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Abstract. General circulation models generate climate simu-
lations on grids with resolutions ranging from 50 to 600 km.
The resulting coarse spatial resolution of the model outcomes
requires post-processing routines to ensure reliable climate
information for practical studies, prompting the widespread
application of downscaling techniques. However, assessing
the effectiveness of multiple downscaling techniques is es-
sential, as their accuracy varies depending on the objectives
of the analysis and the characteristics of the case study. In this
context, this study aims to evaluate the performance of down-
scaling the daily precipitation series in the Metropolitan Re-
gion of Belo Horizonte (MRBH), Brazil, with the final scope
of performing frequency analyses and estimating total pre-
cipitation and the number of rainy days per hydrological year
at both annual and multiannual levels. To develop this study,
78 climate model simulations with a horizontal resolution of
100 km, which participated in the SSP1-2.6 and/or SSP5-8.5
scenarios of CMIP6, are employed. The results highlight that
adjusting the simulations from the general circulation mod-
els by the delta method, quantile mapping and regression
trees produces accurate results for estimating the total pre-
cipitation and number of rainy days. Finally, it is noted that
employing downscaled precipitation series through quantile
mapping and regression trees also yields promising results in
terms of the frequency analyses.

1 Introduction

As emphasized by the Intergovernmental Panel on Climate
Change (IPCC), global climate models (GCMs) represent
the most advanced climate simulation tools and play a fun-
damental role in evaluating future climate scenarios (IPCC,
2014). GCMs have the capability to generate coherent cli-
mate estimations both physically and geographically. The
GCMs are used to examine the effect of increasing green-
house gas emissions on climatic variables (Ostad-Ali-Askari
et al., 2020). However, due to their low spatial resolution
(50–600 km), they are unable to adequately reproduce the
climatic variables of small areas such as basins and sub-
basins (Ozbuldu and Irvem, 2021), whereby the application
of downscaling techniques has become a standard procedure
(Worku et al., 2021; Olsson et al., 2016).

Downscaling aims to refine low-resolution global climate
projections to local or regional scales by identifying relation-
ships between observed climate data and simulations from
GCMs (Jimenez, 2022; Zhang and Li, 2020). Downscaling
enhances the representativeness of projected climate condi-
tions, making them more accurate for local climate condi-
tions. Ensuring adequate downscaling is essential since ad-
justed series are employed to assess the impacts of climate
change on regional scales (Teutschbein et al., 2011). If an
inadequate methodology of downscaling is selected for fu-
ture climate projections, misinterpretation and inaccurate es-
timation of the effects of climate change, with detrimental
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consequences for long-term planning in the management of
climate change impacts, could be made (Rastogi et al., 2022).
For instance, underestimating regional-scale responses to cli-
mate change can result in a lack of preparedness from a plan-
ning and mitigation perspective. Conversely, overestimating
these responses can lead to an excessive budget allocation for
addressing the consequences.

Given the variety of downscaling techniques available
in the literature (delta method, quantile mapping, machine
learning techniques, etc.), Rastogi et al. (2022), Yang et
al. (2019) and Onyutha et al. (2016) report that the efficiency
of downscaling techniques varies for several reasons, such
as the research objectives, the data and the case study, mak-
ing it necessary to evaluate multiple techniques in each spe-
cific study. The analysis and characterization of changes in
precipitation patterns is one of the most relevant thematic
areas in research addressing the impacts of climate change.
Mahla et al. (2019), Salehnia et al. (2019), Yang et al. (2019),
Sachindra et al. (2018a) and Hashmi et al. (2011) evalu-
ated the performance of downscaled techniques in reduc-
ing precipitation. Mahla et al. (2019) indicated that down-
scaling monthly precipitation based on multiple linear re-
gressions showed promising results for the study area. On
the other hand, Salehnia et al. (2019) identified that dy-
namic downscaling (DDS) provides better results than sta-
tistical downscaling (SDS) in total annual and seasonal pre-
cipitation downscaling, pointing out that SDS is computa-
tionally simpler than DDS. Conversely, Yang et al. (2019)
found that methods based on quantile mapping demonstrate
better performance in the downscaling of seasonal-scale and
extreme precipitation compared to the function transform
method (CDF-t). Sachindra et al. (2018) recommended using
a regional vector machine (RVM) over genetic programming
(GP), artificial neural networks (ANNs) and support vector
machines (SVMs) for monthly precipitation downscaling. Fi-
nally, Hashmi et al. (2011) identified that GP provides better
results for daily precipitation downscaling than ANNs.

Most of the studies have focused on assessing the effi-
ciency of downscaling techniques for monthly, annual and
seasonal precipitation by the civil year (Kreienkamp et al.,
2019; Ozbuldu and Irvem, 2021). However, only a few stud-
ies have been conducted for the hydrological year. Instead,
no studies were identified that evaluated the effectiveness of
these techniques for conducting frequency analysis. Tabari
et al. (2021), Liu et al. (2020), Norris et al. (2020) and Has-
sanzadeh et al. (2014) indicated that climate change could
transform or modify temperature and relative humidity pat-
terns, leading to the intensification of extreme weather events
(Roca et al., 2019). Thus, authors such as Fadhel et al. (2017),
Shahabul and Elshorbagy (2015) and Waters et al. (2003)
emphasize that, in the current context of climate change,
it is necessary to identify potential changes in intensity–
duration–frequency (IDF) relationships.

Therefore, it is essential to assess the representativeness of
downscaling techniques for conducting frequency analyses,

because the number of studies evaluating the alterations in
IDF relationships in the climate change context from simu-
lations of GCMs has been increasing (e.g., Ghasemi Tousi
et al., 2021, Hassanzadeh et al., 2014, or Hashmi et al.,
2011). The assessment of changes in IDF relationships in cli-
mate change scenarios plays a fundamental role in decision-
making related to the planning of hydraulic infrastructure,
drainage systems, flood prevention and water resource man-
agement. Identifying these changes enables authorities, en-
gineers and planners to incorporate new climate realities into
the development of infrastructure projects.

To ensure accurate downscaling and to enable a correct es-
timation and interpretation of the impacts of climate change
on IDF relationships, the proposed work aims to investigate
the performance of some of the most recognized downscaling
techniques in the literature, such as the delta method (DM),
quantile mapping (QM) and regression trees (RT), in terms
of frequency analysis. Additionally, the techniques were also
evaluated for their ability to reproduce total precipitation and
the number of rainy days per hydrological year and at a mul-
tiyear level. In this way, the present study contributes to the
identification and selection of downscaling techniques that
can be applied in research that assesses changes in IDF rela-
tionships from CMIP6 projections as well as in studies eval-
uating changes in the number of rainy days and total pre-
cipitation at the multiyear level in the context of climate
change. In order to facilitate the paper’s understanding, the
second section presents the study area, the data used, the
downscaling techniques considered and the efficiency met-
rics used to evaluate the downscaling techniques. The third
section presents the results and discussion, while the fourth
section draws the conclusions and final considerations.

2 Data and methodology

2.1 Study area and historical rainfall records

The study was conducted in the Metropolitan Region of
Belo Horizonte (MRBH), which is located between lati-
tudes 18.0 and 20.5° S and between longitudes 43.15 and
44.75° E in the central region of the state of Minas Gerais,
Brazil. The MRBH covers an area of 9468 km2 with a hy-
drological year starting in October, with precipitation oc-
curring from October to March. Monthly precipitation can
exceed 300 mmmonth−1. The MRBH monitoring network
comprises more than 120 pluviometric stations distributed
throughout the region (see Fig. 1a). The MRBH is selected
because, as Nunes (2018) indicated, a significant portion of
the MRBH is directly or indirectly experiencing the conse-
quences of extreme rainfall events. Between 1928 and 2000,
200 floods were recorded in Belo Horizonte, with 69.5 % of
these events occurring in the last 2 decades analyzed. Fur-
thermore, over 37 flood events were reported between 2000
and 2020.
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Figure 1. Pluviometric stations of the MRBH: (a) monitoring network of pluviometric stations and (b) selected pluviometric stations used
in the present study.

The rainfall records for the MRBH are obtained from
the Hydrological Information System (Hidroweb) of the
Brazilian National Water Agency, available at https://www.
snirh.gov.br/hidroweb/serieshistoricas (last access: 31 March
2024). Upon downloading the rainfall data, we ensured their
consistency by constructing double mass curves using the to-
tal precipitation data for each hydrological year. Rainfall sta-
tions with over 30 years of consistent records and with miss-
ing data below 10 % were selected. It is important to note that
we did not fill in any missing data, as this could introduce un-
certainties into the results. Double mass curves are processed
to perform consistency analysis of the collected data. Sta-
tions with distances less than 44 km and a correlation equal to
or greater than 0.7 from each reference station were selected
to perform this calculation. It was evident that only 29 sta-
tions have more than 30 years of consistent records and miss-
ing data below 10 %. Thus, the study was developed from the
rainfall information of the 29 stations shown in Fig. 1b.

2.2 Simulation of rainfall conditions

The daily precipitation data simulated for the historical pe-
riod (1850–2014) by GCMs with a resolution of 100 km,
participating in emission scenarios SSP1-2.6 and/or SSP5-

8.5 of CMIP6, were obtained from https://esgf-node.llnl.gov/
search/cmip6/ (last access: 31 March 2024). It is important
to emphasize that all available simulations with a resolution
of 100 km have been included to consider all the ensembles
available for each climate model. This choice was made with
the intention of utilizing all available model outputs and thus
providing a more robust analysis.

The SSP5-8.5 and SSP1-2.6 scenarios are selected as the
CMIP6 scenarios that project the highest and lowest tem-
perature increases, respectively. In the case of the SSP5-8.5
scenario, it is assumed that the economic and social devel-
opment of humankind until the end of the 21st century will
be governed by (i) high exploitation of resources, (ii) inten-
sive use of fossil fuels and (iii) high global energy demand.
All these factors lead to high greenhouse gas concentrations,
resulting in a radiative forcing of 8.5 Wm−2 by the end of
the 21st century (Riahi et al., 2016). On the other hand, the
SSP1-2.6 scenario considers that (i) the world is turning to-
wards sustainability, (ii) there is a commitment by nations to
reduce social inequalities, and (iii) consumption is oriented
towards low material growth and low resource and energy
consumption. All these factors were combined with a radia-
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tive forcing of 2.6 Wm−2 (Riahi et al., 2016). The simula-
tions contemplated are presented in Table 1.

2.3 Downscaling

The primary approaches to downscaling are SDS and DDS.
In this study, two of the most popular SDS techniques were
evaluated: the delta method, quantile mapping and the ML
method regression trees. Due to their simplicity and low
computational effort, the DM and QM have been widely
used in many research studies. In the case of the DM, the
investigations developed by Salehnia et al. (2020, 2019)
and Teutschbein and Seibert (2012) are noteworthy. The
study developed by Salehnia et al. (2020) aims to investi-
gate the impact of climate change on rainfed wheat yield in
Khorasan-e Razavi Province of northeastern Iran. The study
used climate projections from GCMs to assess the potential
impact of climate changes on rainfed wheat yield over the
next decades (2019–2038).

The DM was used to correct the simulations of tempera-
ture and precipitation on the daily and monthly scales. On the
other hand, Salehnia et al. (2019) compared the performance
of the DM and DDS in terms of the amount and number of
wet days and total precipitation at the annual and seasonal
scales. The results showed that DDS has better performance
than the DM. Similarly, it is highlighted that the DM underes-
timates the annual mean precipitation and the number of wet
days, while DDS overestimates them. Finally, Teutschbein
and Seibert (2012) compared the performance of different
downscaling techniques to correct precipitation and temper-
ature. Their results highlighted that the delta method is a sta-
ble and robust method, with the ability to produce future time
series with dynamics similar to current conditions. However,
the method does not consider potential changes in future cli-
matic dynamics.

With respect to QM, the studies conducted by Enayati et
al. (2021), Heo et al. (2019) and Themeßl et al. (2011) are
noteworthy. In the study conducted by Enayati et al. (2021),
the capability of bias correction in precipitation and tem-
perature simulations of GCMs using the QM technique was
evaluated. The results indicated that nonparametric methods
of quantile mapping exhibited the best performance. On the
other hand, Heo et al. (2019) evaluated the use of different
probability distributions in QM, and the results showed that
the selection of the probability distribution could lead to bet-
ter or worse results. Finally, Themeßl et al. (2011) indicated
that the use of quantile mapping has better performance in
the estimation of high quantiles. In this way, the use of this
technique could present an advantage in the case of extreme
precipitation events.

In the case of RT, the studies conducted by Khalid and
Sitanggang (2022) and Hutengs and Vohland (2016) stand
out. Khalid and Sitanggang (2022) compared various ML
methods for downscaling precipitation, showing that RT per-
formed best. On the other hand, the study conducted by

Hutengs and Vohland (2016) adopted RT to enhance the spa-
tial resolution of temperature based on land surface tempera-
ture and reflectance with favorable results.

A pixel–station downscaling approach was developed. Ob-
servational data from each station were collected along with
simulated GCM data, extracted from the pixel containing that
station. For all the selected pairs of time series, the temporal
consistency between daily precipitation observed and simu-
lated was guaranteed by selecting the simulated data only for
the day on which the observation data are presented. Once
the simulated series was obtained, the evaluated downscal-
ing techniques were applied for each selected point.

2.3.1 Delta method

In this method, differences or “deltas” between observed
and GCM-simulated climatic conditions in the historical pe-
riod are calculated. Subsequently, assuming that these differ-
ences or deltas remain constant over time, they are applied to
GCM-simulated future climate projections, thus refining cli-
mate projections at local or regional levels. The mathematical
equation employed by the delta method is presented below:

PDelta
SD = PMod,daily

(
P obs

PMod

)
Monthly

, (1)

where PDelta
SD represents the downscaled precipitation,

PMod,daily represents the simulated precipitation by the
GCMs, P obs represents the average monthly precipitation of
the station, and PMod represents the average monthly precip-
itation simulated.

2.3.2 Quantile mapping

QM is based on the principle of matching the quantiles of ob-
served and GCM-simulated distributions. The process begins
with estimating the quantiles of the observed series. Then, for
the future period, the empirical probability associated with
the quantile simulated by the GCMs is estimated. This prob-
ability is used in the inverse probability function of observed
quantiles, thus obtaining the downscaled value. The follow-
ing is a mathematical description of the method of precipita-
tion:

P
QQ
SD = F

−1
o [FM(PM)], (2)

where PQQ
SD is the precipitation with downscaling, F−1

o is the
inverse empirical probability function of daily precipitation
for the historic period, FM is the empirical probability func-
tion of simulated precipitation, and PM is the simulated pre-
cipitation.

2.3.3 Regression trees

Regression trees are a machine learning technique used to
build predictive models. These models are created by re-
cursively dividing the sample space and adjusting predictive

Hydrol. Earth Syst. Sci., 28, 1981–1997, 2024 https://doi.org/10.5194/hess-28-1981-2024



D. A. Jimenez et al.: Assessing downscaling techniques for frequency analysis 1985

Table 1. Overview of the CMIP6 GCM ensemble used in this study (r – realization or ensemble member; i – initialization method; p –
physics; f – forcing).

ID Model Ensemble SSP1-2.6 SSP5-8.5 ID Model Ensemble SSP1-2.6 SSP5-8.5
future future future future

1 CESM2 r11i1f1p1 × X 40 EC-Earth3 r132i1p1f1 X X
2 CESM2 r4i1f1p1 X × 41 EC-Earth3 r133i1p1f1 X X
3 CESM2-WACCM r1i1f1p1 × X 42 EC-Earth3 r134i1p1f1 X X
4 CESM2-WACCM r2i1f1p1 × × 43 EC-Earth3 r135i1p1f1 X X
5 CESM2-WACCM r3i1f1p1 × X 44 EC-Earth3 r136i1p1f1 X X
6 CMCC-CM2-SR5 r1i1f1p1 X X 45 EC-Earth3 r137i1p1f1 X X
7 CMCC-ESM2 r1i1f1p1 X X 46 EC-Earth3 r138i1p1f1 X X
8 EC-Earth3-CC r1i1f1p1 × X 47 EC-Earth3 r139i1p1f1 X X
9 EC-Earth3 r101i1p1f1 X X 48 EC-Earth3 r13i1p1f1 X X
10 EC-Earth3 r102i1p1f1 X X 49 EC-Earth3 r140i1p1f1 X X
11 EC-Earth3 r103i1p1f1 X X 50 EC-Earth3 r141i1p1f1 X X
12 EC-Earth3 r104i1p1f1 X X 51 EC-Earth3 r142i1p1f1 X X
13 EC-Earth3 r105i1p1f1 X X 52 EC-Earth3 r143i1p1f1 X X
14 EC-Earth3 r106i1p1f1 X X 53 EC-Earth3 r144i1p1f1 X X
15 EC-Earth3 r107i1p1f1 X X 54 EC-Earth3 r145i1p1f1 X X
16 EC-Earth3 r108i1p1f1 X X 55 EC-Earth3 r146i1p1f1 X X
17 EC-Earth3 r109i1p1f1 X X 56 EC-Earth3 r147i1p1f1 X X
18 EC-Earth3 r110i1p1f1 X X 57 EC-Earth3 r148i1p1f1 X X
19 EC-Earth3 r111i1p1f1 X X 58 EC-Earth3 r149i1p1f1 X X
20 EC-Earth3 r112i1p1f1 X X 59 EC-Earth3 r150i1p1f1 X X
21 EC-Earth3 r113i1p1f1 X X 60 EC-Earth3 r15i1p1f1 X X
22 EC-Earth3 r114i1p1f1 X X 61 EC-Earth3 r1i1f1p1 X X
23 EC-Earth3 r115i1p1f1 X X 62 EC-Earth3 r3i1f1p1 × X
24 EC-Earth3 r116i1p1f1 X X 63 EC-Earth3 r4i1f1p1 X X
25 EC-Earth3 r117i1p1f1 X X 64 EC-Earth3 r6i1f1p1 X X
26 EC-Earth3 r118i1p1f1 X X 65 EC-Earth3-Veg r1i1f1p1 X X
27 EC-Earth3 r119i1p1f1 X X 66 EC-Earth3-Veg r2i1f1p1 × X
28 EC-Earth3 r11i1f1p1 X X 67 EC-Earth3-Veg r3i1f1p1 X X
29 EC-Earth3 r121i1p1f1 X X 68 EC-Earth3-Veg r4i1f1p1 X X
30 EC-Earth3 r122i1p1f1 X X 69 EC-Earth3-Veg r6i1f1p1 X X
31 EC-Earth3 r123i1p1f1 X X 70 GFDL-CM4 r1i1f1p1 × X
32 EC-Earth3 r124i1p1f1 X X 71 GFDL-ESM4 r1i1f1p1 X X
33 EC-Earth3 r125i1p1f1 X X 72 INM-CM4-8 r1i1f1p1 X X
34 EC-Earth3 r126i1p1f1 X X 73 INM-CM5-0 r1i1f1p1 X X
35 EC-Earth3 r127i1p1f1 X X 74 MPI-ESM1-2-HR r1i1f1p1 X X
36 EC-Earth3 r128i1p1f1 X X 75 MPI-ESM1-2-HR r2i1f1p1 X X
37 EC-Earth3 r129i1p1f1 X X 76 MRI-ESM2-0 r1i1f1p1 X X
38 EC-Earth3 r130i1p1f1 X X 77 NorESM2-MM r1i1f1p1 X X
39 EC-Earth3 r131i1p1f1 X X 78 TaiESM1-R1 r1i1f1p1 X X

models for each subdivision (Loh, 2011). The main goal of
this technique is to partition the sample space into k units and
to create a predictive model for each subspace. This approach
enables the prediction of the variable of interest, Y , using a
piecewise function of the type

Y =


fE0(x), x ∈ E0

fE1(x), x ∈ E1

. . .

fEk (x), x ∈ Ek

, (3)

where Y is the predicted variable, fEi (x) is the predictive
model of the sample subspace Ei , and x is the predictor vari-
able. Downscaling using RT can incorporate more than one
predictor variable to estimate the variable of interest. For ex-
ample, precipitation could be estimated using multiple vari-
ables simulated by general circulation models, such as tem-
perature, atmospheric pressure and precipitation. However, it
is important to note that the uncertainties in downscaling tend
to increase with the number of predictors. In this way, only
daily precipitation is simulated as the predictor variable to
minimize these uncertainties. The downscaling process was
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carried out using observed and simulated precipitation quan-
tiles. This approach is used due to the absence of a consis-
tent temporal correlation between the observed and simu-
lated rainfall magnitudes. Often, the simulated precipitation
by the GCMs did not match with the historical records, lead-
ing to instances where GCMs projected rainfall on days when
historical data indicated dry weather conditions. In the train-
ing stage, 85 % of the records were used, while in the valida-
tion stage, 15 % were employed. The optimization of hyper-
parameters (maximum number of splits, split criterion) was
conducted using the automatic hyperparameter optimization
function available in the fitrtree function in MATLAB.

2.4 Frequency analysis

The frequency analysis is carried out using the maximum
annual precipitation series estimated from both historical
records and downscaling results. Initially, the stationarity
and homogeneity of the maximum series are confirmed us-
ing the Spearman (NERC, 1975) and Mann–Whitney (1947)
statistical tests. These tests are applied at a 5 % significance
level as specified by Naghettini and Pinto (2007). The fre-
quency analysis is exclusively conducted on the series that
exhibited homogeneity and stationarity. This analysis con-
sidered various probability distributions, including exponen-
tial, gamma, Gumbel, generalized extreme value (GEV) dis-
tribution, log-normal, Pearson III and log-Pearson III. The
parameters for these distributions are estimated using the L-
moments method (Hosking and Wallis, 1993). To evaluate
the adherence of the series to these probability distributions,
the nonparametric Kolmogorov–Smirnov test is applied at a
significance level of 5 %. For each station, the quantiles of
precipitation associated with return periods of 2, 5, 10, 15,
30, 35, 45, 50, 60, 70, 80, 90 and 100 years were estimated
based on the distribution with the best fit.

2.5 Comparison between estimates made with
historical series and downscaling

The efficiency of downscaling techniques was assessed in
terms of total precipitation (TP) and the number of rainy days
(RDs) at both the hydrological-year and multiyear levels. In
the latter case, the total precipitation and rainy days are ag-
gregated over the available record period. Similarly, the tech-
niques are examined in terms of frequency analysis.

The TP and RD by the hydrological year are evaluated
using the Nash–Sutcliffe efficiency (NSE), Kling–Gupta ef-
ficiency (KGE), root-mean-square error (RMSE) and Pear-
son correlation coefficient (R). In the case of the multiyear
level, the evaluation was performed using the percentage er-
ror. Nash and Sutcliffe (1979) and Gupta et al. (2009) in-
dicated that NSE and KGE values of 1 represent an ideal
match between observed and simulated data. In the case of
the RMSE, a value of 0 signifies a perfect fit. Moreover, the
R value, which falls between 0 and 1, indicates a positive

correlation. Values between−1 and 0 suggest a negative cor-
relation, while those near 0 imply no correlation. Finally, a
percentage error value of 0 indicates a perfect fit between
observed and simulated data. The equations used to calculate
the NSE, KGE, RMSE, R and percentage error are provided
below:

NSE= 1−

∑n
i=1
(
Xi −X

′

i

)2∑n
i=1
(
Xi −Xi

)2 , (4)

KGE= 1−

√√√√
(r − 1)2+

(
σ ′i

σi
− 1

)2

+

(
X
′

i

Xi
− 1

)2

, (5)

RMSE=

√∑n
i=1
(
Xi −X

′

i

)2
n

, (6)

R =

n
(∑

XiX
′

i

)
−
(∑

Xi ·
∑
X′i

)√[
n
(∑

X2
i

)
−
(∑

Xi
)2]
·

[
n
(∑

X′
2

i

)
−
(∑

X′i

)2] , (7)

%Error=

∣∣X′i −Xi∣∣
Xi

· 100, (8)

where Xi and X′i are the observed and simulated values,
while Xi and X

′

i are the mean of the observed and simu-
lated values, respectively. n represents the number of simu-
lated data, σ ′i the standard deviation of the simulated values,
σi the standard deviation of the observed records and R the
correlation coefficient between the observed and simulated
records.

3 Results and discussions

3.1 Total precipitation and number of rainy days per
hydrological year

Seventy-eight analyses were conducted for both total precipi-
tation for the hydrological year and the number of rainy days,
and the median values of NSE, KGE, RMSE and R were
computed to facilitate the analysis and interpretation of the
results, emphasizing that the median was chosen because it
is less susceptible to extreme events.

Number of rainy days per hydrological year

Estimating the number of rainy days in the hydrological year
from downscaled series using the DM, QM and RT meth-
ods yields unsatisfactory results in all the evaluated models.
Thus, Fig. 2 and Table 2 reveal discrepancies in the number
of rainy days estimated per hydrological year from the down-
scaled series compared to observations. Without the applica-
tion of any downscaling technique (WDS), this difference is
approximately 78 d.
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Figure 2. Median performance metrics (RMSE and R) for the estimated number of rainy days from precipitation series simulated by GCMs,
without the application of downscaling techniques (WDS), as well as adjusted series obtained using the DM, QM and RT.

Table 2. Summary of performance metrics for estimating the number of rainy days from without-downscaling and reduced series using the
DM, QM and RT methods.

WDS DM QM RT

NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE

Maximum −2.3 128 0.3 −4.5 106 0.2 −0.28 23 0.44 −0.29 23 0.44
Median −44.2 78 −0.4 −39.0 73 −0.4 −1.46 18 0.05 −1.48 19 0.05
Minimum −117.6 28 −0.8 −81.4 35 −0.7 −2.85 15 −0.21 −2.83 15 −0.20
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Figure 3. Median percentage error of underestimation or overestimation of the total number of rainy days per hydrological year. The percent-
age error of the prevailing condition of underestimation (“Under.”) or overestimation (“Over.”) is represented in blue, while the non-prevailing
condition is depicted in orange. For example, if underestimation is prevalent, overestimation is represented in orange. WDS represents the
condition without the application of downscaling techniques, DM corresponds to the condition when the delta method is applied, QM repre-
sents the condition when quantile mapping is applied, and RT indicates the condition of applying regression trees as a downscaling technique.

However, when using the DM, QM and RT as downscal-
ing techniques, the difference decreases to 73, 18 and 19 d,
respectively. Thus, QM and RT stand out for providing the
greatest reduction in the discrepancy between the number of
rainy days per hydrological year estimated from the down-
scaled series compared to observations. Nonetheless, as men-
tioned and observed in Table 2 and Fig. 2, the low NSE, KGE
and R scores show that the estimation of the number of rainy
days at the annual scale does not work well.

As shown in Fig. 3, the low performance of the NSE and
KGE observed in Table 2 in the estimation of the number of
rainy days per hydrological year is associated with underes-
timations or overestimations.

As observed in Fig. 3, an underestimation of the number
of rainy days occurs when no downscaling techniques are
applied. This underestimation trend persists when the DM
is applied, consistent with the results found by Salehnia et
al. (2019). However, when using QM and RT, this trend re-
verses, resulting in overestimation. The persistence of under-
estimation when the DM is applied may be related to the
method of applying a constant correction factor per month.
On the other hand, the shift from underestimation to overes-
timation when using QM and RT can be attributed to the re-
lationship between simulated and observed quantiles. There-
fore, it is possible that there is a reclassification of dry days

(P ≤ 1.0 mm) as wet days (P > 1.0 mm) (i.e., a simulated
quantile of 0.2 mm can be associated with observed precipi-
tation > 1 mm). The median percentage underestimation er-
rors were 85.21 %, 79.3 %, 14.50 % and 13.70 % for WDS,
the DM, QM and RT, respectively. Meanwhile, the average
overestimations were 12.54 % and 13.78 % for QM and RT,
respectively.

Total precipitation per hydrological year

Estimating the total precipitation per hydrological year from
the downscaled series obtained through the application of the
DM, QM and RT does not guarantee good results. Thus,
when no downscaling technique is applied, the difference
between the total precipitation estimated from the down-
scaled series differs, with a median of 413.84 mm. In the case
where the DM is applied, this difference decreases to approx-
imately 361.42 mm. However, when the QM and RT are ap-
plied, the differences are higher than when no downscaling
technique is applied, with median differences of 433.10 and
434.64 mm, respectively (see Fig. 4 and Table 3). In that way,
the difference between the total precipitation estimated from
the downscaled series by the QM and RT increases by ap-
proximately 4 % compared to the estimations when no down-
scaling technique is applied and decreases by 12 % when the
DM is applied. On the other hand, the low NSE, KGE and R
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Table 3. Summary of performance metrics for estimating the total precipitation by hydrological year without downscaling (WDS) and with
the DM, QM and RT methods.

WDS DM QM RT

NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE NSE RMSE KGE

Maximum −0.53 654.02 0.36 −0.09 482.54 0.38 −0.66 524.55 0.31 −0.67 526.83 0.31
Median −1.43 413.84 0.07 −0.77 361.42 0.08 −1.58 433.10 0.00 −1.59 434.64 −0.01
Minimum −5.14 324.65 −0.21 −1.75 277.78 −0.24 −2.79 343.72 −0.29 −2.81 344.30 −0.29

Figure 4. Median performance metrics (RMSE and R) for estimated total precipitation from series simulated by GCMs, WDS and adjusted
series obtained using the DM, QM and RT.

scores, as shown in Fig. 4, indicate that the estimation of total
precipitation at the annual scale from the downscaled series
does not perform well.

In the same way as with the number of rainy days, the dif-
ference between the total precipitation per hydrological year

estimated from observed data and downscaled data is asso-
ciated with underestimations and overestimations. When no
downscaling technique is applied, an underestimation of to-
tal precipitation per hydrological year is observed. However,
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Figure 5. Median percentage error of underestimation or overestimation of total precipitation per hydrological year. The percentage error of
the prevailing condition of underestimation (“Under.”) or overestimation (“Over.”) is represented in blue, while the non-prevailing condition
is depicted in orange. For example, if underestimation is prevalent, overestimation is represented in orange. WDS represents the condition
without the application of downscaling techniques, DM corresponds to the condition when the delta method is applied, QM represents the
condition when quantile mapping is applied, and RT indicates the condition of applying regression trees as a downscaling technique.

when the DM, QM or RT is applied, this underestimation
changes to overestimation (see Fig. 5).

In the case of QM and RT, the overestimation of total
hydrological precipitation per year (Fig. 4) is related to the
overestimation of the number of rainy days (Fig. 3) most
of the time. Thus, it is noticeable that the application of
QM and RT increases both the number of rainy days in the
hydrological year and the magnitudes of simulated precip-
itations. However, this trend is intrinsic to the conceptual
foundation of these methods. For example, during the ap-
plication of QM or RT, a simulated quantile of 1 mm of
rain can be associated with an observed quantile of 20 mm
of rain. The median percentage underestimation errors were
25.58 %, 17,02 %, 18.74 % and 18.77 % for WDS, the DM,
QM and RT, respectively. Meanwhile, the average overes-
timations were 22.37 %, 14.63 %, 18.37 % and 18.30 % for
WDS, the DM, QM and RT, respectively.

3.2 Total precipitation and number of rainy days at the
multiyear level

In the multiyear context, estimates derived from downscaled
series using the DM, QM and RT showed more robust agree-
ment with the estimations made from the historical records
compared to the annual scale. A low discrepancy between the

Table 4. Summary of percentage errors of the number of rainy days
at the multiyear level.

WSD DM QM RT

Maximum 141.90 % 116.78 % 1.21 % 2.58 %
Median 83.90 % 77.88 % 0.60 % 1.83 %
Minimum 21.56 % 1.20 % 0.27 % 1.19 %

number of rainy days and total precipitation was observed at
the multiyear scale.

When examining the number of rainy days, it was noted
that the smallest errors are achieved when employing QM
and RT as downscaling techniques. Additionally, estimates
derived from downscaled series through the DM demon-
strated a performance similar to cases where no downscaling
technique was applied (see Fig. 6 and Table 4). Thus, at the
multiyear scale, the series adjusted by QM yielded the small-
est percentage errors, followed by those adjusted by RT and
the DM.
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Figure 6. Median of percentage errors of rainy days at the multiyear level for each model. WDS and with the application of the DM, QM
and RT as downscaling techniques.

On the other hand, it was observed that the estimation of
total precipitation at the multiyear scale from series down-
scaled by the DM, QM and RT significantly reduces percent-
age errors compared to cases where no downscaling tech-
nique is applied (see Fig. 7 and Table 5).

Based on the results, employing downscaled series for es-
timating total precipitation and the number of rainy days on
a hydrological-year scale demonstrates better performance in
the multiyear context. Therefore, it is recommended to utilize

Table 5. Summary of the percentage errors of total precipitation at
the multiyear level.

WSD DM QM RT

Maximum 33.59 % 1.55 % 1.99 % 1.83
Median 12.13 % 0.81 % 1.02 % 0.89
Minimum 7.62 % 0.43 % 0.00 % 0.01
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Figure 7. Median of percentage errors of total precipitation at the multiyear level for each model. WDS and with the application of the DM,
QM and RT as downscaling techniques.

downscaled series by employing the DM, QM and RT for es-
timating total precipitation and the number of rainy days at
the multiyear scale.

It was observed that the performance of downscaling tech-
niques at the annual scale was consistently reflected at the
multiyear scale. Regarding the number of rainy days, the QM
method demonstrated superior performance across both the
annual and multiyear scales. As for the total precipitation per
hydrological year, the DM showcased the best performance,
exhibiting even higher efficiency at the multiyear scale.

3.3 Frequency analysis

Developed frequency analyses from downscaled series using
QM and RT yield satisfactory results, evidenced by good per-
formance in the NSE and KGE metrics. With respect to the
frequency analyses developed from series downscaled by the
DM, it is observed that the results were comparable to those
obtained when no downscaling technique was applied (see
Fig. 8 and Table 6).

Figure 8 illustrates a significant improvement in yield met-
rics following the implementation of QM and RT. The met-
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Figure 8. Median performance metrics (NSE and KGE) for the frequency analysis developed from precipitation series simulated by GCMs,
WDS and adjusted series obtained using the DM, QM and RT.

Table 6. Summary of percentage errors obtained in the frequency
analysis.

WSD DM QM RT

Maximum 57.95 % 55.9 % 12.18 % 5.91 %
Median 52.69 % 47.1 % 7.38 % 1.56 %
Minimum 1.97 % 0.45 % 1.21 % 0.09 %

rics approach unity, suggesting that the quantiles estimated
from the adjusted series closely align with those derived from
the historical series. The percentage errors obtained in the es-
timates made with series downscaled by QM and RT were
less than 12.18 % and 5.91 %, respectively. In contrast, the
errors in the estimates made with series downscaled by the
DM were similar to those obtained when no downscaling
technique was applied (see Table 6 and Fig. 9).

The high performance achieved in the estimation of quan-
tiles from adjusted series through QM and RT is associated
with the fact that the largest quantiles simulated by GCMs are
correlated with the largest observed quantiles. Consequently,
observed and simulated series of maximum values end up
with close values. This fact leads to comparable outcomes
in estimations, regardless of whether they are derived from
observed or downscaled series.

Given that downscaling in the case of the DM is accom-
plished through the application of factors, the difference be-
tween the maximum precipitation observed and estimated

from the adjusted series is substantial. Consequently, this re-
sults in a significant disparity in the outcomes of frequency
analyses. It was evident that the dispersion and variability of
estimated quantiles from the adjusted series increased as the
return period extended; however, this must be associated with
the low occurrence of quantiles with high return times in the
historical series (see Fig. 10). Additionally, it was observed
that errors related to the DM are associated with an under-
estimation of quantiles for different return periods. Thus,
it is concluded that the development of frequency analyses
from adjusted series through QM and RT is feasible, with
RT emerging as the technique that exhibited the best perfor-
mance.

4 Conclusions

This study aimed to assess the performance of using down-
scaled series with the delta method, quantile mapping and
regression trees to develop frequency analysis and estimate
total precipitation and the number of rainy days per hydro-
logical year at the annual and multiyear levels.

It was observed that the global climate models (GCMs)
from the sixth phase of the Coupled Model Intercomparison
Project (CMIP6) underestimated the number of rainy days
per hydrological year for the MRBH, with a median of 78 d.
When estimating the number of rainy days from the down-
scaled series by the DM, the tendency of underestimation
persists and insignificantly decreases to 73 d. It was also ob-
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Figure 9. Median of the percentage error obtained in the frequency analysis developed from precipitation series simulated by GCMs, WDS
and reduced series obtained using the DM, QM and RT.

served that, when employing downscaled series through the
application of QM and RT, underestimation is reversed to a
slight overestimation. The average overestimations were 18 d
for QM and 19 d for RT. Despite the relatively low magni-
tudes of the overestimations, the low NSE and KGE scores
suggest that estimating the number of rainy days at an annual
scale from the downscaled series using the DM, QM and RT
does not guarantee accurate results.

Similarly, GCMs underestimate total precipitation for the
hydrological year, with a median of 413.84 mm. The use

of a downscaled series by the DM reduces this difference
to 361.42 mm. However, when QM and RT are applied,
the differences surpass those without downscaling. The me-
dian differences in those cases are 433.10 mm for QM and
434.64 mm for RT. These facts, along with the low NSE and
KGE scores, suggest that annual estimations of the number of
rainy days and total precipitation from downscaled series by
the DM, QM and RT do not yield reliable results. This result
is also due to the fact that a 1-year time window is not opti-
mal for analyzing the precipitation simulated by the consid-

Hydrol. Earth Syst. Sci., 28, 1981–1997, 2024 https://doi.org/10.5194/hess-28-1981-2024



D. A. Jimenez et al.: Assessing downscaling techniques for frequency analysis 1995

Figure 10. Frequency analysis developed from precipitation series simulated by GCMs, WDS and adjusted series obtained using the DM,
QM and RT for the return times of 2, 5, 10, 15, 25, 30, 35, 45, 50, 60, 70, 80, 90 and 100 years.

ered GCMs, and consequently more significant results were
found with the multiyear study. Therefore, at the multiyear
scale, the estimation of the number of rainy days and total
precipitation demonstrated high performance. For the num-
ber of rainy days, the percentage errors between the magni-
tudes of the total estimated from adjusted and observed series
were less than 1.21 % and 2.58 % when downscaled series by
QM and RT were employed. Percentage errors for estimating
total rainfall per hydrological year on a multiyear scale were
1.55 %, 1.99 % and 1.83 % when downscaled series by the
DM, QM and RT, respectively, were used.

Finally, developing frequency analysis from the daily pre-
cipitation simulated by the GCMs allows quantiles close
to those estimated with historical records to be obtained
when QM and RT are applied. The performance achieved
in estimating quantiles from adjusted series by QM and
RT is attributed to the fact that QM and RT associate the
largest quantiles simulated by GCMs with the largest ob-
served quantiles. As a result, observed and downscaled series
have close values. The percentage error of estimates made
from downscaled series by QM and RT, in relation to esti-
mates based on observed data, were lower than 12.18 % and
5.91 %, respectively. In this context, it is recommended to
utilize downscaling based on RT when the goal is to assess
future changes in the frequency of occurrence.
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