Articles | Volume 26, issue 22
https://doi.org/10.5194/hess-26-5899-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5899-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating the accuracy of gridded water resources reanalysis and evapotranspiration products for assessing water security in poorly gauged basins
Department of Geography, University of Sheffield, Sheffield S10 2TN, UK
Robert G. Bryant
Department of Geography, University of Sheffield, Sheffield S10 2TN, UK
Joshua Ntajal
Department of Geography, University of Bonn, 53115 Bonn, Germany
Eliézer I. Biao
Laboratory of Applied Hydrology, University of Abomey-Calavi (UAC),
Cotonou, Benin
Related authors
No articles found.
Adrian Dye, Robert Bryant, Francesca Falcini, Joseph Mallalieu, Miles Dimbleby, Michael Beckwith, David Rippin, and Nina Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2510, https://doi.org/10.5194/egusphere-2024-2510, 2024
Short summary
Short summary
Thermal undercutting of the terminus has driven recent rapid retreat of an Arctic glacier. Water temperatures (~4 °C) at the ice front were warmer than previously assumed and thermal undercutting was over several metres deep. This triggered phases of high calving activity, playing a substantial role in the rapid retreat of Kaskasapakte glacier since 2012, with important implications for processes occurring at glacier-water contact points and implications for hydrology and ecology downstream.
Rosemary Huck, Robert G. Bryant, and James King
Atmos. Chem. Phys., 23, 6299–6318, https://doi.org/10.5194/acp-23-6299-2023, https://doi.org/10.5194/acp-23-6299-2023, 2023
Short summary
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
Djigbo Félicien Badou, Audrey Adango, Jean Hounkpè, Aymar Bossa, Yacouba Yira, Eliezer Iboukoun Biao, Julien Adounkpè, Eric Alamou, Luc Ollivier C. Sintondji, and Abel Akambi Afouda
Proc. IAHS, 384, 187–194, https://doi.org/10.5194/piahs-384-187-2021, https://doi.org/10.5194/piahs-384-187-2021, 2021
Short summary
Short summary
Knowledge of rainfall statistical behaviour is a prerequisite to designing rainwater drainage facilities. In West Africa, most practitioners use the Gumbel distribution regardless of rainfall statistical behaviour. This study quantifies biases induced by the use of the Gumbel distribution. It was found that the use of the Gumbel distribution instead of appropriate distributions leads to an underestimation (−45.9 %) of annual daily rainfall maxima and thus to an uncertain design of facilities.
Eliézer Iboukoun Biao, Ezéchiel Obada, Eric Adéchina Alamou, Josué Esdras Zandagba, Amédée Chabi, Ernest Amoussou, Julien Adounkpe, and Abel Afouda
Proc. IAHS, 384, 57–62, https://doi.org/10.5194/piahs-384-57-2021, https://doi.org/10.5194/piahs-384-57-2021, 2021
Esdras Babadjidé Josué Zandagba, Eric Adéchina Alamou, Ezechiel Obada, Amédée Chabi, Eliézer Iboukoun Biao, and Abel Afouda
Proc. IAHS, 384, 93–98, https://doi.org/10.5194/piahs-384-93-2021, https://doi.org/10.5194/piahs-384-93-2021, 2021
Short summary
Short summary
Knowing the concentration of the pollutant field distribution in time and space contributes significantly to the prediction of exceptional phenomena. To this we simulate the transport and dispersion of salt at Nokoue Lagoon. Results showed that in flood period the freshwater inflows produce a net seaward transport, while in low water period the tides lead to periodic seaward and landward transport. Freshwater inflow plays a major role in flood period and tide in low water period on the lagoon.
Amedée Chabi, Esdras Babadjidé Josué Zandagba, Ezekiel Obada, Eliezer Iboukoun Biao, Eric Adéchina Alamou, and Abel Afouda
Proc. IAHS, 384, 255–260, https://doi.org/10.5194/piahs-384-255-2021, https://doi.org/10.5194/piahs-384-255-2021, 2021
Short summary
Short summary
The objective of this study is to assess the impact of climate change on water availability in Oueme catchment at Savè. Precipitation provided by 3 regional climate models was analyzed. Bias in these data was corrected using the Empirical Quantile Mapping method before being used as input to hydrological models: AWBM, ModHyPMA, HBV, GR4J, SimHyd, Hymod. The simulation with the HIRHAM5 data as inputs of models showed flows that vary at the horizons 2025, 2055, 2085 under scenarios RCP(4.5_8.5).
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.:
TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Scient. Data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018.
Adeyeri, O. E. and Ishola, K. A.: Variability and Trends of Actual Evapotranspiration over West Africa: The Role of Environmental Drivers, Agr. Forest Meteorol., 308–309, 108574, https://doi.org/10.1016/j.agrformet.2021.108574, 2021.
Andam-Akorful, S. A., Ferreira, V. G., Awange, J. L., Forootan, E., and He,
X. F.: Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa, Int. J. Climatol., 35, 3132–3145, https://doi.org/10.1002/joc.4198, 2015.
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83, 2015.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A. K.: A revised hydrology for the ECMWF model:
Verification from field site to terrestrial water storage and impact in the
Integrated Forecast System, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009.
Biancamaria, S., Mballo, M., Le Moigne, P., Sánchez Pérez, J. M.,
Espitalier-Noël, G., Grusson, Y., Cakir, R., Häfliger, V., Barathieu, F., Trasmonte, M., Boone, A., Martin, E., and Sauvage, S.: Total water storage variability from GRACE mission and hydrological models for a 50 000 km2 temperate watershed: the Garonne River basin (France), J.
Hydrol.: Reg. Stud., 24, 100609, https://doi.org/10.1016/j.ejrh.2019.100609, 2019.
Blatchford, M. L., Mannaerts, C. M., Njuki, S. M., Nouri, H., Zeng, Y., Pelgrum, H., Wonink, S., and Karimi, P.: Evaluation of WaPOR V2
evapotranspiration products across Africa, Hydrol. Process., 34, 3200–3221, https://doi.org/10.1002/hyp.13791, 2020.
Byers, E., Gidden, M., Leclère, D., Balkovic, J., Burek, P., Ebi, K.,
Greve, P., Grey, D., Havlik, P., and Hillers, A.: Global exposure and vulnerability to multi-sector development and climate change hotspots, Environ. Res. Lett., 13, 055012, https://doi.org/10.1088/1748-9326/aabf45, 2018.
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I., Haigh, I. D., Wahl,
T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential
from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020.
CSIRO: Monthly global observation-driven Penman–Monteith–Leuning (PML) evapotranspiration and components, CSIRO [data set], https://data.csiro.au/dap/landingpage?pid=csiro:17375, last access: 23 November 2022.
Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.: Global
Evaluation of the ISBA-TRIP Continental Hydrological System. Part II:
Uncertainties in River Routing Simulation Related to Flow Velocity and
Groundwater Storage, J. Hydrometeorol., 11, 601–617, https://doi.org/10.1175/2010JHM1212.1, 2010.
Dembélé, M., Schaefli, B., van de Giesen, N., and Mariéthoz, G.: Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa, Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, 2020.
Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., and Ceccato, P.: Validation of the CHIRPS satellite rainfall estimates over eastern Africa, Q. J. Roy. Meteorol. Soc., 144, 292–312, https://doi.org/10.1002/qj.3244, 2018.
Flörke, M., Schneider, C., and McDonald, R. I.: Water competition between cities and agriculture driven by climate change and urban growth, Nat. Sustainabil., 1, 51–58, https://doi.org/10.1038/s41893-017-0006-8, 2018.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., and Hoell, A.: The climate hazards
infrared precipitation with stations – a new environmental record for
monitoring extremes, Scient. Data, 2, 1–21, https://doi.org/10.1038/sdata.2015.66, 2015.
GLEAM: Method Global Land Evaporation Amsterdam Model, https://www.gleam.eu/#downloads, last access: 23 November 2022.
Gründemann, G. J., Werner, M., and Veldkamp, T. I. E.: The potential of global reanalysis datasets in identifying flood events in Southern Africa, Hydrol. Earth Syst. Sci., 22, 4667–4683, https://doi.org/10.5194/hess-22-4667-2018, 2018.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Sys.
Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
Hirpa, F. A., Alfieri, L., Lees, T., Peng, J., Dyer, E., and Dadson, S. J.:
Streamflow response to climate change in the Greater Horn of Africa, Climatic Change, 156, 341–363, https://doi.org/10.1007/s10584-019-02547-x, 2019.
Huntington, J. L., Hegewisch, K. C., Daudert, B., Morton, C. G., Abatzoglou, J. T., McEvoy, D. J., and Erickson, T.: Climate engine: Cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding, B. Am. Meteorol. Soc., 98, 2397–2410, https://doi.org/10.1175/BAMS-D-15-00324.1, 2017.
Jiang, Y. and Liu, Z.: Evaluations of Remote Sensing-Based Global Evapotranspiration Datasets at Catchment Scale in Mountain Regions, Remote
Sens., 13, 5096, https://doi.org/10.3390/rs13245096, 2021.
Jung, H. C., Getirana, A., Arsenault, K. R., Holmes, T. R. H., and McNally,
A.: Uncertainties in Evapotranspiration Estimates over West Africa, Remote
Sens., 11, 892, https://doi.org/10.3390/rs11080892, 2019.
Kabuya, P. M., Hughes, D. A., Tshimanga, R. M., Trigg, M. A., and Bates, P.:
Establishing uncertainty ranges of hydrologic indices across climate and
physiographic regions of the Congo River Basin, J. Hydrol.: Reg. Stud., 30, 100710, https://doi.org/10.1016/j.ejrh.2020.100710, 2020.
Koukoula, M., Nikolopoulos, E. I., Dokou, Z., and Anagnostou, E. N.: Evaluation of global water resources reanalysis products in the upper Blue
Nile River Basin, J. Hydrometeorol., 21, 935–952, https://doi.org/10.1175/JHM-D-19-0233.1, 2020.
Krabbenhoft, C. A., Allen, G. H., Lin, P., Godsey, S. E., Allen, D. C., Burrows, R. M., DelVecchia, A. G., Fritz, K. M., Shanafield, M., Burgin, A.
J., Zimmer, M. A., Datry, T., Dodds, W. K., Jones, C. N., Mims, M. C., Franklin, C., Hammond, J. C., Zipper, S., Ward, A. S., Costigan, K. H., Beck, H. E., and Olden, J. D.: Assessing placement bias of the global river
gauge network, Nat. Sustain., 5, 586–592, https://doi.org/10.1038/s41893-022-00873-0, 2022.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005.
Laipelt, L., Kayser, R. H. B., Fleischmann, A. S., Ruhoff, A., Bastiaanssen,
W., Erickson, T. A., and Melton, F.: Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud
computing, ISPRS J. Photogram. Remote Sens., 178, 81–96,
https://doi.org/10.1016/j.isprsjprs.2021.05.018, 2021.
Lakew, H. B., Moges, S. A., Anagnostou, E. N., Nikolopoulos, E. I., and Asfaw, D. H.: Evaluation of global water resources reanalysis runoff products for local water resources applications: case study-upper Blue Nile basin of Ethiopia, Water Resour. Manage., 34, 2157–2177, https://doi.org/10.1007/s11269-019-2190-y, 2020.
Larbi, I., Hountondji, F. C. C., Dotse, S.-Q., Mama, D., Nyamekye, C., Adeyeri, O. E., Djan'na Koubodana, H., Odoom, P. R. E., and Asare, Y. M.:
Local climate change projections and impact on the surface hydrology in the
Vea catchment, West Africa, Hydrol. Res., 52, 1200–1215, https://doi.org/10.2166/nh.2021.096, 2021.
Liu, W.: Evaluating remotely sensed monthly evapotranspiration against water
balance estimates at basin scale in the Tibetan Plateau, Hydrol. Res., 49, 1977–1990, https://doi.org/10.2166/nh.2018.008, 2018.
López, P. L., Sultana, T., Kafi, M. A. H., Hossain, M. S., Khan, A. S.,
and Masud, M. S.: Evaluation of global water resources reanalysis data for
estimating flood events in the Brahmaputra River Basin, Water Resour. Manage., 34, 2201–2220, https://doi.org/10.1007/s11269-020-02546-z, 2020.
Ma, N., Szilagyi, J., and Zhang, Y.: Calibration-free complementary relationship estimates terrestrial evapotranspiration globally, Water Resour. Res., 57, e2021WR029691, https://doi.org/10.1029/2021WR029691, 2021.
Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R.
A., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N.
E.: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture,
Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S.,
Funk, C., Peters-Lidard, C. D., and Verdin, J. P.: A land data assimilation
system for sub-Saharan Africa food and water security applications, Scient. Data, 4, 1–19, https://doi.org/10.1038/sdata.2017.12, 2017.
McNamara, I., Baez-Villanueva, O. M., Zomorodian, A., Ayyad, S., Zambrano-Bigiarini, M., Zaroug, M., Mersha, A., Nauditt, A., Mbuliro, M.,
and Wamala, S.: How well do gridded precipitation and actual evapotranspiration products represent the key water balance components in
the Nile Basin?, J. Hydrol.: Reg. Stud., 37, 100884, https://doi.org/10.1016/j.ejrh.2021.100884, 2021.
Moriasi, D. G., Arnold, J. W., Van Liew, M. L., Bingner, R. D., Harmel, R.,
and Veith, L. T.: Model Evaluation Guidelines for Systematic Quantification
of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, https://doi.org/10.1016/j.rse.2007.04.015, 2007.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
NASA: GRACE/GRACE-FO Mascons, NASA [data set], https://earth.gsfc.nasa.gov/geo/data/grace-mascons, last access: 23 November 2022.
Neal, J., Schumann, G., Bates, P., Buytaert, W., Matgen, P., and Pappenberger, F.: A data assimilation approach to discharge estimation from
space, Hydrol. Process., 23, 3641–3649, https://doi.org/10.1002/hyp.7518, 2009.
Nkiaka, E.: Water security assessment in ungauged regions using the water
balance and water footprint concepts and satellite observations, Hydrol. Res., 53, 336–352, https://doi.org/10.2166/nh.2022.124, 2022a.
Nkiaka, E.: Evaluation of WRR and ET estimates HESS scripts, Zenodo [code], https://doi.org/10.5281/zenodo.7347782, 2022b.
Nkiaka, E., Nawaz, N., and Lovett, J.: Using self-organizing maps to infill
missing data in hydro-meteorological time series from the Logone catchment,
Lake Chad basin, Environ. Monit. Assess., 188, 1–12, https://doi.org/10.1007/s10661-016-5385-1, 2016.
Nkiaka, E., Taylor, A., Dougill, A. J., Antwi-Agyei, P., Adefisan, E. A.,
Ahiataku, M. A., Baffour-Ata, F., Fournier, N., Indasi, V. S., and Konte, O.: Exploring the need for developing impact-based forecasting in West Africa, Front. Climate, 11, 565500, https://doi.org/10.3389/fclim.2020.565500, 2020.
Nkiaka, E., Bryant, R. G., Okumah, M., and Gomo, F. F.: Water security in
sub-Saharan Africa: Understanding the status of sustainable development goal 6, WIREs Water, 8, e1552, https://doi.org/10.1002/wat2.1552, 2021.
Odusanya, A. E., Mehdi, B., Schürz, C., Oke, A. O., Awokola, O. S.,
Awomeso, J. A., Adejuwon, J. O., and Schulz, K.: Multi-site calibration and
validation of SWAT with satellite-based evapotranspiration in a data-sparse
catchment in southwestern Nigeria, Hydrol. Earth Syst. Sci., 23, 1113–1144, https://doi.org/10.5194/hess-23-1113-2019, 2019.
Oussou, F. E., Ndehedehe, C. E., Oloukoi, J., Yalo, N., Boukari, M., and Diaw, A. T.: Characterization of the hydro-geological regime of fractured
aquifers in Benin (West-Africa) using multi-satellites and models, J. Hydrol.: Reg. Stud., 39, 100987, https://doi.org/10.1016/j.ejrh.2021.100987, 2022.
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., and Bosilovich, M.: The
global land data assimilation system, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rodell, M., Beaudoing, H. K., L'Ecuyer, T. S., Olson, W. S., Famiglietti, J.
S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J.,
Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A., Sheffield, J., and Wood, E. F.: The Observed State of the Water Cycle in the Early Twenty-First Century, J. Climate, 28, 8289–8318, https://doi.org/10.1175/JCLI-D-14-00555.1, 2015.
Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., and García, C.: Combined use of local and global hydro meteorological data with hydrological
models for water resources management in the Magdalena-Cauca Macro Basin–Colombia, Water Resour. Manage., 34, 2179–2199, https://doi.org/10.1007/s11269-019-02236-5, 2020.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-Y., and Iredell, M.: The NCEP climate forecast
system version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Satgé, F., Defrance, D., Sultan, B., Bonnet, M.-P., Seyler, F., Rouché, N., Pierron, F., and Paturel, J.-E.: Evaluation of 23 gridded
precipitation datasets across West Africa, J. Hydrol., 581, 124412, https://doi.org/10.1016/j.jhydrol.2019.124412, 2020.
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., Van Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B.,
and Eisner, S.: A global water resources ensemble of hydrological models:
the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413,
https://doi.org/10.5194/essd-9-389-2017, 2017.
Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu,
H., and Verdin, J. P.: Operational evapotranspiration mapping using remote
sensing and weather datasets: A new parameterization for the SSEB approach, J. Am. Water Resour. Assoc., 49, 577–591, https://doi.org/10.1111/jawr.12057, 2013.
Sheffield, J., Wood, E. F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila,
A., and Verbist, K.: Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions, Water Resour. Res., 54, 9724–9758, https://doi.org/10.1029/2017WR022437, 2018.
Sikder, M., David, C. H., Allen, G. H., Qiao, X., Nelson, E. J., and Matin,
M. A.: Evaluation of available global runoff datasets through a river model
in support of transboundary water management in South and Southeast Asia,
Front. Environ. Sci., 7, 171, https://doi.org/10.3389/fenvs.2019.00171, 2019.
Skofronick-Jackson, G., Berg, W., Kidd, C., Kirschbaum, D. B., Petersen, W.
A., Huffman, G. J., and Takayabu, Y. N.: Global precipitation measurement
(GPM): Unified precipitation estimation from space, in: Remote Sensing of
Clouds and Precipitation, Springer, 175–193, ISBN 978-3-319-72582-6, 2018.
Slater, L. J., Anderson, B., Buechel, M., Dadson, S., Han, S., Harrigan, S.,
Kelder, T., Kowal, K., Lees, T., and Matthews, T.: Nonstationary weather and
water extremes: a review of methods for their detection, attribution, and
management, Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, 2021.
Smith, M. W., Willis, T., Alfieri, L., James, W. H. M., Trigg, M. A., Yamazaki, D., Hardy, A. J., Bisselink, B., De Roo, A., Macklin, M. G., and
Thomas, C. J.: Incorporating hydrology into climate suitability models
changes projections of malaria transmission in Africa, Nat. Commun., 11, 4353, https://doi.org/10.1038/s41467-020-18239-5, 2020.
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S.,
Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C., Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and Velicogna, I.: Contributions of GRACE to understanding climate change, Nat. Clim. Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019.
Thiemig, V., Bisselink, B., Pappenberger, F., and Thielen, J.: A pan-African
medium-range ensemble flood forecast system, Hydrol. Earth Syst. Sci., 19,
3365–3385, https://doi.org/10.5194/hess-19-3365-2015, 2015.
UNDESA – United Nations, Department of Economic and Social Affairs:
Population DivisionProspects, in: Volume I: Comprehensive Tables (ST/ESA/SER.A/426), https://population.un.org/wpp/Download/Probabilistic/ (last access: 21 March 2022), 2019.
van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.: Global monthly water
stress: 1. Water balance and water availability, Water Resour. Res., 47, W07517, https://doi.org/10.1029/2010WR009791, 2011.
Van Der Knijff, J. M., Younis, J., and De Roo, A. P. J.: LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood
simulation, Int. J. Geogr. Info. Sci., 24, 189–212, https://doi.org/10.1080/13658810802549154, 2010.
van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y., and Tregoning, P.: A
global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble, Hydrol. Earth Syst. Sci., 18, 2955–2973, https://doi.org/10.5194/hess-18-2955-2014, 2014.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal,
allocation and consumptive use of surface water and groundwater resources,
Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
WCI: Water Cycle Integrator (WCI), https://wci.earth2observe.eu/portal/, last access: 23 November 2022.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Weerasinghe, I., Bastiaanssen, W., Mul, M., Jia, L., and Van Griensven, A.:
Can we trust remote sensing evapotranspiration products over Africa?, Hydrol. Earth Syst. Sci., 24, 1565–1586, https://doi.org/10.5194/hess-24-1565-2020, 2020.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
Xie, J., Liu, L., Wang, Y., Xu, Y.-P., and Chen, H.: Changes in actual
evapotranspiration and its dominant drivers across the Three-River Source
Region of China during 1982–2014, Hydrol. Res., 53, 297–313, https://doi.org/10.2166/nh.2022.076, 2022.
Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., and Liu, Y. Y.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Scient. Rep., 6, 1–12, https://doi.org/10.1038/srep19124, 2016.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., and Yang, Y.: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017, Remote Sens. Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8583 KB) - Full-text XML
- Corrigendum
-
Supplement
(1000 KB) - BibTeX
- EndNote
Short summary
Achieving water security in poorly gauged regions is hindered by a lack of in situ hydrometeorological data. In this study, we validated nine existing gridded water resource reanalyses and eight evapotranspiration products in eight representative gauged basins in Central–West Africa. Our results show the strengths and and weaknesses of the existing products and that these products can be used to assess water security in ungauged basins. However, it is imperative to validate these products.
Achieving water security in poorly gauged regions is hindered by a lack of in situ...