Articles | Volume 28, issue 1
https://doi.org/10.5194/hess-28-217-2024
https://doi.org/10.5194/hess-28-217-2024
Research article
 | 
15 Jan 2024
Research article |  | 15 Jan 2024

Accounting for hydroclimatic properties in flood frequency analysis procedures

Joeri B. Reinders and Samuel E. Munoz

Related authors

Evaluation of hydroclimatic biases in the Community Earth System Model (CESM1) within the Mississippi River basin
Michelle O'Donnell, Kelsey Murphy, James Doss-Gollin, Sylvia Dee, and Samuel Munoz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-153,https://doi.org/10.5194/hess-2024-153, 2024
Preprint under review for HESS
Short summary
A Bayesian approach to integrating radiometric dating and varve measurements in intermittently indistinct sediment
Stephanie H. Arcusa, Nicholas P. McKay, Charlotte Wiman, Sela Patterson, Samuel E. Munoz, and Marco A. Aquino-López
Geochronology, 4, 409–433, https://doi.org/10.5194/gchron-4-409-2022,https://doi.org/10.5194/gchron-4-409-2022, 2022
Short summary
Neoglacial climate anomalies and the Harappan metamorphosis
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018,https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025,https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary

Cited articles

Asikoglu, O. L.: Parent flood frequency distribution of Turkish rivers, Polish J. Environ. Stud., 27, 529–539, https://doi.org/10.15244/pjoes/75963, 2018. 
Barth, N. A., Villarini, G., and White, K.: Accounting for Mixed Populations in Flood Frequency Analysis: Bulletin 17C Perspective, J. Hydrol. Eng., 24, 04019002, https://doi.org/10.1061/(asce)he.1943-5584.0001762, 2019. 
Blöschl, G. and Sivapalan, M.: Process controls on regional flood frequency: Coefficient of variation and basin scale, Water Resour. Res., 33, 2967–2980, https://doi.org/10.1029/97WR00568, 1997. 
Cassalho, F., Beskow, S., de Mello, C. R., and de Moura, M. M.: Regional flood frequency analysis using L- moments for geographically defined regions: An assessment in Brazil, J. Flood Risk Manage., 12, e12453, https://doi.org/10.1111/jfr3.12453, 2019. 
Castellarin, A., Kohnova, S., Gaal, L., Fleig, A., Salinas, J. L., Toumazis, A., Kjeldsen, T. R., and Macdonald, N.: Review of applied-statistical methods for flood-frequency analysis in Europe, http://www.cost.eu/module/download/33272 (last access: 17 March 2022), 2012. 
Download
Short summary
Flooding presents a major hazard for people and infrastructure along waterways; however, it is challenging to study the likelihood of a flood magnitude occurring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives water managers a tool to locally improve flood analysis.
Share