Hassanzadeh, E., Nazemi, A., and Elshorbagy, A.: Quantile-Based Downscaling of Precipitation Using Genetic Programming: Application to IDF Curves in Saskatoon, J. Hydrol. Eng., 19943–19955, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000854, 2014.
Heo, J.-H., Ahn, H., Shin, J.-Y., Kjeldsen, T. R., and Jeong, C.: Probability Distributions for a Quantile Mapping Technique for a Bias Correction of Precipitation Data: A Case Study to Precipitation Data Under Climate Change, Water, 11, 1475, https://doi.org/10.3390/w11071475, 2019.
Hutengs, C. and Vohland, M.: Downscaling land surface temperatures at regional scales with random forest regression, Remote Sens. Environ., 178, 127–141, https://doi.org/10.1016/j.rse.2016.03.006, 2016.
IPCC: Climate Change 2014 Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9781107415416, 2014.
Jimenez, D. A.: Avaliação das alterações nas frequências de ocorrência das precipitações diárias máximas para a região Metropolitana de Belo Horizonte considerando diferentes cenários de climas futuros, Universidade Federal de Minas Gerais – UFMG, Belo Horizonte,
http://hdl.handle.net/1843/46268 (last access: 31 March 2024), 2022.
Khalid, I. A. and Sitanggang, I. S.: Machine Learning-Based Spatial Downscaling on Precipitation Satellite Data in Riau Province, Indonesia, Turkish Journal of Computer and Mathematics Education, 13, 10,
https://turcomat.org/index.php/turkbilmat/article/view/12114 (last access: 31 March 2024), 2022.
Kreienkamp, F., Paxian, A., Früh, B., Lorenz, P., and Matulla, C.: Evaluation of the empirical–statistical downscaling method EPISODES, Clim. Dynam., 52, 991–1026, https://doi.org/10.1007/s00382-018-4276-2, 2019.
Liu, W., Bailey, R. T., Andersen, H. E., Jeppesen, E., Nielsen, A., Peng, K., Molina-Navarro, E., Park, S., Thodsen, H., and Trolle, D.: Quantifying the effects of climate change on hydrological regime and stream biota in a groundwater-dominated catchment: A modelling approach combining SWAT-MODFLOW with flow-biota empirical models, Sci. Total Environ., 745, 140933, https://doi.org/10.1016/j.scitotenv.2020.140933, 2020.
Loh, W.: Classification and regression trees, WIREs Data Min. Knowl., 1, 14–23, https://doi.org/10.1002/widm.8, 2011.
Mahla, P., Lohani, A. K., Chandola, V. K., Thakur, A., Mishra, C. D., and Singh, A.: Downscaling Of Precipitation Using Statistical Downscaling Model and Multiple Linear Regression Over Rajasthan State, Curr. World Environ., 14, 68–98, https://doi.org/10.12944/CWE.14.1.09, 2019.
Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other, Ann. Math. Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1979
NERC: Flood Studies Report, Meteorological Office, London, 1975.
Norris, J., Chen, G., and Li, C.: Dynamic Amplification of Subtropical Extreme Precipitation in a Warming Climate, Geophys. Res. Lett., 47, e2020GL087200, https://doi.org/10.1029/2020GL087200, 2020.
Nunes, D. A. A.: Tendências em eventos extremos de precipitação na Região Metropolitana de Belo Horizonte: Detecção, Impactos e Adaptabilidade, Tese, Universidade Federal de Minas Gerais, Belo Horizonte,
https://repositorio.ufmg.br/bitstream/1843/BUOS-B3VGXU/1/tese_alinenunes.pdf (last access: 31 March 2024), 2018.
Olsson, J., Arheimer, B., Borris, M., Donnelly, C., Foster, K., Nikulin, G., Persson, M., Perttu, A.-M., Uvo, C., Viklander, M., and Yang, W.: Hydrological Climate Change Impact Assessment at Small and Large Scales: Key Messages from Recent Progress in Sweden, Climate, 4, 39, https://doi.org/10.3390/cli4030039, 2016.
Onyutha, C., Tabari, H., Rutkowska, A., Nyeko-Ogiramoi, P., and Willems, P.: Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5, J. Hydro-Environ. Res., 12, 31–45, https://doi.org/10.1016/j.jher.2016.03.001, 2016.
Ostad-Ali-Askari, K., Ghorbanizadeh Kharazi, H., Shayannejad, M., and Zareian, M. J.: Effect of Climate Change on Precipitation Patterns in an Arid Region Using GCM Models: Case Study of Isfahan-Borkhar Plain, Nat. Hazards Rev., 21, 04020006, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000367, 2020.
Ozbuldu, M. and Irvem, A.: Evaluating the effect of the statistical downscaling method on monthly precipitation estimates of global climate models, Global NEST J., 23, 232–240, https://doi.org/10.30955/gnj.003458, 2021.
Rastogi, D., Kao, S.-C., and Ashfaq, M.: How May the Choice of Downscaling Techniques and Meteorological Reference Obs
er vations Affect Future Hydroclimate Projections?, Earths Future, 10, 1–15, https://doi.org/10.1029/2022EF002734, 2022.
Roca, V., B., Beltrán, S. M., and Gómez, H. R.: Cambio climático y salud, Rev. Clín. Esp., 219, 260–265, https://doi.org/10.1016/j.rce.2019.01.004, 2019.
Sachindra, D. A., Ahmed, K., Rashid, Md. M., Shahid, S., and Perera, B. J. C.: Statistical downscaling of precipitation using machine learning techniques, Atmos. Res., 212, 240–258, https://doi.org/10.1016/j.atmosres.2018.05.022, 2018a.
Sachindra, D. A., Ahmed, K., Shahid, S., and Perera, B. J. C.: Cautionary note on the use of genetic programming in statistical downscaling, Int. J. Climatol., 38, 3449–3465, https://doi.org/10.1002/joc.5508, 2018b.
Salehnia, N., Hosseini, F., Farid, A., Kolsoumi, S., Zarrin, A., and Hasheminia, M.: Comparing the Performance of Dynamical and Statistical Downscaling on Historical Run Precipitation Data over a Semi-Arid Region, Asia-Pac. J. Atmos. Sci., 55, 737–749, https://doi.org/10.1007/s13143-019-00112-1, 2019.
Salehnia, N., Salehnia, N., Saradari Torshizi, A., and Kolsoumi, S.: Rainfed wheat (
Triticum aestivum L.) yield prediction using economical, meteorological, and drought indicators through pooled panel data and statistical downscaling, Ecol. Indic., 111, 105991, https://doi.org/10.1016/j.ecolind.2019.105991, 2020.
Shahabul Alam, Md. and Elshorbagy, A.: Quantification of the climate change-induced variations in Intensity–Duration–Frequency curves in the Canadian Prairies, J. Hydrol., 527, 990–1005, https://doi.org/10.1016/j.jhydrol.2015.05.059, 2015.
Tabari, H., Paz, S. M., Buekenhout, D., and Willems, P.: Comparison of statistical downscaling methods for climate change impact analysis on precipitation-driven drought, Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, 2021.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Teutschbein, C., Wetterhall, F., and Seibert, J.: Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale, Clim. Dynam., 37, 2087–2105, https://doi.org/10.1007/s00382-010-0979-8, 2011.
Themeßl, M. J., Gobiet, A., and Leuprecht, A.: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models, Int. J. Climatol., 31, 1530–1544, https://doi.org/10.1002/joc.2168, 2011.
Waters, D., Watt, W. E., Marsalek, J., and Anderson, B. C.: Adaptation of a Storm Drainage System to Accommodate Increased Rainfall Resulting from Climate Change, J. Environ. Plann. Man., 46, 755–770, https://doi.org/10.1080/0964056032000138472, 2003.
Worku, G., Teferi, E., Bantider, A., and Dile, Y. T.: Modelling hydrological processes under climate change scenarios in the Jemma sub-basin of upper Blue Nile Basin, Ethiopia, Climate Risk Management, 31, 100272, https://doi.org/10.1016/j.crm.2021.100272, 2021.
Yang, Y., Tang, J., Xiong, Z., Wang, S., and Yuan, J.: An intercomparison of multiple statistical downscaling methods for daily precipitation and temperature over China: present climate evaluations, Clim. Dynam., 53, 4629–4649, https://doi.org/10.1007/s00382-019-04809-x, 2019.
Zhang, Z. and Li, J.: Big climate data, in: Big Data Mining for Climate Change, Elsevier, 1–18, https://doi.org/10.1016/B978-0-12-818703-6.00006-4, 2020.