Articles | Volume 27, issue 15
https://doi.org/10.5194/hess-27-2865-2023
https://doi.org/10.5194/hess-27-2865-2023
Research article
 | 
01 Aug 2023
Research article |  | 01 Aug 2023

Routing stemflow water through the soil via preferential flow: a dual-labelling approach with artificial tracers

Juan Pinos, Markus Flury, Jérôme Latron, and Pilar Llorens

Related authors

Throughfall isotopic composition in relation to drop size at the intra-event scale in a Mediterranean Scots pine stand
Juan Pinos, Jérôme Latron, Kazuki Nanko, Delphis F. Levia, and Pilar Llorens
Hydrol. Earth Syst. Sci., 24, 4675–4690, https://doi.org/10.5194/hess-24-4675-2020,https://doi.org/10.5194/hess-24-4675-2020, 2020
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
The seasonal origins and ages of water provisioning streams and trees in a tropical montane cloud forest
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023,https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023,https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Quantifying river water contributions to the transpiration of riparian trees along a losing river: lessons from stable isotopes and an iteration method
Yue Li, Ying Ma, Xianfang Song, Qian Zhang, and Lixin Wang
Hydrol. Earth Syst. Sci., 27, 3405–3425, https://doi.org/10.5194/hess-27-3405-2023,https://doi.org/10.5194/hess-27-3405-2023, 2023
Short summary
Dye-tracer-aided investigation of xylem water transport velocity distributions
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023,https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Technical note: Lessons from and best practices for the deployment of the Soil Water Isotope Storage System
Rachel E. Havranek, Kathryn Snell, Sebastian Kopf, Brett Davidheiser-Kroll, Valerie Morris, and Bruce Vaughn
Hydrol. Earth Syst. Sci., 27, 2951–2971, https://doi.org/10.5194/hess-27-2951-2023,https://doi.org/10.5194/hess-27-2951-2023, 2023
Short summary

Cited articles

Bargués Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A., Laudon, H., and Ilstedt, U.: The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso, Water Resour. Res., 50, 3342–3354, https://doi.org/10.1002/2013WR015197, 2014. 
Beven, K. and Germann, P.: Macropores and water flow in soils revisited, Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013. 
Carlyle-Moses, D. E., Iida, S., Germer, S., Llorens, P., Michalzik, B., Nanko, K., Tischer, A., and Levia, D. F.: Expressing stemflow commensurate with its ecohydrological importance, Adv. Water Resour., 121, 472–479, https://doi.org/10.1016/j.advwatres.2018.08.015, 2018. 
Carlyle-Moses, D. E., Iida, S., Germer, S., Llorens, P., Michalzik, B., Nanko, K., Tanaka, T., Tischer, A., and Levia, D. F.: Commentary: What we know about stemflow's infiltration area, Front. Forests Global Change, 3, 577247, https://doi.org/10.3389/ffgc.2020.577247, 2020. 
Cayuela, C., Llorens, P., Sánchez-Costa, E., Levia, D. F., and Latron, J.: Effect of biotic and abiotic factors on inter-and intra-event variability in stemflow rates in oak and pine stands in a Mediterranean mountain area, J. Hydrol., 560, 396–406, https://doi.org/10.1016/j.jhydrol.2018.03.050, 2018. 
Download
Short summary
We investigated how stemflow (intercepted rainwater by the tree crown that travels down the stem) infiltrates within the soil. We simulated stemflow, applying coloured water along a tree trunk. Coloured patterns, observed when we excavated the soil after the experiment, were used to view and quantify preferential flow in the soil. We found that stemflow was mainly funnelled belowground along tree roots and macropores. Soil moisture near the trunk was affected both vertically and horizontally.