Articles | Volume 27, issue 14
https://doi.org/10.5194/hess-27-2763-2023
https://doi.org/10.5194/hess-27-2763-2023
Research article
 | 
26 Jul 2023
Research article |  | 26 Jul 2023

Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin

Amanda Triplett and Laura E. Condon

Data sets

Landuse/landcover data of the Heihe River Basin (2011), A Big Earth Data Platform for Three Poles J. Wang https://doi.org/10.3972/heihe.093.2014.db

Model code and software

Middle Heihe Cryosphere Response ParFlow Study A. Triplett https://doi.org/10.25739/kmk7-b046

Download
Short summary
Accelerated melting in mountains is a global phenomenon. The Heihe River basin depends on upstream mountains for its water supply. We built a hydrologic model to examine how shifts in streamflow and warming will impact ground and surface water interactions. The results indicate that degrading permafrost has a larger effect than melting glaciers. Additionally, warming temperatures tend to have more impact than changes to streamflow. These results can inform other mountain–valley system studies.