Articles | Volume 27, issue 22
https://doi.org/10.5194/hess-27-4115-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-4115-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought cascades across multiple systems in Central Asia identified based on the dynamic space–time motion approach
Lu Tian
CORRESPONDING AUTHOR
Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
Markus Disse
Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
Jingshui Huang
Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
Related authors
No articles found.
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-89, https://doi.org/10.5194/hess-2024-89, 2024
Preprint under review for HESS
Short summary
Short summary
The glacier-expanded SWAT version, SWAT-GL, was tested in four different catchments. The assessment highlighted the capabilities of the glacier routine. It was evaluated based on the representation of glacier mass balance, snow cover and glacier hypsometry. It was shown that glacier changes over a long time scale could be adequately represented, leading to promising potential future applications in glaciated and high mountain environments.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Muhammad Fraz Ismail, Wolfgang Bogacki, Markus Disse, Michael Schäfer, and Lothar Kirschbauer
The Cryosphere, 17, 211–231, https://doi.org/10.5194/tc-17-211-2023, https://doi.org/10.5194/tc-17-211-2023, 2023
Short summary
Short summary
Fresh water from mountainous catchments in the form of snowmelt and ice melt is of critical importance especially in the summer season for people living in these regions. In general, limited data availability is the core concern while modelling the snow and ice melt components from these mountainous catchments. This research will be helpful in selecting realistic parameter values (i.e. degree-day factor) while calibrating the temperature-index models for data-scarce regions.
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022, https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Short summary
In this study, we set up a water quality model using a 5-year paired high-frequency water quality dataset from a large agricultural stream. The simulations were compared with the 15 min interval measurements and showed very good fits. Based on these, we quantified the N uptake pathway rates and efficiencies at daily, seasonal, and yearly scales. This study offers an overarching understanding of N processing in large agricultural streams across different temporal scales.
Punit K. Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci., 20, 2647–2663, https://doi.org/10.5194/nhess-20-2647-2020, https://doi.org/10.5194/nhess-20-2647-2020, 2020
Short summary
Short summary
In operational flood risk management, a single best model is used to assess the impact of flooding, which might misrepresent uncertainties in the modelling process. We have used quantified uncertainties in flood forecasting to generate flood hazard maps that were combined based on different exceedance probability scenarios with the purpose to differentiate impacts of flooding and to account for uncertainties in flood hazard maps that can be used by decision makers.
Yang Yu, Markus Disse, Philipp Huttner, Xi Chen, Andreas Brieden, Marie Hinnenthal, Haiyan Zhang, Jiaqiang Lei, Fanjiang Zeng, Lingxiao Sun, Yuting Gao, and Ruide Yu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-80, https://doi.org/10.5194/hess-2020-80, 2020
Manuscript not accepted for further review
Short summary
Short summary
The afforestation actions in China have attracted widely attention in recent years. This paper presents a hydro-ecological modeling approach to assess environmental changes and ecosystem services in the largest inland river basin in China. Our result indicates China's tree-planting in the Tarim River Basin is strictly strained by water stress and 25.9 % of the existing area of natural vegetation will be degraded by 2050. It is a warning for decision-makers and stakeholders.
Punit Kumar Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci., 19, 1445–1457, https://doi.org/10.5194/nhess-19-1445-2019, https://doi.org/10.5194/nhess-19-1445-2019, 2019
Short summary
Short summary
This study investigates the use of measured water levels to reduce uncertainty bounds of two-dimensional hydrodynamic model output. Uncertainty assessment is generally not reported in practice due to the lack of best practices and too wide uncertainty bounds. Hence, a novel method to reduce the bounds by constraining the model parameter, mainly roughness, is presented. The operational practitioners as well as researchers benefit from the study in the field of flood risk management.
Dagnenet Fenta Mekonnen, Zheng Duan, Tom Rientjes, and Markus Disse
Hydrol. Earth Syst. Sci., 22, 6187–6207, https://doi.org/10.5194/hess-22-6187-2018, https://doi.org/10.5194/hess-22-6187-2018, 2018
Short summary
Short summary
Understanding responses by changes in land use and land cover (LULC) and climate over the past decades on streamflow in the upper Blue Nile River basin is important for water management and water resource planning. Streamflow in the UBNRB has shown an increasing trend over the last 40 years, while rainfall has shown no trend change. LULC change detection findings indicate increases in cultivated land and decreases in forest coverage prior to 1995.
Beatrice Dittes, Maria Kaiser, Olga Špačková, Wolfgang Rieger, Markus Disse, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 18, 1327–1347, https://doi.org/10.5194/nhess-18-1327-2018, https://doi.org/10.5194/nhess-18-1327-2018, 2018
Short summary
Short summary
We study flood protection options in a pre-alpine catchment in southern Germany. Protection systems are evaluated probabilistically, taking into account climatic and other uncertainties as well as the possibility of future adjustments. Despite large uncertainty in damage, cost, and climate, we arrive at a rough recommendation. Hence, one can make good decisions under large uncertainty. The results also show it is preferable to plan risk-based rather than protecting from a specific design flood.
Dagnenet Fenta Mekonnen and Markus Disse
Hydrol. Earth Syst. Sci., 22, 2391–2408, https://doi.org/10.5194/hess-22-2391-2018, https://doi.org/10.5194/hess-22-2391-2018, 2018
Short summary
Short summary
In this study we used multimodel GCMs (because of recognized intervariable biases in host GCMs) and two widely used statistical downscaling techniques (LARS-WG and SDSM) to see comparative performances in the Upper Blue Nile River basin, where there is high climate variability. The result from the two downscaling models suggested that both SDSM and LARS-WG approximate the observed climate data reasonably well and project an increasing trend for precipitation and maximum and minimum temperature.
Erwin Isaac Polanco, Amr Fleifle, Ralf Ludwig, and Markus Disse
Hydrol. Earth Syst. Sci., 21, 4907–4926, https://doi.org/10.5194/hess-21-4907-2017, https://doi.org/10.5194/hess-21-4907-2017, 2017
Short summary
Short summary
In this research, SWAT was used to model the upper Blue Nile Basin where comparisons between ground and CFSR data were done. Furthermore, this paper introduced the SWAT error index (SEI), an additional tool to measure the level of error of hydrological models. This work proposed an approach or methodology that can effectively be followed to create better and more efficient hydrological models.
Markus Disse
Proc. IAHS, 373, 25–29, https://doi.org/10.5194/piahs-373-25-2016, https://doi.org/10.5194/piahs-373-25-2016, 2016
Short summary
Short summary
The Tarim Basin in Xinjiang province in northwest China is characterized by a hyper arid climate. Climate change and a strong increase in agricultural land use are major challenges for sustainable water management. The largest competition for water resources exists between irrigated fields and natural riparian vegetation. The Sino-German project SuMaRiO provided a decision support system based on ecosystem services and will implement sustainable water management measures in the next 5-year plan.
C. Rumbaur, N. Thevs, M. Disse, M. Ahlheim, A. Brieden, B. Cyffka, D. Duethmann, T. Feike, O. Frör, P. Gärtner, Ü. Halik, J. Hill, M. Hinnenthal, P. Keilholz, B. Kleinschmit, V. Krysanova, M. Kuba, S. Mader, C. Menz, H. Othmanli, S. Pelz, M. Schroeder, T. F. Siew, V. Stender, K. Stahr, F. M. Thomas, M. Welp, M. Wortmann, X. Zhao, X. Chen, T. Jiang, J. Luo, H. Yimit, R. Yu, X. Zhang, and C. Zhao
Earth Syst. Dynam., 6, 83–107, https://doi.org/10.5194/esd-6-83-2015, https://doi.org/10.5194/esd-6-83-2015, 2015
P. Fiener, K. Auerswald, F. Winter, and M. Disse
Hydrol. Earth Syst. Sci., 17, 4121–4132, https://doi.org/10.5194/hess-17-4121-2013, https://doi.org/10.5194/hess-17-4121-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Theory development
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Historical droughts manifest an abrupt shift to a wetter Tibetan Plateau
Citizen rain gauges improve hourly radar rainfall bias correction using a two-step Kalman filter
Dynamical forcings in heavy precipitation events over Italy: lessons from the HyMeX SOP1 campaign
Water vapor isotopes indicating rapid shift among multiple moisture sources for the 2018–2019 winter extreme precipitation events in southeastern China
Spatiotemporal and cross-scale interactions in hydroclimate variability: a case-study in France
Relative humidity gradients as a key constraint on terrestrial water and energy fluxes
A climatological benchmark for operational radar rainfall bias reduction
The precipitation variability of the wet and dry season at the interannual and interdecadal scales over eastern China (1901–2016): the impacts of the Pacific Ocean
Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions
A skewed perspective of the Indian rainfall–El Niño–Southern Oscillation (ENSO) relationship
Imprints of evaporative conditions and vegetation type in diurnal temperature variations
A universal Standardized Precipitation Index candidate distribution function for observations and simulations
A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions
Model representation of the coupling between evapotranspiration and soil water content at different depths
Combined impacts of ENSO and MJO on the 2015 growing season drought on the Canadian Prairies
Exploring the relationships between warm-season precipitation, potential evaporation, and “apparent” potential evaporation at site scale
Future extreme precipitation intensities based on a historic event
Interannual-to-multidecadal hydroclimate variability and its sectoral impacts in northeastern Argentina
Impact of ENSO regimes on developing- and decaying-phase precipitation during rainy season in China
Variations in the correlation between teleconnections and Taiwan's streamflow
A gain–loss framework based on ensemble flow forecasts to switch the urban drainage–wastewater system management towards energy optimization during dry periods
The residence time of water in the atmosphere revisited
A systematic assessment of drought termination in the United Kingdom
From meteorological to hydrological drought using standardised indicators
Impact of two different types of El Niño events on runoff over the conterminous United States
Flood sensitivity of the Bavarian Alpine Foreland since the late Middle Ages in the context of internal and external climate forcing factors
Novel indices for the comparison of precipitation extremes and floods: an example from the Czech territory
Multi-annual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year
Fractional snow-covered area parameterization over complex topography
Comment on "Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements" by Lhomme et al. (2014)
A review of droughts on the African continent: a geospatial and long-term perspective
Synchronicity of historical dry spells in the Southern Hemisphere
Continental moisture recycling as a Poisson process
Linking ENSO and heavy rainfall events over coastal British Columbia through a weather pattern classification
Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest
A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions
Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management
An analytical model for soil-atmosphere feedback
Spatial horizontal correlation characteristics in the land data assimilation of soil moisture
On the factors influencing surface-layer energy closure and their seasonal variability over the semi-arid Loess Plateau of Northwest China
Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response
Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands
The response of Iberian rivers to the North Atlantic Oscillation
Copula-based downscaling of spatial rainfall: a proof of concept
Towards understanding hydroclimatic change in Victoria, Australia – preliminary insights into the "Big Dry"
Extracting statistical parameters of extreme precipitation from a NWP model
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Richard D. Crago, Jozsef Szilagyi, and Russell J. Qualls
Hydrol. Earth Syst. Sci., 27, 3205–3220, https://doi.org/10.5194/hess-27-3205-2023, https://doi.org/10.5194/hess-27-3205-2023, 2023
Short summary
Short summary
The Priestley–Taylor equation is widely used in hydrologic, climate, and meteorological models to estimate evaporation. α represents the impact of dry air that is carried into the region; this occurs even in extensive saturated regions. Four hypotheses regarding the nature of α are evaluated. Data from 171 FLUXNET stations were used to test the hypotheses. The best-supported hypothesis sees α as a constant fraction of the distance between theoretical minimum and maximum values.
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022, https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary
Short summary
This study presents the climatology of the observed land–atmosphere interactions on a subdaily timescale during the warm season from flux site observations. Multivariate metrics are employed to examine the land, atmosphere, and combined couplings, and a mixing diagram is adopted to understand the coevolution of the moist and thermal energy budget within the atmospheric mixed layer. The diurnal cycles of both mixing diagrams and hourly land–atmosphere couplings exhibit hysteresis.
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022, https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Short summary
The observed response of extreme precipitation to global warming remains unclear with significant regional variations. We show that a large part of this uncertainty can be removed when the imprint of clouds in surface temperatures is removed. We used a thermodynamic systems approach to remove the cloud radiative effect from temperatures. We then found that precipitation extremes intensified with global warming at positive rates which is consistent with physical arguments and model simulations.
Yongwei Liu, Yuanbo Liu, Wen Wang, Han Zhou, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 3825–3845, https://doi.org/10.5194/hess-26-3825-2022, https://doi.org/10.5194/hess-26-3825-2022, 2022
Short summary
Short summary
This study investigated the wetting and drying of the Tibetan Plateau (TP) from variations in soil moisture (SM) droughts. We found the TP experienced an abrupt and significant wetting shift in the middle to late 1990s, not merely the steady trends given in literature. This shift is dominated by precipitation and attributed to the North Atlantic Oscillation. The wetting shift indicates a climate regime change. Our innovative work provides implications for further knowledge of the TP climate.
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
Mario Marcello Miglietta and Silvio Davolio
Hydrol. Earth Syst. Sci., 26, 627–646, https://doi.org/10.5194/hess-26-627-2022, https://doi.org/10.5194/hess-26-627-2022, 2022
Short summary
Short summary
The main results emerging from the HyMeX SOP1 campaign and in the subsequent research activity in three Italian target areas are highlighted through conceptual models and through the identification of the relevant mesoscale environmental characteristics conducive to heavy rain events.
Tao Xu, Hongxi Pang, Zhaojun Zhan, Wangbin Zhang, Huiwen Guo, Shuangye Wu, and Shugui Hou
Hydrol. Earth Syst. Sci., 26, 117–127, https://doi.org/10.5194/hess-26-117-2022, https://doi.org/10.5194/hess-26-117-2022, 2022
Short summary
Short summary
In this study, we presented stable isotopes in atmospheric water vapor and precipitation for five extreme winter precipitation events in Nanjing, southeastern China, from December 2018 to February 2019. Our results imply that multiple moisture sources and the rapid shift among them are important conditions for sustaining extreme precipitation events, especially in the relatively cold and dry winter.
Manuel Fossa, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 25, 5683–5702, https://doi.org/10.5194/hess-25-5683-2021, https://doi.org/10.5194/hess-25-5683-2021, 2021
Short summary
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Yeonuk Kim, Monica Garcia, Laura Morillas, Ulrich Weber, T. Andrew Black, and Mark S. Johnson
Hydrol. Earth Syst. Sci., 25, 5175–5191, https://doi.org/10.5194/hess-25-5175-2021, https://doi.org/10.5194/hess-25-5175-2021, 2021
Short summary
Short summary
Here, we present a novel physically based evaporation model to demonstrate that vertical relative humidity (RH) gradients from the land surface to the atmosphere tend to evolve towards zero due to land–atmosphere equilibration processes. Collapsing RH gradients on daily to yearly timescales indicate an emergent land–atmosphere equilibrium, making it possible to determine evapotranspiration using only meteorological information, independent of land surface conditions and vegetation controls.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Tao Gao, Fuqiang Cao, Li Dan, Ming Li, Xiang Gong, and Junjie Zhan
Hydrol. Earth Syst. Sci., 25, 1467–1481, https://doi.org/10.5194/hess-25-1467-2021, https://doi.org/10.5194/hess-25-1467-2021, 2021
Short summary
Short summary
The rainfall in eastern China is principally concentrated from April–September. Changes are roughly coincident with phase shifts of the El Niño–Southern Oscillation (ENSO) in both the dry (October–March) and wet (April–September) seasons, and the Pacific Decadal Oscillation (PDO) triggers a stronger effect on precipitation in the wet season. The interannual and interdecadal rainfall variability over eastern China is substantially modulated by drivers originating from the Pacific Ocean.
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021, https://doi.org/10.5194/hess-25-565-2021, 2021
Short summary
Short summary
Our study of flash droughts' definitions over the United States shows that published definitions yield markedly different inventories of flash drought geography and frequency. Results suggest there are several pathways that can lead to events that are characterized as flash droughts. Lack of consensus across definitions helps to explain apparent contradictions in the literature on trends and indicates the selection of a definition is important for accurate monitoring of different mechanisms.
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489, https://doi.org/10.5194/hess-24-5473-2020, https://doi.org/10.5194/hess-24-5473-2020, 2020
Short summary
Short summary
Wavelet coherence is now a commonly used method for detecting scale-dependent relationships between time series. In this study, the concept of wavelet coherence is generalized to higher-order wavelet coherence methods that quantify the relationship between higher-order statistical moments associated with two time series. The methods are applied to the El Niño–Southern Oscillation (ENSO) and the Indian monsoon to show that the ENSO–Indian monsoon relationship is impacted by ENSO nonlinearity.
Annu Panwar, Maik Renner, and Axel Kleidon
Hydrol. Earth Syst. Sci., 24, 4923–4942, https://doi.org/10.5194/hess-24-4923-2020, https://doi.org/10.5194/hess-24-4923-2020, 2020
Short summary
Short summary
Here we examine the effect of evaporative cooling across different vegetation types. Evaporation cools surface temperature significantly in short vegetation. In the forest, the high aerodynamic conductance explains 56 % of the reduced surface temperature. Therefore, the main cooling agent in the forest is the high aerodynamic conductance and not evaporation. Additionally, we propose the diurnal variation in surface temperature as being a potential indicator of evaporation in short vegetation.
Patrick Pieper, André Düsterhus, and Johanna Baehr
Hydrol. Earth Syst. Sci., 24, 4541–4565, https://doi.org/10.5194/hess-24-4541-2020, https://doi.org/10.5194/hess-24-4541-2020, 2020
Short summary
Short summary
The Standardized Precipitation Index (SPI) is a widely accepted drought index. SPI normalizes the precipitation distribution via a probability density function (PDF). However, which PDF properly normalizes SPI is still disputed. We suggest using a previously mostly overlooked PDF, namely the exponentiated Weibull distribution. The proposed PDF ensures the normality of the index. We demonstrate this – for the first time – for all common accumulation periods in both observations and simulations.
Songjun Han and Fuqiang Tian
Hydrol. Earth Syst. Sci., 24, 2269–2285, https://doi.org/10.5194/hess-24-2269-2020, https://doi.org/10.5194/hess-24-2269-2020, 2020
Short summary
Short summary
The complementary principle is an important methodology for estimating actual evaporation by using routinely observed meteorological variables. This review summaries its 56-year development, focusing on how related studies have shifted from adopting a symmetric linear complementary relationship to employing generalized nonlinear functions. We also compare the polynomial and sigmoid types of generalized complementary functions and discuss their future development.
Jianxiu Qiu, Wade T. Crow, Jianzhi Dong, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 24, 581–594, https://doi.org/10.5194/hess-24-581-2020, https://doi.org/10.5194/hess-24-581-2020, 2020
Short summary
Short summary
Accurately estimating coupling of evapotranspiration (ET) and soil water content (θ) at different depths is key to investigating land–atmosphere interaction. Here we examine whether the model can accurately represent surface θ (θs) versus ET coupling and vertically integrated θ (θv) versus ET coupling. We find that all models agree with observations that θs contains slightly more information with fPET than θv. In addition, an ET scheme is crucial for accurately estimating coupling of θ and ET.
Zhenhua Li, Yanping Li, Barrie Bonsal, Alan H. Manson, and Lucia Scaff
Hydrol. Earth Syst. Sci., 22, 5057–5067, https://doi.org/10.5194/hess-22-5057-2018, https://doi.org/10.5194/hess-22-5057-2018, 2018
Short summary
Short summary
The research started by investigating the 2015 growing season drought over the Canadian Prairies and evolved into investigating the connection between growing season rain deficit in the Prairies and MJO (20–90 days tropical oscillation in convective storms). With warm central Pacific sea surface temperature, strong MJOs in the western Pacific cause Rossby wave trains that propagate downstream and favour upper-level ridges and rain deficits over the Canadian Prairies during the growing season.
Xi Chen and Steven G. Buchberger
Hydrol. Earth Syst. Sci., 22, 4535–4545, https://doi.org/10.5194/hess-22-4535-2018, https://doi.org/10.5194/hess-22-4535-2018, 2018
Short summary
Short summary
Based on warm season data from 259 weather stations across the US, we analyze the correlation between precipitation, potential evaporation, and “apparent” potential evaporation (measured by pan evaporation). Over 93 % of the stations show negative correlation between precipitation and
apparentpotential evaporation, but no clear relationship is shown between precipitation and potential evaporation. The collected data points follow the trend of the newly derived Bouchet–Budyko curve.
Iris Manola, Bart van den Hurk, Hans De Moel, and Jeroen C. J. H. Aerts
Hydrol. Earth Syst. Sci., 22, 3777–3788, https://doi.org/10.5194/hess-22-3777-2018, https://doi.org/10.5194/hess-22-3777-2018, 2018
Short summary
Short summary
In a warmer climate, it is expected that precipitation intensities will increase and form a considerable risk of high-impact precipitation extremes. We investigate how observed extreme precipitation events would look like if they took place in a future warmer climate. This study applies three methods to transform a historic extreme precipitation event in the Netherlands to a similar event in a future warmer climate, thus compiling a
future weatherscenario.
Miguel A. Lovino, Omar V. Müller, Gabriela V. Müller, Leandro C. Sgroi, and Walter E. Baethgen
Hydrol. Earth Syst. Sci., 22, 3155–3174, https://doi.org/10.5194/hess-22-3155-2018, https://doi.org/10.5194/hess-22-3155-2018, 2018
Short summary
Short summary
This study examines hydroclimate variability in northeastern Argentina; advances the understanding of its links with global SST forcing; and discusses its impacts on water resources, agriculture and human settlements. Interannual-to-multidecadal variability led to frequent extreme events. Severe floods affected agriculture, livestock productivity, and forced population displacements. Droughts affected water resources, causing water and food scarcity. Increased temperatures reduced crop yields.
Qing Cao, Zhenchun Hao, Feifei Yuan, Zhenkuan Su, Ronny Berndtsson, Jie Hao, and Tsring Nyima
Hydrol. Earth Syst. Sci., 21, 5415–5426, https://doi.org/10.5194/hess-21-5415-2017, https://doi.org/10.5194/hess-21-5415-2017, 2017
Short summary
Short summary
This study analyzed the rainy-season precipitation in China influenced by various ENSO types. The precipitation anomalies were investigated under different ENSO types, which may be attributed to the combined influence of anti-cyclone in the western North Pacific and the Indian monsoon. The results improve the understanding of linkages between the precipitation and global teleconnection patterns. The results suggest a certain predictability of flood and drought related to different ENSO types.
Chia-Jeng Chen and Tsung-Yu Lee
Hydrol. Earth Syst. Sci., 21, 3463–3481, https://doi.org/10.5194/hess-21-3463-2017, https://doi.org/10.5194/hess-21-3463-2017, 2017
Short summary
Short summary
Regional hydro-climatic variables are modulated by large-scale, reoccurring climate oscillations. In this article, the authors provide both statistical and physical evidence of how Taiwan’s summertime streamflow is strongly correlated with specific teleconnection patterns dominating cyclonic activity in the western North Pacific. However, such correlation can be strengthened or weakened by notable climate regime shifts, illustrating the pitfall of empirical seasonal forecasting.
Vianney Courdent, Morten Grum, Thomas Munk-Nielsen, and Peter S. Mikkelsen
Hydrol. Earth Syst. Sci., 21, 2531–2544, https://doi.org/10.5194/hess-21-2531-2017, https://doi.org/10.5194/hess-21-2531-2017, 2017
Short summary
Short summary
Urban drainage and wastewater systems are heavily impacted by precipitation. Hence, weather forecasts are valuable in improving their management. However, forecasts are intrinsically uncertain, especially when fine model resolution is required, which is the case for urban hydrology. Handling uncertainty is challenging for decision makers. This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial.
Ruud J. van der Ent and Obbe A. Tuinenburg
Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017, https://doi.org/10.5194/hess-21-779-2017, 2017
Short summary
Short summary
This research seeks out to answer a fundamental question about the functioning of the water cycle in the atmosphere: how much time does a water particle spend in the atmosphere? Based on state-of-the-art data, we derive a global average residence time of water in the atmosphere of 8–10 days. We further show in this paper how the residence time of water varies in time and space. This serves to illustrate why it is so difficult to make weather predictions on timescales longer than a week.
Simon Parry, Robert L. Wilby, Christel Prudhomme, and Paul J. Wood
Hydrol. Earth Syst. Sci., 20, 4265–4281, https://doi.org/10.5194/hess-20-4265-2016, https://doi.org/10.5194/hess-20-4265-2016, 2016
Short summary
Short summary
This paper identifies periods of recovery from drought in 52 river flow records from the UK between 1883 and 2013. The approach detects 459 events that vary in space and time. This large dataset allows individual events to be compared with others in the historical record. The ability to objectively appraise contemporary events against the historical record has not previously been possible, and may allow water managers to prepare for a range of outcomes at the end of a drought.
Lucy J. Barker, Jamie Hannaford, Andrew Chiverton, and Cecilia Svensson
Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, https://doi.org/10.5194/hess-20-2483-2016, 2016
Short summary
Short summary
Standardised meteorological indicators are widely used in drought monitoring, but applications to hydrological drought are less extensive. Here we assess the utility of standardised indicators for characterising drought duration, severity and propagation in a diverse set of 121 UK catchments. Spatial variations in streamflow drought characteristics reflect differences in drought propagation behaviour that are themselves largely driven by heterogeneity in catchment properties around the UK.
T. Tang, W. Li, and G. Sun
Hydrol. Earth Syst. Sci., 20, 27–37, https://doi.org/10.5194/hess-20-27-2016, https://doi.org/10.5194/hess-20-27-2016, 2016
O. Böhm, J. Jacobeit, R. Glaser, and K.-F. Wetzel
Hydrol. Earth Syst. Sci., 19, 4721–4734, https://doi.org/10.5194/hess-19-4721-2015, https://doi.org/10.5194/hess-19-4721-2015, 2015
M. Müller, M. Kašpar, A. Valeriánová, L. Crhová, E. Holtanová, and B. Gvoždíková
Hydrol. Earth Syst. Sci., 19, 4641–4652, https://doi.org/10.5194/hess-19-4641-2015, https://doi.org/10.5194/hess-19-4641-2015, 2015
Short summary
Short summary
Three proposed indices combine return periods of precipitation totals or discharges with the size of the affected area. Precipitation indices also determine actual duration of either extreme or seasonally abnormal precipitation events. A unified design of the indices enables one to easily compare inter-annual and seasonal distributions of events, which is demonstrated by 50 maximum events in the Czech Republic during the period 1961-2010, including the June 2013 floods.
C. K. Folland, J. Hannaford, J. P. Bloomfield, M. Kendon, C. Svensson, B. P. Marchant, J. Prior, and E. Wallace
Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, https://doi.org/10.5194/hess-19-2353-2015, 2015
Short summary
Short summary
The English Lowlands is a heavily populated, water-stressed region, which is vulnerable to long droughts typically associated with dry winters. We conduct a long-term (1910-present) quantitative analysis of precipitation, flow and groundwater droughts for the region, and then review potential climatic drivers. No single driver is dominant, but we demonstrate a physical link between La Nina conditions, winter rainfall and long droughts in the region.
N. Helbig, A. van Herwijnen, J. Magnusson, and T. Jonas
Hydrol. Earth Syst. Sci., 19, 1339–1351, https://doi.org/10.5194/hess-19-1339-2015, https://doi.org/10.5194/hess-19-1339-2015, 2015
W. J. Shuttleworth
Hydrol. Earth Syst. Sci., 18, 4403–4406, https://doi.org/10.5194/hess-18-4403-2014, https://doi.org/10.5194/hess-18-4403-2014, 2014
Short summary
Short summary
This paper explains the Matt-Shuttleworth approach clearly, simply and concisely. It shows how this approach can be implemented using a few simple equations and provides access to ancillary calculation resources that can be used for such implementation. If the crop water requirement community considered it preferable to use the Penman-Monteith equation to estimate crop water requirements directly for all crops, this could now be done using the Matt-Shuttleworth approach.
I. Masih, S. Maskey, F. E. F. Mussá, and P. Trambauer
Hydrol. Earth Syst. Sci., 18, 3635–3649, https://doi.org/10.5194/hess-18-3635-2014, https://doi.org/10.5194/hess-18-3635-2014, 2014
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 18, 2257–2264, https://doi.org/10.5194/hess-18-2257-2014, https://doi.org/10.5194/hess-18-2257-2014, 2014
H. F. Goessling and C. H. Reick
Hydrol. Earth Syst. Sci., 17, 4133–4142, https://doi.org/10.5194/hess-17-4133-2013, https://doi.org/10.5194/hess-17-4133-2013, 2013
P. Brigode, Z. Mićović, P. Bernardara, E. Paquet, F. Garavaglia, J. Gailhard, and P. Ribstein
Hydrol. Earth Syst. Sci., 17, 1455–1473, https://doi.org/10.5194/hess-17-1455-2013, https://doi.org/10.5194/hess-17-1455-2013, 2013
D. Windhorst, T. Waltz, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 17, 409–419, https://doi.org/10.5194/hess-17-409-2013, https://doi.org/10.5194/hess-17-409-2013, 2013
H. Mittelbach and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 16, 2169–2179, https://doi.org/10.5194/hess-16-2169-2012, https://doi.org/10.5194/hess-16-2169-2012, 2012
A. J. E. Gallant, A. S. Kiem, D. C. Verdon-Kidd, R. C. Stone, and D. J. Karoly
Hydrol. Earth Syst. Sci., 16, 2049–2068, https://doi.org/10.5194/hess-16-2049-2012, https://doi.org/10.5194/hess-16-2049-2012, 2012
B. Schaefli, R. J. van der Ent, R. Woods, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 16, 1863–1878, https://doi.org/10.5194/hess-16-1863-2012, https://doi.org/10.5194/hess-16-1863-2012, 2012
X. Han, X. Li, H. J. Hendricks Franssen, H. Vereecken, and C. Montzka
Hydrol. Earth Syst. Sci., 16, 1349–1363, https://doi.org/10.5194/hess-16-1349-2012, https://doi.org/10.5194/hess-16-1349-2012, 2012
X. Xiao, H. C. Zuo, Q. D. Yang, S. J. Wang, L. J. Wang, J. W. Chen, B. L. Chen, and B. D. Zhang
Hydrol. Earth Syst. Sci., 16, 893–910, https://doi.org/10.5194/hess-16-893-2012, https://doi.org/10.5194/hess-16-893-2012, 2012
D. Zoccatelli, M. Borga, A. Viglione, G. B. Chirico, and G. Blöschl
Hydrol. Earth Syst. Sci., 15, 3767–3783, https://doi.org/10.5194/hess-15-3767-2011, https://doi.org/10.5194/hess-15-3767-2011, 2011
G. Lenderink, H. Y. Mok, T. C. Lee, and G. J. van Oldenborgh
Hydrol. Earth Syst. Sci., 15, 3033–3041, https://doi.org/10.5194/hess-15-3033-2011, https://doi.org/10.5194/hess-15-3033-2011, 2011
J. Lorenzo-Lacruz, S. M. Vicente-Serrano, J. I. López-Moreno, J. C. González-Hidalgo, and E. Morán-Tejeda
Hydrol. Earth Syst. Sci., 15, 2581–2597, https://doi.org/10.5194/hess-15-2581-2011, https://doi.org/10.5194/hess-15-2581-2011, 2011
M. J. van den Berg, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 15, 1445–1457, https://doi.org/10.5194/hess-15-1445-2011, https://doi.org/10.5194/hess-15-1445-2011, 2011
A. S. Kiem and D. C. Verdon-Kidd
Hydrol. Earth Syst. Sci., 14, 433–445, https://doi.org/10.5194/hess-14-433-2010, https://doi.org/10.5194/hess-14-433-2010, 2010
J. Eliasson, O. Rögnvaldsson, and T. Jonsson
Hydrol. Earth Syst. Sci., 13, 2233–2240, https://doi.org/10.5194/hess-13-2233-2009, https://doi.org/10.5194/hess-13-2233-2009, 2009
Cited articles
AghaKouchak, A.: A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 United States drought, Hydrol. Earth Syst. Sci., 18, 2485–2492, https://doi.org/10.5194/hess-18-2485-2014, 2014.
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.: Twentieth-century drought in the conterminous United States, J. Hydrometeorol., 6, 985–1001, https://doi.org/10.1175/JHM450.1, 2005.
Apurv, T., Sivapalan, M., and Cai, X. M.: Understanding the Role of Climate Characteristics in Drought Propagation, Water Resour. Res., 53, 9304–9329, https://doi.org/10.1002/2017WR021445, 2017.
Bachmair, S., Kohn, I., and Stahl, K.: Exploring the link between drought indicators and impacts, Nat. Hazards Earth Syst. Sci., 15, 1381–1397, https://doi.org/10.5194/nhess-15-1381-2015, 2015.
Barella-Ortiz, A. and Quintana-Seguí, P.: Evaluation of drought representation and propagation in regional climate model simulations across Spain, Hydrol. Earth Syst. Sci., 23, 5111–5131, https://doi.org/10.5194/hess-23-5111-2019, 2019.
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016.
Basara, J. B., Christian, J. I., Wakefield, R. A., Otkin, J. A., Hunt, E. H., and Brown, D. P.: The evolution, propagation, and spread of flash drought in the Central United States during 2012, Environ. Res. Lett., 14, 084025, https://doi.org/10.1088/1748-9326/ab2cc0, 2019.
Beaudoing, H., Rodell, M., and NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 3 hourly 0.25 × 0.25 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/342OHQM9AK6Q, 2019.
Bechtold, B.: Violin Plots for Matlab, Zenodo [code], https://doi.org/10.5281/zenodo.4559847, 2016.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.214, 2018.
Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Furtado, J. C., Mishra, V., Xiao, X. M., and Randall, R. M.: Global distribution, trends, and drivers of flash drought occurrence, Nat. Commun., 12, 1–11, https://doi.org/10.1038/s41467-021-26692-z, 2021.
Cook, B. I., Mankin, J. S., and Anchukaitis, K. J.: Climate change and drought: From past to future, Current Climate Change Reports, 4, 164–179, https://doi.org/10.1007/s40641-018-0093-2, 2018.
de Brito, M. M.: Compound and cascading drought impacts do not happen by chance: A proposal to quantify their relationships, Sci. Total Environ., 778, 146236, https://doi.org/10.1016/j.scitotenv.2021.146236, 2021.
Department of Hydrology and Meteorology, Kyoto University: APHRODITE, Kyoto University [data set], http://aphrodite.st.hirosaki-u.ac.jp/download/, last access: 10 May 2023.
Diaz, V., Perez, G. A. C., Van Lanen, H. A. J., Solomatine, D., and Varouchakis, E. A.: An approach to characterise spatio-temporal drought dynamics, Adv. Water Resour., 137, 103512, https://doi.org/10.1016/j.advwatres.2020.103512, 2020.
Ding, Y. B., Xu, J. T., Wang, X. W., Cai, H. J., Zhou, Z. Q., Sun, Y. N., and Shi, H. Y.: Propagation of meteorological to hydrological drought for different climate regions in China, J. Environ. Manage., 283, 111980, https://doi.org/10.1016/j.jenvman.2021.111980, 2021.
Farahmand, A. and AghaKouchak, A.: A generalized framework for deriving nonparametric standardized drought indicators, Adv. Water Resour., 76, 140–145, https://doi.org/10.1016/j.advwatres.2014.11.012, 2015.
Farahmand, A., Reager, J. T., and Madani, N.: Drought Cascade in the Terrestrial Water Cycle: Evidence From Remote Sensing, Geophys. Res. Lett., 48, 1–10, https://doi.org/10.1029/2021GL093482, 2021.
Fouillet, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S., Guihenneuc-Jouyaux, C., Clavel, J., Jougla, E., and Hémon, D.: Excess mortality related to the August 2003 heat wave in France, Int. Arch. Occ. Env. Hea., 80, 16–24, https://doi.org/10.1007/s00420-006-0089-4, 2006.
Gaupp, F., Hall, J., Hochrainer-Stigler, S., and Dadson, S.: Changing risks of simultaneous global breadbasket failure, Nat. Clim. Change, 10, 54–57, https://doi.org/10.1038/s41558-019-0600-z, 2020.
Gevaert, A. I., Veldkamp, T. I. E., and Ward, P. J.: The effect of climate type on timescales of drought propagation in an ensemble of global hydrological models, Hydrol. Earth Syst. Sci., 22, 4649–4665, https://doi.org/10.5194/hess-22-4649-2018, 2018.
Ghent University and European Space Agency: GLEAM, Ghent University and European Space Agency [data set], https://www.gleam.eu/, last access: 10 May 2023.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
Guo, H., Chen, S., Bao, A. M., Hu, J. J., Gebregiorgis, A. S., Xue, X. W., and Zhang, X. H.: Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia, Remote Sens., 7, 7181–7211, https://doi.org/10.3390/rs70607181, 2015.
Guo, H., Bao, A. M., Ndayisaba, F., Liu, T., Kurban, A., and De Maeyer, P.: Systematical Evaluation of Satellite Precipitation Estimates Over Central Asia Using an Improved Error-Component Procedure, J. Geophys. Res.-Atmos., 122, 10906–10927, https://doi.org/10.1002/2017JD026877, 2017.
Guo, H., Bao, A. M., Liu, T., Ndayisaba, F., Jiang, L. L., Zheng, G. X., Chen, T., and De Maeyer, P.: Determining variable weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia, Remote Sens. Environ., 231, 11220, https://doi.org/10.1016/j.rse.2019.111220, 2019.
Guo, Y., Huang, S. Z., Huang, Q., Leng, G. Y., Fang, W., Wang, L., and Wang, H.: Propagation thresholds of meteorological drought for triggering hydrological drought at various levels, Sci. Total Environ., 712, 136502, https://doi.org/10.1016/j.scitotenv.2020.136502, 2020.
Hsu, H. and Dirmeyer, P. A.: Soil moisture-evaporation coupling shifts into new gears under increasing CO2, Nat. Commun., 14, 1162, https://doi.org/10.1038/s41467-023-36794-5, 2023.
Hu, Z. Y., Chen, X., Chen, D. L., Li, J. F., Wang, S., Zhou, Q. M., Yin, G., and Guo, M. Y.: “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia, Int. J. Climatol., 39, 1072–1091, https://doi.org/10.1002/joc.5863, 2018.
Iqbal, M. F. and Athar, H.: Validation of satellite based precipitation over diverse topography of Pakistan, Atmos. Res., 201, 247–260, https://doi.org/10.1016/j.atmosres.2017.10.026, 2018.
Jamandre, C. A. and Narisma, G. T.: Spatio-temporal validation of satellite-based rainfall estimates in the Philippines, Atmos. Res., 122, 599–608, https://doi.org/10.1016/j.atmosres.2012.06.024, 2013.
Jiang, L., Jiapaer, G., Bao, A., Kurban, A., Guo, H., Zheng, G., and De Maeyer, P.: Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia, Ecol. Indic., 104, 195–208, https://doi.org/10.1016/j.ecolind.2019.04.067, 2019.
Jiang, S. H., Wei, L. Y., Ren, L. L., Xu, C. Y., Zhong, F., Wang, M. H., Zhang, L. Q., Yuan, F., and Liu, Y.: Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over mainland China, Atmos. Res., 247, 105141, https://doi.org/10.1016/j.atmosres.2020.105141, 2021.
Jiang, T., Su, X., Zhang, G., Zhang, T., and Wu, H.: Estimating propagation probability from meteorological to ecological droughts using a hybrid machine learning copula method, Hydrol. Earth Syst. Sci., 27, 559–576, https://doi.org/10.5194/hess-27-559-2023, 2023.
Jones, E. and van Vliet, M. T. H.: Drought impacts on river salinity in the southern US: Implications for water scarcity, Sci. Total Environ., 644, 844–853, https://doi.org/10.1016/j.scitotenv.2018.06.373, 2018.
Klein, I., Gessner, U., and Kuenzer, C.: Regional land cover mapping and change detection in Central Asia using MODIS time-series, Appl. Geogr., 35, 219–234, https://doi.org/10.1016/j.apgeog.2012.06.016, 2012.
Kurc, S. A. and Small, E. E.: Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland, Water Resour. Res., 43, 1–13, https://doi.org/10.1029/2006WR005011, 2007.
Lehner, F., Coats, S., Stocker, T. F., Pendergrass, A. G., Sanderson, B. M., Raible, C. C., and Smerdon, J. E.: Projected drought risk in 1.5 ∘C and 2 ∘C warmer climates, Geophys. Res. Lett., 44, 7419–7428, https://doi.org/10.1002/2017GL074117, 2017.
Liu, Y., Zhu, Y., Ren, L., Singh, V. P., Yong, B., Jiang, S., Yuan, F., and Yang, X.: Understanding the spatiotemporal links between meteorological and hydrological droughts from a three-dimensional perspective, J. Geophys. Res.-Atmos., 124, 3090–3109, https://doi.org/10.1029/2018JD028947, 2019a.
Liu, Y. W., Liu, Y. B., and Wang, W.: Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis, Remote Sens. Environ., 220, 1–18, https://doi.org/10.1016/j.rse.2018.10.026, 2019b.
Liu, Y., Liu, Y., Wang, W., and Zhou, H.: Propagation of soil moisture droughts in a hotspot region: spatial pattern and temporal trajectory, J. Hydrol., 593, 125906, https://doi.org/10.1016/j.jhydrol.2020.125906, 2020.
Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M. H., and Wang, W.: Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations, Remote Sens. Environ., 231, 111215, https://doi.org/10.1016/j.rse.2019.111215, 2019.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Manoli, G., Parajka, J., Rigon, R., Szeles, B., Bottazzi, M., Hadjidoukas, P., and Fatichi, S.: More green and less blue water in the Alps during warmer summers, Nat. Clim. Change, 10, 155–161, https://doi.org/10.1038/s41558-019-0676-5, 2020.
McKee, T. B. D., Nolan J.; McKee, John Kleist: The relationship of drought frequency and duration to time scales, Eighth Conference on Applied Climatology, Vol. 17, 17–22 January 1993, California, https://www.droughtmanagement.info/literature/AMS_Relationship_Drought_Frequency_Duration_Time_Scales_1993.pdf (last access: 10 May 2023), 179–183, 1993.
Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H., and Dolman, A. J.: Magnitude and variability of land evaporation and its components at the global scale, Hydrol. Earth Syst. Sci., 15, 967–981, https://doi.org/10.5194/hess-15-967-2011, 2011a.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011b.
Mirzabaev, A.: Climate Volatility and Change in Central Asia: Economic Impacts and Adaptation, Universitäts-und Landesbibliothek Bonn, https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/5541 (last access: 10 May 2023), 2013.
Orth, R. and Destouni, G.: Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe, Nat. Commun., 9, 3602, https://doi.org/10.1038/s41467-018-06013-7, 2018.
Patrick, E.: Drought characteristics and management in Central Asia and Turkey, FAO Water Reports; Food and Agriculture Organization of the United Nations Rome, Rome, Italy, http://www.fao.org/3/a-i6738e.pdf (last access: 10 May 2023), 2017.
Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A., AghaKouchak, A., Bonfils, C. J., Gallant, A. J., Hoerling, M., and Hoffmann, D.: Flash droughts present a new challenge for subseasonal-to-seasonal prediction, Nat. Clim. Change, 10, 191–199, https://doi.org/10.1038/s41558-020-0709-0, 2020.
Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., and Stanley, H. E.: Long-range correlations in nucleotide sequences, Nature, 356, 168–170, https://doi.org/10.1038/356168a0, 1992.
Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger, A. L.: Mosaic organization of DNA nucleotides, Phys. Rev. E, 49, 1685, https://doi.org/10.1103/PhysRevE.49.1685, 1994.
Peng, J., Dadson, S., Hirpa, F., Dyer, E., Lees, T., Miralles, D. G., Vicente-Serrano, S. M., and Funk, C.: A pan-African high-resolution drought index dataset, Earth Syst. Sci. Data, 12, 753–769, https://doi.org/10.5194/essd-12-753-2020, 2020.
PIK (Potsdam Institute for Climate Impact Research) and IIASA (the International Institute for Applied Systems Analysis): ISIMIP2a, PIK and IIASA [data set], https://www.isimip.org/protocol/2a/, last access: 10 May 2023.
Podobnik, B. and Stanley, H. E.: Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series, Phys. Rev. Lett., 100, 084102, https://doi.org/10.1103/PhysRevLett.100.084102, 2008.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Shukla, S. and Wood, A. W.: Use of a standardized runoff index for characterizing hydrologic drought, Geophys. Res. Lett., 35, 1–7, https://doi.org/10.1029/2007GL032487, 2008.
Spinoni, J., Barbosa, P., De Jager, A., McCormick, N., Naumann, G., Vogt, J. V., Magni, D., Masante, D., and Mazzeschi, M.: A new global database of meteorological drought events from 1951 to 2016, J. Hydrol.-Reg. Stud., 22, 100593, https://doi.org/10.1016/j.ejrh.2019.100593, 2019.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., and Stahl, K.: Candidate distributions for climatological drought indices (SPI and SPEI), Int. J. Climatol., 35, 4027–4040, https://doi.org/10.1002/joc.4267, 2015.
Sutanto, S. J., Vitolo, C., Di Napoli, C., D'Andrea, M., and Van Lanen, H. A. J.: Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale, Environ. Int., 134, 105276, https://doi.org/10.1016/j.envint.2019.105276, 2020.
Tuttle, S. E. and Salvucci, G. D.: Confounding factors in determining causal soil moisture-precipitation feedback, Water Resour. Res., 53, 5531–5544, https://doi.org/10.1002/2016WR019869, 2017.
Van Loon, A. F.: Hydrological drought explained, Wiley Interdisciplinary Reviews Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F., Van Huijgevoort, M. H. J., and Van Lanen, H. A. J.: Evaluation of drought propagation in an ensemble mean of large-scale hydrological models, Hydrol. Earth Syst. Sci., 16, 4057–4078, https://doi.org/10.5194/hess-16-4057-2012, 2012.
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., and Revuelto, J.: Response of vegetation to drought time-scales across global land biomes, P. Natl. Acad. Sci., 110, 52–57, https://doi.org/10.1073/pnas.1207068110, 2013.
Vicente-Serrano, S. M., Miralles, D. G., Domínguez-Castro, F., Azorin-Molina, C., El Kenawy, A., McVicar, T. R., Tomás-Burguera, M., Beguería, S., Maneta, M., and Peña-Gallardo, M.: Global Assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for Drought Analysis and Monitoring, J. Climate, 31, 5371–5393, https://doi.org/10.1175/JCLI-D-17-0775.1, 2018.
Xu, K., Yang, D., Xu, X., and Lei, H.: Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China, J. Hydrol., 527, 630–640, https://doi.org/10.1016/j.jhydrol.2015.05.030, 2015.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Yoo, J., Kim, J., Kwon, H. H., and Kim, T. W.: A new drought monitoring approach using three-dimensional drought properties based on a dynamic drought detection technique algorithm, J. Hydrol.-Reg. Stud., 44, 101270, https://doi.org/10.1016/j.ejrh.2022.101270, 2022.
Yuan, X., Wang, Y., Ji, P., Wu, P., Sheffield, J., and Otkin, J. A.: A global transition to flash droughts under climate change, Science, 380, 187–191, https://doi.org/10.1126/science.abn6301, 2023.
Yusa, A., Berry, P., Cheng, J. J., Ogden, N., Bonsal, B., Stewart, R., and Waldick, R.: Climate change, drought and human health in Canada, Int. J. Environ. Res. Pub. He., 12, 8359–8412, https://doi.org/10.3390/ijerph120708359, 2015.
Zargar, A., Sadiq, R., Naser, B., and Khan, F. I.: A review of drought indices, Environ. Rev., 19, 333–349, https://doi.org/10.1139/a11-013, 2011.
Zebende, G. F.: DCCA cross-correlation coefficient: Quantifying level of cross-correlation, Physica A, 390, 614–618, https://doi.org/10.1016/j.physa.2010.10.022, 2011.
Zhao, M., Liu, Y., and Konings, A. G.: Evapotranspiration frequently increases during droughts, Nat. Clim. Change, 12, 1024–1030, https://doi.org/10.1038/s41558-022-01505-3, 2022.
Zhou, H., Liu, Y. B., and Liu, Y. W.: An Approach to Tracking Meteorological Drought Migration, Water Resour. Res., 55, 3266–3284, https://doi.org/10.1029/2018WR023311, 2019.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jezequel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
Anthropogenic global warming accelerates the drought evolution in the water cycle, increasing the unpredictability of drought. The evolution of drought is stealthy and challenging to track. This study proposes a new framework to capture the high-precision spatiotemporal progression of drought events in their evolutionary processes and characterize their feature further. It is crucial for addressing the systemic risks within the hydrological cycle associated with drought mitigation.
Anthropogenic global warming accelerates the drought evolution in the water cycle, increasing...