Articles | Volume 26, issue 3
https://doi.org/10.5194/hess-26-711-2022
https://doi.org/10.5194/hess-26-711-2022
Research article
 | 
11 Feb 2022
Research article |  | 11 Feb 2022

Influence of initial soil moisture in a regional climate model study over West Africa – Part 1: Impact on the climate mean

Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea

Data sets

CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901-Dec. 2015) I. C. Harris and P. D. Jones https://doi.org/10.5285/edf8febfdaad48abb2cbaf7d7e846a86

A quasi-global precipitation time series for drought monitoring C. C. Funk, P. J. Peterson, M. F. Landsfeld, D. H. Pedreros, J. P. Verdin, J. D. Rowland, B. E. Romero, G. J. Husak, J. C. Michaelsen, and A. P. Verdin https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/

Model code and software

The Regional Climate Model version 4.7.1 source code G. Giuliani https://github.com/ICTP/RegCM/releases/tag/4.7.1

Command Language (Version 6.6.2) NCAR https://doi.org/10.5065/D6WD3XH5

Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.