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Abstract. Flood hazard is typically evaluated by computing
extreme flood probabilities from a flood frequency distribu-
tion following nationally defined procedures in which ob-
served peak flow series are fit to a parametric probability dis-
tribution. These procedures, also known as flood frequency
analysis, typically recommend only one probability distri-
bution family for all watersheds within a country or region.
However, large uncertainties associated with extreme flood
probability estimates (> 50-year flood orQ50) can be further
biased when fit to an inappropriate distribution model be-
cause of differences in the tails between distribution families.
Here, we demonstrate that hydroclimatic parameters can aid
in the selection of a parametric flood frequency distribution.
We use L-moment diagrams to visually show the fit of gaged
annual maxima series across the United States, grouped by
their Köppen climate classification and the precipitation in-
tensities of the basin, to a general extreme value (GEV), log
normal 3 (LN3), and Pearson 3 (P3) distribution. Our results
show that in real space basic hydroclimatic properties of a
basin exert a significant influence on the statistical distribu-
tion of the annual maxima. The best-fitted family distribu-
tion shifts from a GEV towards an LN3 distribution across a
gradient from colder and wetter climates (Köppen group D,
continental climates) towards more arid climates (Köppen
group B, dry climates). Due to the diversity of hydrologic
processes and flood-generating mechanisms among water-
sheds within large countries like the United States, we rec-
ommend that the selection of distribution model be guided
by the hydroclimatic properties of the basin rather than rely-
ing on a single national distribution model.

1 Introduction

Around the world, communities depend on rivers for vital
resources, yet riverine floods present a significant hazard
for people and infrastructure along interior waterways (Mal-
lakpour and Villarini, 2015; Peterson et al., 2013). To miti-
gate risks and develop safe emergency plans, water managers
depend on reliable methods to compute extreme flood prob-
abilities. Typically these methods use the probability distri-
bution of annual maxima discharge, also known as the flood
frequency distribution, from which one can compute extreme
flood probabilities (e.g., the 100-year flood (Q100), a flood
with a 1 % chance of occurrence in a given year) (Hamed
and Ramachandro Rao, 2000; Kidson and Richards, 2005;
Cassalho et al., 2019). To construct flood frequency distribu-
tions, national flood frequency procedures around the world
fit observed annual stream maxima to a parametric proba-
bility distribution model (Castellarin et al., 2012; Madsen
et al., 2014). These approaches involve and are affected by
the a priori assumption regarding which parametric statisti-
cal model best captures the empirical distribution of flood
magnitudes (Kidson and Richards, 2005). Standard national
procedures often prescribe just one probabilistic distribution
model; for example, the United States Bulletin 17C recom-
mends the log-Pearson 3 (LP3) distribution family (England
et al., 2019), while in the United Kingdom, the Flood Estima-
tion Handbook (FEH) recommends the use of the generalized
logistic distribution (GLO) (Robson and Reed, 1999). Al-
though these recommendations provide a consistent frame-
work for flood frequency analyses (Barth et al., 2019), they
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can also result in biased estimates of infrequent flood prob-
abilities when applied over large hydro-climatically diverse
regions (Klemes, 1993; Merz and Blöschl, 2003, 2008), due
to the inherent differences in the distribution shape and tail
thickness of different parametric models. These differences
can amplify the existing large uncertainties for extreme flood
probability estimates, such as the 100- or 500-year floods.

Watershed morphology, land use management, and clima-
tology affect flood frequency properties such as the mean,
variance, and tails or, respectively, the location, scale, and
shape parameters of the probabilistic distribution. For ex-
ample, large watersheds have the capacity to absorb heavy
precipitation events better than small watersheds (Iacobellis
et al., 2002; Salinas et al., 2014b), meaning that peak flow
in smaller watersheds is disproportionally affected by an ex-
treme precipitation event and that they observe higher peak
flow variances (Iacobellis et al., 2002; Salinas et al., 2014a).
Other studies have noted more complex relationships, where
the coefficient of variation (CV) of flood frequency distri-
butions decreases with watershed area for small watersheds
but increases with area for large watersheds (Blöschl and
Sivapalan, 1997; Smith, 1992). Urbanization leads to a re-
duction in soil permeability and an increase in precipitation-
induced surface runoff (Hall et al., 2014; Hodgkins et al.,
2019), which results in more local flash floods that are asso-
ciated with thick-tailed flood frequency distributions (Merz
and Blöschl, 2003; Zhang et al., 2018) – although this ef-
fect is strongest for regular floods and diminishes for in-
creasing exceedance probabilities (Over et al., 2016). Re-
latedly, population growth (a proxy for urbanization) and
river engineering (e.g., channel straightening) can increase
mean annual peak flows (Villarini et al., 2009; Munoz et
al., 2018), whereas dam reservoirs have reduced the median
annual flood by up to 25 % in 55 % of the large US rivers
(Fitzhugh and Vogel, 2011).

Local flood-generating mechanisms, particularly the type,
duration, and intensity of local precipitation events, affect
all aspects of the flood frequency distribution (Hall et al.,
2014; Merz and Blöschl, 2003). In watersheds where pre-
cipitation occurs predominantly as rain as opposed to snow,
flood frequency distributions exhibit higher variance (Merz
and Blöschl, 2003; Gaál et al., 2015). Similarly, water-
sheds where total annual precipitation only falls in a few
intense events also have flood distributions with high CV
(Blöschl and Sivapalan, 1997; Pitlick, 1994), whereas wa-
tersheds with high total annual precipitation observe flood
distributions with lower CV (Salinas et al., 2014b). Merz
and Blöschl (2003) summarized several of these findings in
their typology of regional flood-generating mechanisms. An-
tecedent soil moisture adds another level of complexity to the
relationship between precipitation and flood frequency distri-
bution shape, as synchronicity between precipitation and an-
tecedent soil moisture levels is likely to thicken the flood fre-
quency distribution tails through surface runoff levels (Ivan-
cic and Shaw, 2015).

The patterns between local watershed characteristics and
flood frequency distribution properties form a potential tool
for improving extreme flood probability estimates in hydro-
logically diverse regions. One method is to select a paramet-
ric distribution based on the value of an environmental pa-
rameter of the watershed, for example a precipitation statis-
tic or a drainage area. Salinas et al. (2014b) demonstrate
that European rivers with different drainage areas and to-
tal annual precipitation fit differently to multiple three-and-
two-parameter distribution families. However, as described
above, the relation between drainage area and flood fre-
quency shape is complex, and annual maximum rainfall does
not necessarily reflect different precipitation regimes. There
are relatively few studies that relate flood frequency distribu-
tions to aggregated climate classifications such as the Köp-
pen climate regions (Kottek et al., 2006; Peel et al., 2007). In
one such study, Metzger et al. (2020) demonstrate that flood
frequency distributions in arid and semi-arid regions give
larger ratios of 10- to 100-year floods compared to Mediter-
ranean climates; a similar relation was found when arid re-
gions are compared to humid regions (Zaman et al., 2012).
These findings provide strong support for the hypothesis that
the hydroclimatic properties of a basin – particularly aggre-
gate hydroclimatic classifications like the Köppen system –
influence the tail thickness of flood frequency distributions
and thus exert considerable influence on the probabilities of
the most extreme flood events.

Here we build on the previous work by Salinas et
al. (2014a, b) by examining the fit of annual maxima stream-
flow data from across the United States to several three-
parameter distributions via L-moment diagrams. We perform
a similar experiment but group annual maxima gage records
based on two aggregated hydroclimatic variables instead of
one-dimensional variables: (1) the Köppen climate region
(Kottek et al., 2006) and (2) watershed precipitation inten-
sity, which is a combination of the maximum daily precipi-
tation and the total annual precipitation. We chose the Köp-
pen climate classification because it includes several of the
above-mentioned variables that affect peak flow distributions
(temperature, precipitation, vegetation, soil properties) and
precipitation intensity because it represents aspects of flood-
generating precipitation regimes (Hayden, 1988). By group-
ing gage discharge records based on the hydroclimatic prop-
erties of their basin, we assess whether these variables can
guide a priori parametric distribution model selection. Our
results demonstrate that peak flow records from different
Köppen climate regions and precipitation intensity groups
tend to fit specific distribution families. These findings im-
ply that the hydroclimate properties of a watershed can be
used to guide the selection of a distribution family in flood
frequency analysis.
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2 Hydroclimatic data and methodology for the
L-moment diagrams

2.1 Data

We chose the United States for our study because it spans all
five main Köppen climate groups (Peel et al., 2007) and has
watersheds that are influenced by a diverse set of synoptic
weather systems (Hirschboeck, 1988).

Yet, despite this hydroclimatic diversity, the LP3 distri-
bution is recommended for all flood frequency analyses in
the United States in Bulletin 17C (England et al., 2019).
To determine the flood frequency distribution shape of dif-
ferent United States rivers, we constructed a dataset con-
taining 1538 annual maxima discharge records (Fig. 1a).
This dataset is a selection of the larger USGS surface water
database which contains observational data from a network
of gages across the United States (USGS, 2020). To generate
our dataset, we first selected all records longer than 30 years.
Next, we picked the longest continuous record for each avail-
able USGS hydrologic unit to avoid biasing the distribution
selection towards more heavily gaged rivers. We also in-
cluded records from Alaska and Hawaii to encompass ad-
ditional hydroclimatic diversity. The annual maxima records
in the final dataset have an average length of 78 years and a
range from 30 to 118 years (Fig. 1b). We also performed a
preliminary analyses with a dataset from which records that
have been affected by regulation or diversion (USGS qual-
ification code 5 and 6) were omitted; however, this did not
yield meaningfully different results (Fig. S1–S3 in the Sup-
plement). As our aim is to find a distribution family that can
support a broad range of impacts we decided to also include
regulated records.

To classify the gage records in different hydroclimatic
groups, each annual maxima record was assigned a Köp-
pen climate classification (Peel et al., 2007; Kottek et al.,
2006) and a long-term (1981–2010) daily mean precipitation
record from the Climate Prediction Center (CPC) precipita-
tion dataset based on proximity to the centroid of the water-
shed (Falcone, 2011; Chen et al., 2008). First, annual max-
ima records were categorized by their main Köppen climate
group: arid (B), temperate (C), or continental (D) – other cli-
mate groups did not have enough representation among the
gages compared to the other climate groups (six for tropical
and one for polar – all located in Hawaii or Alaska) (Kot-
tek et al., 2006). Of the 1538 annual maxima, 204 are in an
arid climate (Köppen group B), 549 are located in temper-
ate climates (Köppen group C), and 778 are located in con-
tinental climates (Köppen group D). Next, we categorized
annual maximum records by their watershed’s hydroclimatic
intensity, defined here as the percentage contribution of the
maximum daily precipitation level to the total annual precip-
itation (PSC) in the CPC record (Chen et al., 2008). Gages
close to high PSC values thus experience most precipitation
during high-intensity events, whereas gages with low PSC

values experience precipitation more evenly throughout the
year. We also assessed other precipitation metrics (e.g. an-
nual maximum daily precipitation and the 95th percentile of
the daily precipitation level distribution), but these metrics
were not as meaningfully associated with flood distributions
as PSC, which is similar to precipitation metrics known to in-
fluence flood frequency distribution shape (Metzger et al.,
2020; Pitlick, 1994). Each annual maxima record was as-
signed to one of three groups: the lowest 20 % PSC values
containing 308 records (i.e., precipitation spread more evenly
throughout the year), the highest 20 % PSC values containing
308 records (i.e., a significant proportion of annual precipi-
tation falls in one storm), and all intermediate values encom-
passing the remaining 922 records. The 20th and 80th per-
centiles were chosen because they preserve a meaningful dif-
ference between the two groups while maintaining large sam-
ple sizes.

2.2 L-moment diagrams

We use L-moment diagrams to measure the fit of annual
maxima records to several parametric distribution families.
L-moment diagrams are a graphical tool used to assess the
goodness-of-fit of multiple annual maxima records to a se-
ries of probabilistic models and guide the selection of a re-
gional flood frequency distribution family (Peel et al., 2001;
Vogel and Fennessey, 1993). The L-moments of a hydrologic
record are the linear combinations of its order statistics and,
like regular moments (i.e. the mean, standard deviation, and
skewness), describe the shape of a sample distribution. L-
moments are often preferred over conventional product mo-
ments because they are more robust for small sample sizes
(Hosking, 1990; Wang, 1990). When fitting data to three-
parameter distributions, an L-moment diagram is constructed
by plotting the L-moment ratios of skewness (L-skew; t3), di-
viding the third L-moment by the second L-moment against
the L-moment ratio of kurtosis (L-kurtosis; t4) the fourth L-
moment divided by the second L-moment (Hosking and Wal-
lis, 1997). Any three-parameter distribution can be plotted
as a line in the L-moment diagram from their mathematical
formulation of the ratio between L-skew and L-kurtosis (Ta-
ble 1). The distance between the L-skew and L-kurtosis of a
sample and the line describing a particular three-parameter
distribution represents the likelihood of the record deriving
from that distribution – the closer the sample to the line, the
better the fit (Hosking and Wallis, 1997). A detailed descrip-
tion of L-moments and how to compute them is given by
Hosking and Wallis (1997).

The L-moments for all annual maxima record in our
dataset are compared to a general extreme value (GEV),
log normal 3 (LN3), and Pearson 3 (P3) distribution. These
three-parameter distributions are commonly used in hydro-
logic sciences (Salinas et al., 2014b) and are known to fit
extreme flood values in the United States well (Vogel et al.,
1993; Vogel and Wilson, 1996). Additionally, we plotted log-
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Figure 1. (a) Locations of hydrologic annual maxima records from instrumental river gages used in this study grouped by the percentage
of the maximum annual daily precipitation level by the total annual precipitation level (PSC) and plotted atop their Köppen climate region.
(b) Histogram of discharge record length in years; the red line indicates the mean value, 78 years.

Table 1. Overview of the distributions used in this study including their probability density function and L-moments (ratios). Mathematical
formulations of the probability density functions and L-moments as described by Hosking and Wallis (1997).
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Note: in the probability density functions, ξ , a, and k are the location, scale, and shape parameters, respectively. The symbols λ1, λ2, τ3, and τ4 respectively stand for the first four
L-moments. An approximation of τ3 and τ4 for the LN3 and P3 distribution is discussed in detail in Hosking and Wallis (1997).

transformed discharge records in an L-moment diagram to
fit them to a LP3 distribution. L-moment diagrams are con-
structed for all records in the dataset, and each selection of
record is based on their Köppen climate classification and
PSC value.

Prior work demonstrated that selecting one distribution
that provides the best fit to annual maxima is difficult over
a large hydrologically heterogeneous region due to the high
sample variance of the L-moments (Asikoglu, 2018; Salinas
et al., 2014a). To reduce the noise and guide model selec-
tion, we compute a weighted moving average (WMA) of
neighboring L-skew and their corresponding L-kurtosis pro-
portional to record length. Salinas et al. (2014a) applied this

method to annual maxima series from across Europe to ar-
gue for the GEV distribution as a pan-European flood fre-
quency distribution. We computed the WMA and its 95 %
confidence interval to summarize sample variance and facil-
itate distribution selection of all L-moment diagrams in this
study. The weighted averages are taken from 50 consecutive
L-skews and of the 50 corresponding L-kurtoses proportional
to record length. Additionally we show the goodness-of-fit
by computing the sum of the squared error (SSE) between
the WMA and the individual theoretical distribution lines.
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3 Results

The WMAs demonstrate that the average statistical proper-
ties of the 1538 L-moment ratios across the United States
are best characterized by the LN3 distribution (Table 2), with
large variance among individual records (Fig. 2). Specifi-
cally, the WMA of the largest L-skew and L-kurtosis fol-
low the LN3 distribution line as opposed to the P3 and GEV
distributions (Fig. 2a). Generally, these originate from rivers
for which the discharge of extreme floods is relatively large
compared to the mean annual flood peak – in other words a
distribution with a thick tail. The WMA deviates from the
LN3 distribution as L-moment ratios become smaller, after
which L-moments are better characterized by the GEV dis-
tribution (Fig. 2a). The theoretical distribution lines are more
clustered for these smaller L-moment ratios, reflecting the
similarities of GEV and LN3 distributions for thin-tailed dis-
tributions with low skewness (Fig. 2a). In log-space, the L-
moment ratios cluster around the LN3; however, the marginal
difference in the SSE between the LN3 and LP3 distribution
supports the general use of the LP3 distribution for rivers in
the United States (England et al., 2019)

When annual maxima are grouped by Köppen climate re-
gion, the WMA shifts from the best-fitted distribution line
as we move from arid to more temperate climates (Fig. 3).
The statistical properties of records from temperate climates
are best described by the LN3 distribution (Table 2; Fig. 3c),
whereas records from continental regions are represented by
a GEV distribution (Table 2; Fig. 3e). The WMA of annual
records from arid climates does not track one distribution
family line: the LN3 distribution best represents records with
high L-skew values [0.5–0.7] and the P3 distribution better
follows the lower L-skew values [0.1–0.4] (Fig. 3a). We note
that the smaller sample size of the arid climate group results
in larger confidence intervals. The concentrations of individ-
ual L-moment ratios also shift when grouped by climate re-
gion: the clustering of L-moment ratios for continental cli-
mates is highest along the GEV distribution line (Fig. 3e), for
temperate L-moment ratios it falls in between the GEV and
LN3 line (Fig. 3c), and for arid L-moments between the LN3
and P3 line (Fig. 3a). A clear shift between distribution fami-
lies for different climate regions is not observed in log-space,
with only small differences in the goodness-of-fit between
the LP3 and LN3 distribution (Table 2). The log-transformed
records in arid climates exhibit overall lower L-kurtosis val-
ues compared to records from continental and temperate cli-
mates and are best represented by the LP3 distribution for
positive L-skew (Fig. 3b), whereas negative L-skew values
do not clearly follow one distribution. Flood distributions in
temperate regions are well represented by the LN3 distribu-
tion for negative L-skew values and by the LP3 distribution
for positive L-skew values (Fig. 3d).

Categorizing annual maxima discharge records based on
different local precipitation intensities (PSC) also influences
the position and variance of the WMA (Table 2; Fig. 4). The

Figure 2. L-moment diagrams with the L-moment ratio for skew
and kurtosis of annual maxima records used in this study (gray
dots; n= 1538), with their weighted moving average (WMA) pro-
portional to record length (red line) and the P3, GEV, and LN dis-
tribution lines: (a) annual discharge maxima as recorded by gages
and (b) the logarithm of the annual discharge maxima.

WMA of records with low precipitation intensities follows
the GEV distribution line (Table 2), especially for higher
L-skew values [0.2–0.45] (Fig. 4a). The SSE scores indi-
cate that the LN3 distribution best fits the L-moment ratios
with high PSC values (Table 2); however, along the range
of L-skew values we do observe variation (Fig. 4e). The L-
moment ratios associated with high PSC values follow the
LN3 distribution line for L-skew values between 0.4 and 0.7,
whereas the WMA falls between the LN3 and P3 distribution
for lower L-skew values [0.15–0.4] (Fig. 4e). The WMAs of
the intermediate group fall in between the GEV and LN3 dis-
tribution lines, whereas for low [0–0.15] and high [0.4–0.6]
L-skew values, it follows the GEV distribution. However,
for intermediate L-skew values [0.15–0.4] it more closely
follows the LN3 distribution (Fig. 3c). The position of this
line within the parameter space indicates the observed shift
from the GEV to the LN3 distribution as PSC values in-
crease (Fig. 4c). Additionally, the range of L-skew values
is much smaller for records with low PSC values (Fig. 4a).
We could not clearly distinguish a best-fitted distribution be-
tween the groups when records were log-transformed (Ta-
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Table 2. The sum of the squared error of the WMA compared to the GEV, LN3, and P3 distribution. The values in bold indicate the lowest
SSE among the three distributions for each experiment and thus the best fit according to this measure.

Distributions All Köppen PSC

records Arid Temperature Continental Lowest Middle Highest

GEV 0.637 0.422 0.301 0.092 0.024 0.329 0.536
LN3 0.145 0.042 0.045 0.243 0.116 0.153 0.052
P3 3.447 0.357 0.995 2.0 0.602 2.010 0.601
GEV in log-space 1.112 0.052 0.394 0.726 0.204 0.732 0.213
LN3 in log-space 0.112 0.026 0.035 0.159 0.063 0.093 0.032
LP3 in log-space 0.216 0.020 0.070 0.225 0.072 0.163 0.041

Figure 3. L-moment diagram with the L-skew and L-kurtosis for annual discharge maxima records (gray dots) grouped by their Köppen
climate region, their weighted moving averages (WMA) proportional to record length (red line), and the P3, GEV, and LN distribution line
(striped, dotted, solid). Panels (a), (c), and (e) show annual discharge maxima as recorded by the gage; panels (b), (d), and (f) show the
logarithm of the annual discharge maxima.

ble 2; Fig. 4b, d, and f). For the intermediate PSC values the
WMA line tracks the LN3 distribution line, but for the high-
est PSC values the WMA follows both the LN3 distribution
(for negative L-skew values) and the P3 distribution (for pos-
itive L-skew values).

Our analyses document shifts in flood distribution proper-
ties for both the Köppen climate groups and the PSC groups,
where arid climates (high PSC) and continental climates (low
PSC) move away from the LN3 distribution towards the P3
and GEV distribution. In contrast, the WMAs of both the
temperate and intermediate PSC group trend closer to the
LN3 distribution line. A major difference between these two

categories is the range of L-skew values between the corre-
sponding groups. For example, the range of the lower PSC is
smaller than that of the L-moment ratios in continental cli-
mates. There is no clear best-fit distribution within the arid
Köppen category and the higher PSC groups, as the WMA
varies over the observed L-skew range. However, we do
demonstrate that regional hydroclimatic differences explain
part of the variance among individual flood distributions.
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Figure 4. L-moment diagram with the L-skew and L-kurtosis for gage discharge records (gray dots) grouped by their percentage of the
maximum annual daily precipitation level to the total annual precipitation level (PSC), their weighted moving averages (WMA) proportional
to record length (red line) and the P3, GEV, and LN distribution line. Panels (a), (c), and (e) show annual discharge maxima as recorded by
the gage; panels (b), (d), and (f) show the logarithm of the discharges.

4 Discussion

The main objective of this study is to evaluate whether hy-
droclimatic data can improve extreme flood probability es-
timates in flood frequency analysis procedures, through in-
formed distribution family selection. To do this, we grouped
annual hydrologic maxima from gage records across the
United States by their hydroclimatic properties, and used L-
moments to guide the selection of a probability model. Our
work provides insights into the hydroclimatic parameters that
drive flood frequency distribution shape and demonstrates
how to supplement conventional flood frequency analyses us-
ing hydrological information accordingly.

4.1 Flood frequency distributions in the United States

The LN3 distribution most closely fits the average statistical
properties of annual hydrologic maxima across the United
States (Table 2), although for records with low L-skew val-
ues [0.05–0.2] the GEV distribution fits better (Fig. 2a).
These findings are consistent with, and further specify, the
work of Vogel and Wilson (1996), who also used L-moment
diagrams to conclude that the LN3, LP3, and GEV distri-
butions are all reasonable representations of annual maxima
across the United States. In log-space the LN3 distribution

also provides the best fit (Table 2); however, the theoretical
distribution lines are more aligned, making the LP3 distribu-
tion an appropriate choice, as recommended by Bulletin 17C
for records with positive L-skew values. Bulletin 17C ac-
counts for negatively skewed flood distributions by censor-
ing potentially influential low floods (PILFs) that could lead
to underestimation of extreme flood values (England et al.,
2019).

Our analyses demonstrate that hydroclimatic factors, such
as Köppen climate region and precipitation intensity, ex-
plain part of the L-moment ratios sample variance and flood
frequency distribution shapes across the United States. The
distribution family that best characterized hydrologic max-
ima shifts from the GEV towards the LN3 distribution as
we move from cold and wet climates (Köppen group D) to
warmer and drier climates (Köppen group B) (Fig. 3). The
contribution of the annual maximum storm to annual total
precipitation (PSC) shows a similar pattern: watersheds with
a lower maximum storm contribution are best captured by the
GEV distribution and those with a higher PSC by the LN3
distribution (Fig. 4). Although we do not provide evidence
for a causal link, the flood regimes generally associated with
arid and continental hydroclimatic regions match the statis-
tical properties of the GEV and LN3 distribution families as
described by the L-moment lines (Figs. 3 and 4). For exam-
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ple, arid climates generally experience flash floods (high PSC
values) and as a result skewed flood frequency distributions
(thick tails) compared to continental climates; similarly the
LN3 distribution line fits higher L-skew ratios for the same
L-kurtosis compared to the GEV distribution (Metzger et al.,
2020; Zaman et al., 2012). It also fits the results of a simula-
tion experiment by Salinas et al. (2014a) that shows how the
high variance of the L-moment ratio samples cannot alone
be attributed to sampling error and that other covariates were
needed to explain the variance. They observed a shift in the
best-fit distribution from GEV to LN3 as the total annual pre-
cipitation decreases over a catchment observed by Salinas et
al. (2014b) in Europe. Köppen climate regions could provide
a potential explanation for why Salinas et al. (2014b) found
the GEV distribution to be the best fit for European annual
maxima, as it is a continent dominated by temperate and cold
climates (Köppen groups C and D). In contrast, the United
States includes large regions with arid climates as well as
temperate and cold regions, which shifts the overall best fit
distribution for annual maxima to the LN3 distribution.

4.2 Improvements to flood frequency analysis

Even though watershed-specific hydroclimatic variables,
such as main Köppen group, affect the variance of L-moment
ratios of annual maxima records, they did not always yield
a distinct best-fit distribution family for the constructed hy-
droclimatic regions in this study (Fig. 3). The Köppen clas-
sification indirectly already includes several flood-generating
variables – precipitation seasonality and intensity, vegetation,
soil type, infiltration capacity, and surface runoff levels – as
they are constructed from temperature and precipitation lev-
els (Kottek et al., 2006; Peel et al., 2007). Accordingly, the
observed results for gages grouped by Köppen climate re-
gions are likely confounded by any of these factors, including
PSC. As these climate classification schemes indirectly con-
tain multiple environmental variables and encompass large
contiguous areas they form a promising tool for systematic
distribution selection in flood frequency analysis. Solely lo-
cal precipitation intensities (like PSC) may represent large
river systems poorly if discharge at given downstream lo-
cation is influenced by multiple precipitation regimes from
multiple tributaries. Encountering this problem becomes less
likely with Köppen regions which often cover entire water-
sheds. Yet, the high precipitation intensity (PSC levels) group
and the arid Köppen region generate multiple best-fitted dis-
tribution families across the range of possible L-skew values,
implying that a more detailed classification is necessary. The
annual maxima records in arid climates (Fig. 3a) and with
intense precipitation regimes (high PSC values) (Fig. 4e) are
best-fitted either to the P3 distribution for low L-skew val-
ues or to the LN3 for high values. In this particular case,
Köppen’s specification for arid climates – BWh, BWk, and
BSk – might provide a systematic method to distinguish be-
tween different types of arid regions. Additionally, one could

include other basin characteristics, specifically geomorphic
properties of the watershed (e.g., size and elevation) in fur-
ther improving probability model selection, given that prior
work points to hydroclimatic variables as exerting a primary
control on flood distributions (Salinas et al., 2014b). For ex-
ample, Pitlick (1994) showed that the shape parameter of
flood frequency distributions in mountainous areas of the
western United States were affected by regional precipitation
intensity – combining climatic and geomorphic parameters.

Our main finding – that hydroclimatic properties of a basin
exert a strong influence on the distribution of annual dis-
charge maxima – provides a potential means to improve the
accuracy of extreme flood probability estimates without al-
tering the mathematical procedure described in flood fre-
quency analysis guidelines like Bulletin l7C (England et al.,
2019). One approach to further improve on our work is the
weighted mixed populations framework, where one stratifies
data and fits a parametric distribution to each new data pop-
ulation to aggregate the population distributions into a single
distribution weighted on population size (Barth et al., 2019).
In a hydrologic context, one could subdivide annual flood
discharges based on different (periodic) flood-generating
mechanisms. Accordingly, this method works particularly
well for watersheds with multiple distinct flood-generating
mechanisms, for example due to periodic atmospheric rivers,
and skewed flood distributions (Barth et al., 2019). Another
approach is to use other parametric distributions, with four
or more parameters – although such methods do not explic-
itly consider hydrologic information – or a metastatistical
extreme value distribution (MEVD) (Marani and Ignaccolo,
2015; Miniussi et al., 2020). An MEVD derives an extreme
(annual maxima) flood frequency distribution via “ordinary”
discharge values and has shown to be efficient with all sorts
of parametric distributions (Marani and Ignaccolo, 2015).

5 Conclusions

We evaluated annual hydrologic maxima distributions from
across the United States and showed that probability model
selection can be improved when it is based on the hydrocli-
matic properties of the basin. In the United States, the WMA
line of L-moment coefficients track the LN3 distribution, im-
plying that this distribution could serve as a national distribu-
tion family. However, distribution selection can be improved
by taking a basin’s climate region into account, where con-
tinental climates (cool/wet) are best described by GEV dis-
tributions, while arid climates (hot/dry) are best described by
LN3 distributions. More broadly, our work demonstrates that
the climatology of a region is a powerful tool for guiding
a priori distribution selection in flood frequency analysis.
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