, M. Verta, P. Ala-Opas, M. Rask, and J. Vuorenmaa
Hydrol. Earth Syst. Sci., 14, 2629–2642, https://doi.org/10.5194/hess-14-2629-2010, https://doi.org/10.5194/hess-14-2629-2010, 2010
D. M. Thompson and C. R. McCarrick
Hydrol. Earth Syst. Sci., 14, 1321–1330, https://doi.org/10.5194/hess-14-1321-2010, https://doi.org/10.5194/hess-14-1321-2010, 2010
Cited articles
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change, Limnol. Oceanogr., 54, 2283–2297, https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009.
Amin, A., Zuecco, G., Geris, J., Schwendenmann, L., McDonnell, J. J., Borga, M., and Penna, D.: Depth distribution of soil water sourced by plants at the global scale: A new direct inference approach, Ecohydrology, 13, e2177, https://doi.org/10.1002/eco.2177, 2020.
Anderson, N. J. and Leng, M. J.: Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated-lake sediments, Quaternary Sci. Rev., 23, 841–849, https://doi.org/10.1016/j.quascirev.2003.06.013, 2004.
Arnalds, O.: Volcanic soils of Iceland, Catena, 56, 3–20, https://doi.org/10.1016/j.catena.2003.10.002, 2004.
Árnason, B.: Groundwater systems in Iceland traced by deuterium, Soc. Sci. Islandica, 42, 1–236, 1976.
Balascio, N. L., D'Andrea, W. J., Bradley, R. S., and Perren, B.: Biogeochemical evidence for hydrologic changes during the Holocene in a lake sediment record from southeast Greenland, Holocene, 23, 1428–1439, https://doi.org/10.1177/0959683613493938, 2013.
Balascio, N. L., D'Andrea, W. J., Gjerde, M., and Bakke, J.: Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes, Quaternary Sci. Rev., 183, 177–187, https://doi.org/10.1016/j.quascirev.2016.11.036, 2018.
Baldini, L. M., McDermott, F., Foley, A. M., and Baldini, J. U. L.: Spatial variability in the European winter precipitation δ18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene, Geogr. Res. Lett., 35, L04709, https://doi.org/10.1029/2007GL032027, 2008.
Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat, Nature, 509, 479–482, https://doi.org/10.1038/nature13259, 2014.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim. Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Bintanja, R., van der Wiel, K., van der Linden, E. C., Reusen, J., Bogerd, L., Krikken, F., and Selten, F. M.: Strong future increases in Arctic precipitation variability linked to poleward moisture transport, Science Advances, 6, 1–6, https://doi.org/10.1126/sciadv.aax6869 2020.
Bödvarsson, G.: The use of isotopes of hydrogen and oxygen for hydrological purposes in Iceland, Jökull, 12, 49–54, 1962.
Boehrer, B. and Schultze, M.: Stratification of lakes, Rev. Geophys., 46, RG2005, https://doi.org/10.1029/2006RG000210, 2008.
Bowen, G. J., Putman, A., Brooks, J. R., Bowling, D. R., Oerter, E. J., and Good, S. P.: Inferring the source of evaporated waters using stable H and O isotopes, Oecologia, 187, 1025–1039, https://doi.org/10.1007/s00442-018-4192-5, 2018.
Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of modern meteoric precipitation, Water Resour. Res., 39, 1–13, https://doi.org/10.1029/2003WR002086, 2003.
Bush, R. T., Berke, M. A. M., and Jacobson, A. D.: Plant water δD and δ18O of tundra species from west Greenland, Arct. Antarct. Alp. Res., 49, 341–358, https://doi.org/10.1657/AAAR0016-025, 2017.
Caseldine, C., Geirsdóttir, Á., and Langdon, P.: Efstadalsvatn – a multi-proxy study of a Holocene lacustrine sequence from NW Iceland, J. Paleolimnol., 30, 55–73, https://doi.org/10.1023/A:1024781918181, 2003.
Cluett, A. A. and Thomas, E. K.: Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences, J. Paleolimnol., 63, 251–268, https://doi.org/10.1007/s10933-020-00114-4, 2020.
Cook, C. S., Erkkila, B. R., Chakraborty, S., Tipple, B. J., Cerling, T. E., and Ehleringer, J. R.: Stable Isotope Biogeochemistry and Ecology: Laboratory Manual, 173 pp., ISBN 10 1973349086, ISBN 13 978-1973349082, 2017.
Cooper, L. W., Olsen, C. R., Solomon, D. K., Larsen, I. L., Cook, R. B., and Grebmeier, J. M.: Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an arctic watershed, Water Resour. Res., 27, 2171–2179, https://doi.org/10.1029/91WR01243, 1991.
Corcoran, M. C., Thomas, E. K., and Morrill, C.: Using a paired chironomid δ18O and aquatic leaf wax δ2H approach to reconstruct seasonality on western Greenland during the Holocene, Paleoceanography and Paleoclimatology, 36, e2020PA004169, https://doi.org/10.1029/2020PA004169, 2021.
Cowling, O. C., Thomas, E. K., Svendsen, J. I., Mangerud, J., Haflidason, H., Regnéll, C., and Brendyren, J.: Western Siberia experience rapid shifts in moisture source and summer water balance during the last deglaciation and early Holocene, J. Quaternary Sci., 37, 790–804, https://doi.org/10.1002/jqs.3386, 2022.
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703, https://doi.org/10.1126/science.133.3465.1702, 1961.
Crochet, P., Jóhannesson, T., Jónsson, T., Sigurðsson, O., Björnsson, H., Pálsson, F., and Barstad, I.: Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation, Journal of Hydrometerology, 8, 1285–1306, https://doi.org/10.1175/2007JHM795.1, 2007.
Curtin, L., D'Andrea, W. J., Balascio, N., Pugsley, G., de Wet, G., and Bradley, R.: Holocene and Last Interglacial climate of the Faroe Islands from sedimentary plant wax hydrogen and carbon isotopes, Quaternary Sci. Rev., 223, 105930, https://doi.org/10.1016/j.quascirev.2019.105930, 2019.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Dion-Kirschner, H., McFarlin, J. M., Masterson, A. L., Axford, Y., and Osburn, M. R.: Modern constraints on the sources and climate signals recorded by sedimentary plant waxes in west Greenland, Geochim. Cosmochim. Ac., 286, 336–354, https://doi.org/10.1016/j.gca.2020.07.027, 2020.
Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T. Y., Gergis, J., Jiang, D., Khan, A., Pokam Mba, W., Rosenfeld, D., Tierney, J., and Zolina, O.: Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1055–1210, 2021.
Eensalu, M., Nelson, D. B., Buczynska, A., Rach, O., Klein, E. S., Dodd, J. P., Poska, A., and Stansell, N. D.: Hydrogen isotope biogeochemistry of plant waxes in paired lake catchments, Org. Geochem., 184, 104674, https://doi.org/10.1016/j.orggeochem.2023.104674, 2023.
Einarsson, M. Á.: Climate of Iceland – World Survey of Climatology, Vol. 15, Climate of the Oceans, edited by: van Loon, H., Elsevier, Amsterdam, 673–697, 1984.
Epstein, S. and Mayeda, T.: Variation of O18 content of waters from natural sources, Geochim. Cosmochim. Ac., 4, 213–224, https://doi.org/10.1016/0016-7037(53)90051-9, 1953.
Feng, X., Lauder, A. M., Posmentier, E. S., Kopec, B. G., and Virginia, R. A.: Evaporation and transport of water isotopologues from Greenland lakes: The lake size effect, Quaternary Sci. Rev., 131, 302–315, https://doi.org/10.1016/j.quascirev.2015.07.029, 2016.
Florian, C. R.: Multi-proxy reconstructions of Holocene environmental change and catchment biogeochemistry using algal pigments and stable isotopes preserved in lake sediment from Baffin Island and Iceland, PhD thesis, University of Colorado Boulder and University of Iceland, p. 141, https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/rb68xb91b (last access: 1 January 2024), 2016.
Friedman, I.: Sigurgeirsson Th., and Gardarsson, Ö.: Deuterium in Iceland waters, Geochim. Cosmochim. Ac., 27, 553–561, https://doi.org/10.1016/0016-7037(63)90012-7, 1963.
Gat, J. R.: Oxygen and hydrogen isotopes in the hydrologic cycle, Annu. Rev. Earth Pl. Sc., 24, 225–262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Geirsdóttir, Á., Miller, G. H., Larsen, D. J., and Ólafsdóttir, S.: Abrupt Holocene climate transitions in the northern North Atlantic region recorded by synchronized lacustrine records in Iceland, Quaternary Sci. Rev., 70, 48–62, https://doi.org/10.1016/j.quascirev.2013.03.010, 2013.
Geirsdóttir, Á., Harning, D. J., Miller, G. H., Andrews, J. T., Zhong, Y., and Caseldine, C.: Holocene history of landscape instability in Iceland: Can we deconvolve the impacts of climate, volcanism and human activity?, Quaternary Sci. Rev., 249, 106633, https://doi.org/10.1016/j.quascirev.2020.106633, 2020.
Geris, J., Tetzlaff, D., McDonnell, J., and Soulsby, C.: The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments, Hydrol. Process., 29, 1844–1860, https://doi.org/10.1002/hyp.10289, 2015a.
Geris, J., Tetzlaff, D., McDonnell, J., Anderson, J., Paton, G., and Soulsby, C.: Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques, Hydrol. Process., 29, 5139–5152, https://doi.org/10.1002/hyp.10603, 2015b.
Gibson, J. J. and Edwards, T. W. D.: Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada, Global Biogeochem. Cy., 16, 1011–1014, https://doi.org/10.1029/2001GB001839, 2002.
Gibson, J. J., Prepas, E. E., and McEachern, P.: Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: Modelling and results from a regional survey of Boreal lakes, J. Hydrol., 262, 128–144, https://doi.org/10.1016/S0022-1694(02)00022-7, 2002.
Gibson, J. J., Birks, S. J., and Yi, Y.: Stable isotope mass balance of lakes: a contemporary perspective, Quaternary Sci. Rev., 131, 316–328, https://doi.org/10.1016/j.quascirev.2015.04.013, 2016.
Gonfiantini, R., Wassenaar, L. I., and Araguas-Araguas, L. J.: Stable isotope fractionations in the evaporation of water: The wind effect, Hydrol. Process., 34, 3596–3607, https://doi.org/10.1002/hyp.13804, 2020.
Google Earth: 12/13/2015, https://earth.google.com/web/date, last access: 2 January 2023.
Gorbey, D. B., Thomas, E. K., Sauer, P. E., Raynolds, M. K., Miller, G. H., Corcoran, M. C., Cowling, O. C., Crump, S. E., Lovell, K., and Raberg, J. H.: Modern eastern Canadian Arctic lake water isotopes exhibit latitudinal patterns in inflow seasonality and minimal evaporative enrichment, Paleoceanography and Paleoclimatology, 37, 1–19, https://doi.org/10.1029/2021PA004384, 2022.
Hanna, E., Jónsson, T., and Box, J. E.: An analysis of Icelandic climate since the nineteenth century, Int. J. Climatol., 24, 1193–1210, https://doi.org/10.1002/joc.1051, 2004.
Hanna, E., Jónsson, T., Ólafsson, J., and Valdimarsson, H.: Icelandic coastal sea surface temperature records constructed: Putting the pulse on air-sea-climate interactions in the Northern North Atlantic. Part 1: Comparison with HadISST1 open-ocean surface temperatures and preliminary analysis of long-term patterns and anomalies of SSTs around Iceland, J. Climate, 19, 5652–5667, https://doi.org/10.1175/JCLI3933.1, 2006.
Harning, D., Raberg, J., McFarlin, J., Axford, Y., Florian, C., Ólafsdóttir, K., Kopf, S., Sepúlveda, J., Miller, G., and Geirsdóttir, Á.: Lake, stream, and soil water isotopes in Iceland (2002–2004, 2014, 2019–2020), Arctic Data Center [data set], https://doi.org/10.18739/A28W3842T, 2024.
Hollister, K. V., Thomas, E. K., Raynolds, M. K., Bültmann, H., Raberg, J. H., Miller, G. H., and Sepúlveda, J.: Aquatic and terrestrial plant contributions to sedimentary plant waxes in a modern Arctic lake setting, J. Geophys. Res.-Biogeo., 127, e2022JG006903, https://doi.org/10.1029/2022JG006903, 2022.
Holtvoeth, J., Whiteside, J. H., Engels, S., Freitas, F. S., Grice, K., Greenwood, P., Johnson, S., Kendall, I., Lengger, S. K., Lücke, A., Mayr, C., Naafs, B. D. A., Rohrssen, M., and Sepúlveda, J.: The paleolimnologist's guide to compound-specific stable isotope analysis – An introduction to principles and applications of CSIA for Quaternary lake sediments, Quaternary Sci. Rev., 207, 101–133, https://doi.org/10.1016/j.quascirev.2019.01.001, 2019.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An overview of the North Atlantic Oscillation, Geophysical Monograph, 134, 1–35, https://doi.org/10.1029/134GM01, 2003.
IAEA/WMO: Global network of isotopes in precipitation. The GNIP Database, https://nucleus.iaea.org/wiser (last access: 1 January 2024), 2015.
Icelandic Met Office (IMO): Climatological data, https://en.vedur.is/climatology/data/ (last access: 1 January 2024), 2023.
Jonsson, C. E., Leng, M. J., Rosqvist, G. C., Seibert, J., and Arrowsmith, C.: Stable oxygen and hydrogen isotopes in sub-Arctic lake waters from northern Sweden, J. Hydrol., 376, 143–151, https://doi.org/10.1016/j.jhydrol.2009.07.021, 2009.
Jouzel, J., Hoffmann, G., Koster, R. D., and Masson, V.: Water isotopes in precipitation: data/model comparison for present-day and past climates, Quaternary Sci. Rev., 19, 363–379, https://doi.org/10.1016/S0277-3791(99)00069-4, 2000.
Kjellman, S. E., Schomacker, A., Thomas, E. K., Håkansson, L., Duboscq, S., Cluett, A. A., Farnsworth, W. R., Allaart, L., Cowling, O. C., McKay, N. P., Brynjólfsson, S., and Ingólfsson, Ó.: Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions, Quaternary Sci. Rev., 240, 106388, https://doi.org/10.1016/j.quascirev.2020.106388, 2020.
Kjellman, S. E., Thomas, E. K., and Schomacker, A.: Arctic and sub-Arctic lake water δ2H and δ18O along a coastal-inland transect: Implications for interpreting water isotope proxy records, J. Hydrol., 607, 127556, https://doi.org/10.1016/j.jhydrol.2022.127556, 2022.
Kopec, B. G., Feng, X., Posmentier, E. S., Chipman, J. W., and Virginia, R. A.: Use of principal component analysis to extract environmental information from lake water isotopic compositions, Limnol. Oceanogr., 63, 1340–1354, https://doi.org/10.1002/lno.10776, 2018.
Konecky, B. L., McKay, N. P., Falster, G. M., Stevenson, S. L., Fischer, M. J., Atwood, A. R., Thompson, D. M., Jones, M. D., Tyler, J. J., DeLong, K. L., Martrat, B., Thomas, E. K., Conroy, J. L., Dee, S. G., Jonkers, L., Churakova (Sidorova), O. V., Kern, Z., Opel, T., Porter, T. J., Sayani, H. R., Skrzypek, G., and Iso2k Project Members: Globally coherent water cycle response to temperature change during the past two millennia, Nat. Geosci., 16, 997–1004, https://doi.org/10.1038/s41561-023-01291-3, 2023.
Leng, M. J. and Anderson, N. J.: Isotopic variation in modern lake waters from western Greenland, Holocene, 13, 605–611, https://doi.org/10.1191/0959683603hl620rr, 2003.
Linderholm, H. W., Nicolle, M., Francus, P., Gajewski, K., Helama, S., Korhola, A., Solomina, O., Yu, Z., Zhang, P., D'Andrea, W. J., Debret, M., Divine, D. V., Gunnarson, B. E., Loader, N. J., Massei, N., Seftigen, K., Thomas, E. K., Werner, J., Andersson, S., Berntsson, A., Luoto, T. P., Nevalainen, L., Saarni, S., and Väliranta, M.: Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges, Clim. Past, 14, 473–514, https://doi.org/10.5194/cp-14-473-2018, 2018.
McFarlin, J. M., Axford, Y., Masterson, A. L., and Osburn, M. R.: Calibration of modern sedimentary δ2H plant wax-water relationships in Greenland lakes, Quaternary Sci. Rev., 225, 105978, https://doi.org/10.1016/j.quascirev.2019.105978, 2019.
McFarlin, J. M., Axford, Y., Kusch, S., Masterson, A. L., Lasher, G. E., and Osburn, M. R.: Aquatic plant wax hydrogen and carbon isotopes in Greenland lakes record shifts in methane cycling during past Holocene warming, Science Advances, 9, 1–12, https://doi.org/10.1126/sciadv.adh9704, 2023.
Moossen, H., Bendle, J., Seki, O., Quillmann, U., and Kawamura, K.: North Atlantic Holocene climate evolution recorded by high-resolution terrestrial and marine biomarker records, Quaternary Sci. Rev., 129, 111–127, https://doi.org/10.1016/j.quascirev.2015.10.013, 2015.
Muhic, F., Ala-Aho, P., Noor, K., Welker, J. M., Klöve, B., and Marttila, H.: Flushing or mixing? Stable isotopes reveal differences in arctic forest and peatland soil water seasonality, Hydrol. Process., 37, e14811, https://doi.org/10.1002/hyp.14811, 2023.
NOAA National Centers for Environmental Information: North Atlantic Oscillation (NAO), https://www.ncei.noaa.gov/access/monitoring/nao/ (last access: 1 January 2024), 2023.
Olsen, J., Anderson, N. J., and Knudsen, M. F.: Variability of the North Atlantic Oscillation over the past 5,200 years, Nat. Geosci., 5, 1–14, https://doi.org/10.1038/ngeo1589, 2012.
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 1 January 2024), 2022.
Raberg, J., Harning, D., Geirsdóttir, Á., Sepúlveda, J., and Gifford Miller, G. H.: Soil and lake water temperatures of Iceland (2019–2021), Arctic Data Center [data set], https://doi.org/10.18739/A2XP6V46R, 2021.
Raberg, J., Harning, D., Geirsdóttir, Á., Sepúlveda, J., and Gifford Miller, G. H.: Water chemistry profiles of lakes in Iceland (2019–2021), Arctic Data Center [data set], https://doi.org/10.18739/A26688K7F, 2023.
Raberg, J. H., Crump, S. E., de Wet, G., Harning, D. J., Miller, G. H., Geirsdóttir, Á., and Sepúlveda, J.: BrGDGT lipids reflect summer soil temperature and seasonal soil water chemistry, Geochim. Cosmochim. Ac., 369, 111–125, https://doi.org/10.1016/j.gca.2024.01.034, 2024.
Raberg, J. H., Harning, D. J., Crump, S. E., de Wet, G., Blumm, A., Kopf, S., Geirsdóttir, Á., Miller, G. H., and Sepúlveda, J.: Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments, Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, 2021.
Rach, O., Kahmen, A., Brauer, A., and Sachse, D.: A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D∕H ratios, Clim. Past, 13, 741–757, https://doi.org/10.5194/cp-13-741-2017, 2017.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, M. A., van der Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H.-L., Sessions, A. L., White, J. W. C., West, J. B., and Kahmen, A.: Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms, Annu. Rev. Earth Pl. Sc., 40, 221–249, https://doi.org/10.1146/annurev-earth-042711-105535, 2012.
Serreze, M. C., Barrett, A. P., Slater, A. G., Woodgate, R. A., Aagaard, K., Lammers, R. B., Steele, M., Moritz, R., Meredith, M., and Lee, C. M.: The large-scale freshwater cycle of the Arctic, J. Geophys. Res.-Oceans, 111, 1–19, https://doi.org/10.1029/2005JC003424, 2006.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Sodemann, H., Masson-Delmotte, V., Schwierz, C., Vinther, B. M., and Wernli, H.: Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation, J. Geophys. Res., 113, 1–21, https://doi.org/10.1029/2007JD009416, 2008.
Sprenger, M., Tetzlaff, D., and Soulsby, C.: Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone, Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, 2017.
Steen-Larsen, H. C., Sveinbjörnsdóttir, A. E., Jonsson, Th., Ritter, F., Bonne, J.-L., Masson-Delmotte, V., Sodemann, H., Blunier, T., Dahl-Jensen, D., and Vinther, B. M.: Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition, J. Geophys. Res.-Atmos., 120, 5757–5774, https://doi.org/10.1002/2015JD023234, 2015.
Stefánsson, A., Arnórsson, S., Sveinbjörnsdóttir, Á. E., Heinemeier, J., and Kristmannsdóttir, H.: Isotope (δD, δ18O, 3H, δ13C, 14C) and chemical (B, Cl) constrains on water origin, mixing, water-rock interaction and age of low-temperature geothermal water, Appl. Geochem., 108, 104380, https://doi.org/10.1016/j.apgeochem.2019.104380, 2019.
Stefánsson, U.: North Icelandic Waters, Rit Fiskideildar, 3, 1–265, 1962.
Sundqvist, H. S., Kaufman, D. S., McKay, N. P., Balascio, N. L., Briner, J. P., Cwynar, L. C., Sejrup, H. P., Seppä, H., Subetto, D. A., Andrews, J. T., Axford, Y., Bakke, J., Birks, H. J. B., Brooks, S. J., de Vernal, A., Jennings, A. E., Ljungqvist, F. C., Rühland, K. M., Saenger, C., Smol, J. P., and Viau, A. E.: Arctic Holocene proxy climate database – new approaches to assessing geochronological accuracy and encoding climate variables, Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, 2014.
Tetzlaff, D., Birkel, C., Dick, J., Geris, J., and Soulsby, C.: Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions, Water Resour. Res., 50, 969–985, https://doi.org/10.1002/2013WR014147, 2014.
Tetzlaff, D., Piovano, T., Ala-Aho, P., Smith, A., Carey, S. K., Marsh, P., Wookey, P. A., Street, L. E., and Soulsby, C.: Using stable isotopes to estimate travel times in a data-sparse Arctic catchment: Challenges and possible solutions, Hydrol. Process., 32, 1936–1952, https://doi.org/10.1002/hyp.13146, 2018.
Thomas, E. K., Hollister, K. V., Cluett, A. A., and Corcoran, M. C.: Reconstructing Arctic precipitation seasonality using aquatic leaf wax δ2H in lakes with contrasting residence times, Paleoceanography and Paleoclimatology, 35, 1–19, https://doi.org/10.1029/2020PA003886, 2020.
Throckmorton, H. M., Newman, B. D., Heikoop, J. M., Perkins, G. B., Feng, X., Graham, D. E., O`Malley D., Vesselinov, V. V., Young, J., Wullschleger, S. D., and Wilson, C. J.: Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes, Hydrol. Process., 30, 4972–4986, https://doi.org/10.1002/hyp.10883, 2016.
van der Bilt, W. G. M., D'Andrea, W. J., Oppedal, L. T., Bakke, J., Bjune, A. E., and Zwier, M.: Stable Southern Hemisphere westerly winds throughout the Holocene until intensification in the last two millennia, Commun. Earth Environ., 3, 186, https://doi.org/10.1038/s43247-022-00512-8, 2022.
Vaughn, B. H., White, J. W. C., Delmotte, M., Trolier, M., Cattani, O., and Stievenard, M.: An automated system for hydogen isotope analysis of water, Chem. Geol., 152, 309–319, https://doi.org/10.1016/S0009-2541(98)00117-X, 1998.
Verbruggen, F., Heiri, O., Reichart, G. J., Blaga, C., and Lotter, A. F.: Stable oxygen isotopes in chironomid and cladoceran remains as indicates for lake-water δ18O, Limnol. Oceanogr., 56, 2071–2079, https://doi.org/10.4319/lo.2011.56.6.2071, 2011.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a Correlation Matrix (Version 0.92), GitHub [code], https://github.com/taiyun/corrplot (last access: 1 January 2024), 2021.
Wooller, M., Wang, Y., and Axford, Y.: A multiple stable isotope record of Late Quaternary limnological changes and chironomid paleoecology from northeastern Iceland, J. Paleolimnology, 40, 63–77, https://doi.org/10.1007/s10933-007-9144-8, 2008.
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
As human-induced global warming progresses, changes to Arctic precipitation are expected, but...