Articles | Volume 26, issue 15
https://doi.org/10.5194/hess-26-3941-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3941-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index
Matthew Preisser
Environmental and Water Resources Engineering, University of Texas at Austin, Austin, Texas, USA
LBJ School of Public Affairs, University of Texas at Austin, Austin, Texas, USA
Paola Passalacqua
CORRESPONDING AUTHOR
Environmental and Water Resources Engineering, University of Texas at Austin, Austin, Texas, USA
R. Patrick Bixler
LBJ School of Public Affairs, University of Texas at Austin, Austin, Texas, USA
Julian Hofmann
Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Aachen, Germany
Related authors
No articles found.
Jayaram Hariharan, Kyle Wright, Andrew Moodie, Nelson Tull, and Paola Passalacqua
Earth Surf. Dynam., 11, 405–427, https://doi.org/10.5194/esurf-11-405-2023, https://doi.org/10.5194/esurf-11-405-2023, 2023
Short summary
Short summary
We simulate the transport of material through numerically simulated river deltas under natural and human-modified (embankment construction and channel dredging) scenarios to understand their impacts on material transport. Human modifications reduce the total area visited by passive particles and alter the amount of time spent within the delta relative to natural conditions. This work can help us understand how future construction may impact land building or ecosystem restoration projects.
Cited articles
Abbas, H. B. and Routray, J. K.: Vulnerability to flood-induced public health
risks in Sudan, Disast. Prevent. Manage., 23, 395–419,
https://doi.org/10.1108/DPM-07-2013-0112, 2014. a
Agard, J. and Schipper, E. L. F.: Glossary, Annex II, in: Managing the Risks
of Extreme Events and Disasters to Advance Climate Change Adaptation: Special
Report of the Intergovernmental Panel on Climate Change, edited by: Birkmann,
J., Campos, M., Dubeux, C., Nojiri, Y., Olsson, L., Osman-Elasha, B.,
Pelling, M., Prather, M., Rivera-Ferre, M., Ruppel, O., Sallenger, A., Smith,
K., and St. Clair, A., Cambridge Univesrity Press, Cambridge, UK, and New York, NY, USA, 1757–1776, https://doi.org/10.1016/s0959-3780(06)00031-8, 2012. a
Ahmed, F., Khan, M. S. A., Warner, J., Moors, E., and Terwisscha Van Scheltinga, C.: Integrated Adaptation Tipping Points (IATPs) for urban flood resilience, Environ. Urbaniz., 30, 575–596, https://doi.org/10.1177/0956247818776510, 2018a. a
Ahmed, F., Moors, E., Khan, M. S. A., Warner, J., and Terwisscha van Scheltinga, C.: Tipping points in adaptation to urban flooding under
climate change and urban growth: The case of the Dhaka megacity, Land Use
Policy, 79, 496–506, https://doi.org/10.1016/j.landusepol.2018.05.051, 2018b. a
Antoine, M., Javaux, M., and Bielders, C.: What indicators can capture
runoff-relevant connectivity properties of the micro-topography at the plot
scale?, Adv. Water Resour., 32, 1297–1310, https://doi.org/10.1016/j.advwatres.2009.05.006, 2009. a
Appels, W. M., Bogaart, P. W., and van der Zee, S. E.: Influence of spatial
variations of microtopography and infiltration on surface runoff and field
scale hydrological connectivity, Adv. in Water Resour., 34, 303–313, https://doi.org/10.1016/j.advwatres.2010.12.003, 2011. a
Bachmann, D.: Beitrag zur Entwicklung eines Entscheidungsunterstützungssystems zur Bewertung und Planung von Hochwasserschutzmaßnahmen, PhD thesis, Institut für Wasserbau und Wasserwirtschaft, RWTH Aachen, Aachen, https://d-nb.info/1023005069/34
(last access: 15 March 2022), 2012. a
Bachmann, D.: ProMaIDes: State-of-the Science Flood Risk Management Tool,
https://promaides.h2.de/promaides/ (last access: 15 March 2022), 2021. a
Bakkensen, L. A., Fox-Lent, C., Read, L. K., and Linkov, I.: Validating
Resilience and Vulnerability Indices in the Context of Natural Disasters,
Risk Anal., 37, 982–1004, https://doi.org/10.1111/risa.12677, 2017. a
Barnes, R.: r-barnes/Barnes2020-FillSpillMerge, GitHub [code], https://github.com/r-barnes/Barnes2020-FillSpillMerge, last access: 28 July 2022. a
Barnes, R., Callaghan, K. L., and Wickert, A. D.: Computing water flow through complex landscapes – Part 2: Finding hierarchies in depressions and morphological segmentations, Earth Surf. Dynam., 8, 431–445, https://doi.org/10.5194/esurf-8-431-2020, 2020. a
Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage,
J., Olcese, G., Neal, J., Schumann, G., Giustarini, L., Coxon, G., Porter,
J. R., Amodeo, M. F., Chu, Z., Lewis-Gruss, S., Freeman, N. B., Houser, T.,
Delgado, M., Hamidi, A., Bolliger, I., McCusker, K., Emanuel, K., Ferreira, C. M., Khalid, A., Haigh, I. D., Couasnon, A., Kopp, R., Hsiang, S., and Krajewski, W. F.: Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates, Water Resour. Res., 57, 1–29, https://doi.org/10.1029/2020WR028673, 2021. a, b, c
Bermúdez, M., Ntegeka, V., Wolfs, V., and Willems, P.: Development and
Comparison of Two Fast Surrogate Models for Urban Pluvial Flood Simulations,
Water Resour. Manage., 32, 2801–2815, https://doi.org/10.1007/s11269-018-1959-8, 2018. a
Bernini, A. and Franchini, M.: A Rapid Model for Delimiting Flooded Areas,
Water Resour. Manage., 27, 3825–3846, https://doi.org/10.1007/s11269-013-0383-3, 2013. a, b
Bin, O. and Kruse, J. B.: Real Estate Market Response to Coastal Flood
Hazards, Nat. Hazards Rev., 7, 137–144, https://doi.org/10.1061/(asce)1527-6988(2006)7:4(137), 2006. a
Bixler, R. P., Yang, E., Richter, S. M., and Coudert, M.: Boundary crossing for urban community resilience: A social vulnerability and multi-hazard approach in Austin, Texas, USA, Int. J. Disast. Risk Reduct., 66, 102613, https://doi.org/10.1016/j.ijdrr.2021.102613, 2021. a, b, c, d
Bulti, D. T. and Abebe, B. G.: A review of flood modeling methods for urban
pluvial flood application, Model. Earth Syst. Environ., 6, 1293–1302, https://doi.org/10.1007/s40808-020-00803-z, 2020a. a
Bulti, D. T. and Abebe, B. G.: A review of flood modeling methods for urban
pluvial flood application, Model. Earth Syst. Environ., 6, 1293–1302, https://doi.org/10.1007/s40808-020-00803-z, 2020b. a
Burton, C. and Cutter, S. L.: Levee Failures and Social Vulnerability in the
Sacramento-San Joaquin Delta Area, California, Nat. Hazards Rev., 9, 136–149, https://doi.org/10.1061/(asce)1527-6988(2008)9:3(136), 2008. a, b
Burton, C. G.: Social Vulnerability and Hurricane Impact Modeling, Nat.
Hazards Rev., 11, 58–68, https://doi.org/10.1061/(asce)1527-6988(2010)11:2(58), 2010. a
Calianno, M., Ruin, I., and Gourley, J. J.: Supplementing flash flood reports
with impact classifications, J. Hydrol., 477, 1–16,
https://doi.org/10.1016/j.jhydrol.2012.09.036, 2013. a
Callaghan, K. L. and Wickert, A. D.: Computing water flow through complex
landscapes – Part 1: Incorporating depressions in flow routing using
FlowFill, Earth Surf. Dynam., 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019, 2019. a, b
Cardona, O. D., Van Aalst, M. K., Birkmann, J., Fordham, M., Mc Gregor, G., Rosa, P., Pulwarty, R. S., Schipper, E. L. F., Sinh, B. T., Décamps, H., Keim, M., Davis, I., Ebi, K. L., Lavell, A., Mechler, R., Murray, V., Pelling, M., Pohl, J., Smith, A. O., and Thomalla, F.: Determinants of risk:
Exposure and vulnerability, in: Managing the Risks of Extreme Events and
Disasters to Advance Climate Change Adaptation: Special Report of the
Intergovernmental Panel on Climate Change, Cambridge Univesrity Press, Cambridge, UK, and New York, NY, USA, 65–108, https://doi.org/10.1017/CBO9781139177245.005, 2012. a, b, c, d
Chakraborty, J., Collins, T. W., Montgomery, M. C., and Grineski, S. E.:
Social and Spatial Inequities in Exposure to Flood Risk in Miami, Florida,
Nat. Hazards Rev., 15, 04014006, https://doi.org/10.1061/(asce)nh.1527-6996.0000140, 2014. a, b, c, d
Chu, X., Yang, J., Chi, Y., and Zhang, J.: Dynamic puddle delineation and
modeling of puddle-to-puddle filling-spilling-merging-splitting overland flow
processes, Water Resour. Res., 49, 3825–3829, https://doi.org/10.1002/wrcr.20286, 2013a. a, b
Chu, X., Yang, J., Chi, Y., and Zhang, J.: Dynamic puddle delineation and
modeling of puddle-to-puddle filling-spilling-merging-splitting overland flow
processes, Water Resour. Res., 49, 3825–3829, https://doi.org/10.1002/wrcr.20286, 2013b. a
Collins, T. W., Grineski, S. E., Chakraborty, J., Montgomery, M. C., and
Hernandez, M.: Downscaling Environmental Justice Analysis: Determinants of
Household-Level Hazardous Air Pollutant Exposure in Greater Houston, Ann.
Assoc. Am. Geogr., 105, 684–703, https://doi.org/10.1080/00045608.2015.1050754, 2015. a
Collins, T. W., Grineski, S. E., Chakraborty, J., and Flores, A. B.:
Environmental injustice and Hurricane Harvey: A household-level study of
socially disparate flood exposures in Greater Houston, Texas, USA, Environ. Res., 179, 108772, https://doi.org/10.1016/j.envres.2019.108772, 2019. a
Cutter, S. L., Boruff, B., and Shirley, W. L.: Social vulnerability to
environmental hazards, Social Sci. Quart., 84, 242–261,
https://doi.org/10.1111/1540-6237.8402002, 2003. a, b
Cutter, S. L., Emrich, C. T., Morath, D. P., and Dunning, C. M.: Integrating
social vulnerability into federal flood risk management planning, J. Flood Risk Manage., 6, 332–344, https://doi.org/10.1111/jfr3.12018, 2013. a, b
de Carvalho Júnior, O. A., Guimarães, R. F., Montgomery, D. R.,
Gillespie, A. R., Gomes, R. A. T., Martins, É. D. S., and Silva, N. C.:
Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital
elevation models in the Bambuí group, Brazil, Remote Sens., 6, 330–351, https://doi.org/10.3390/rs6010330, 2013. a
de Moel, H. and Aerts, J. C.: Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates, Nat. Hazards, 58,
407–425, https://doi.org/10.1007/s11069-010-9675-6, 2011. a
Downton, M. W., Morss, R. E., Wilhelmi, O. V., Gruntfest, E., and Higgins, M. L.: Interactions between scientific uncertainty and flood management
decisions: Two case studies in Colorado, Environ. Hazards, 6, 134–146,
https://doi.org/10.1016/j.hazards.2006.05.003, 2005. a
Fahy, B., Brenneman, E., Chang, H., and Shandas, V.: Spatial analysis of urban flooding and extreme heat hazard potential in Portland, OR, Int. J. Disast. Risk Reduct., 39, 101117, https://doi.org/10.1016/j.ijdrr.2019.101117, 2019. a
Falconer, R. H., Cobby, D., Smyth, P., Astle, G., Dent, J., and Golding, B.:
Pluvial flooding: New approaches in flood warning, mapping and risk management, J. Flood Risk Manage., 2, 198–208, https://doi.org/10.1111/j.1753-318X.2009.01034.x, 2009. a
Fekete, A.: Validation of a social vulnerability index in context to
river-floods in Germany, Nat. Hazards Earth Syst. Sci., 9, 393–403, https://doi.org/10.5194/nhess-9-393-2009, 2009. a
Fielding, J. and Burningham, K.: Environmental inequality and flood hazard,
Local Environ., 10, 379–395, https://doi.org/10.1080/13549830500160875, 2005. a
Finch, C., Emrich, C. T., and Cutter, S. L.: Disaster disparities and
differential recovery in New Orleans, Populat. Environ., 31, 179–202, https://doi.org/10.1007/s11111-009-0099-8, 2010. a
Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L., and Lewis,
B.: A Social Vulnerability Index for Disaster Management, J. Homeland Secur. Emerg. Manage., 8, 1–22, https://doi.org/10.2202/1547-7355.1792, 2011. a
Freni, G., La Loggia, G., and Notaro, V.: Uncertainty in urban flood damage
assessment due to urban drainage modelling and depth-damage curve estimation, Water Sci. Technol., 61, 2979–2993, https://doi.org/10.2166/wst.2010.177, 2010. a
Fritsch, K., Assmann, A., and Tyrna, B.: Long-term experiences with pluvial
flood risk management, in: E3S Web of Conferences, 7,
https://doi.org/10.1051/e3sconf/20160704017, 2016. a
Grahn, T. and Nyberg, L.: Assessment of pluvial flood exposure and
vulnerability of residential areas, Int. J. Disast. Risk Reduct., 21, 367–375, https://doi.org/10.1016/j.ijdrr.2017.01.016, 2017. a
Grimm, C., Wöffler, T., Bachmann, D., and Schüttrumpf, H.: Risk
management in coastal engineering: Applied coastal research projects for
Northern Germany, Wasser Abfall, 14, 53–55, 2012. a
Guo, K., Guan, M., and Yu, D.: Urban surface water flood modelling – a
comprehensive review of current models and future challenges, Hydrol. Earth Syst. Sci., 25, 2843–2860, https://doi.org/10.5194/hess-25-2843-2021, 2021. a
Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C.: A review of advances
in flash flood forecasting, Hydrol. Process., 2784, 2771–2784, https://doi.org/10.1002/hyp.8040, 2011. a
Houston, D., Werrity, A., Bassett, D., Geddes, A., Hoolachan, A., and McMillan, M.: Pluvial(rain-related) flooding in urban areas: the invisible hazard, Joseph Rowntree Foundation,
https://www.jrf.org.uk/report/pluvial-rain-related-flooding-urban-areas-invisible-hazard#jl_downloads_0
(last access: 15 March 2022), 2011. a
ISDR: UNISDR Terminology on Disaster Risk, Tech. rep., ISDR,
https://doi.org/10.7591/9781501701498-008, 2009. a, b
Jenson, S. K. and Domingue, J. O.: Extracting topographic structure from
digital elevation data for geographic information system analysis, Photogram. Eng. Remote Sens., 54, 1593–1600, 1988. a
Johnson, M. J., Munasinghe, D., Eyelade, D., and Cohen, S.: An integrated
evaluation of the National Water Model (NWM)–Height above nearest drainage (HAND) flood mapping methodology, Nat. Hazards Earth Syst. Sci., 19, 2405–2420, https://doi.org/10.5194/nhess-19-2405-2019, 2019. a
Kaźmierczak, A. and Cavan, G.: Surface water flooding risk to urban
communities: Analysis of vulnerability, hazard and exposure, Landsc. Urban Plan., 103, 185–197, https://doi.org/10.1016/j.landurbplan.2011.07.008, 2011. a
Kron, W.: Flood risk = hazard ⋅ values ⋅ vulnerability, Water Int., 30, 58–68, https://doi.org/10.1080/02508060508691837, 2005. a
Le, P. V. V. and Kumar, P.: Power law scaling of topographic depressions and
their hydrologic connectivity, Geophys. Res. Lett., 41, 1553–1559,
https://doi.org/10.1002/2013GL059114, 2014. a
Lee, D. and Jung, J.: The growth of low-income population in floodplains: A
case study of Austin, TX, KSCE J. Civ. Eng., 18, 683–693,
https://doi.org/10.1007/s12205-014-0205-z, 2014. a
Lewin, J. and Ashworth, P. J.: The negative relief of large river floodplains, Earth-Sci. Rev., 129, 1–23, https://doi.org/10.1016/j.earscirev.2013.10.014, 2014. a
Li, S., MacMillan, R. A., Lobb, D. A., McConkey, B. G., Moulin, A., and Fraser, W. R.: Lidar DEM error analyses and topographic depression identification in a hummocky landscape in the prairie region of Canada, Geomorphology, 129, 263–275, https://doi.org/10.1016/j.geomorph.2011.02.020, 2011. a
Lindsay, J. B. and Creed, I. F.: Removal of artifact depressions from digital
elevation models: Towards a minimum impact approach, Hydrol. Process., 19, 3113–3126, https://doi.org/10.1002/hyp.5835, 2005. a
Luke, A., Sanders, B. F., Goodrich, K. A., Feldman, D. L., Boudreau, D.,
Eguiarte, A., Serrano, K., Reyes, A., Schubert, J. E., Aghakouchak, A.,
Basolo, V., and Matthew, R. A.: Going beyond the flood insurance rate map:
Insights from flood hazard map co-production, Nat. Hazards Earth Syst. Sci., 18, 1097–1120, https://doi.org/10.5194/nhess-18-1097-2018, 2018. a, b, c
Martz, L. W. and Garbrecht, J.: An outlet breaching algorithm for the
treatment of closed depressions in a raster DEM, Comput. Geosci., 25, 835–844, https://doi.org/10.1016/S0098-3004(99)00018-7, 1999. a
McCarthy, S., Tunstall, S., Parker, D., Faulkner, H., and Howe, J.: Risk
communication in emergency response to a simulated extreme flood, Environ. Hazards, 7, 179–192, https://doi.org/10.1016/j.envhaz.2007.06.003, 2007. a
McGrath, H., Bourgon, J. F., Proulx-Bourque, J. S., Nastev, M., and Abo El
Ezz, A.: A comparison of simplified conceptual models for rapid web-based
flood inundation mapping, Nat. Hazards, 93, 905–920, https://doi.org/10.1007/s11069-018-3331-y, 2018. a
Metz, M., Mitasova, H., and Harmon, R. S.: Efficient extraction of drainage
networks from massive, radar-based elevation models with least cost path
search, Hydrol. Earth Syst. Sci., 15, 667–678,
https://doi.org/10.5194/hess-15-667-2011, 2011. a
Middelmann-Fernandes, M. H.: Flood damage estimation beyond stage-damage
functions: An Australian example, J. Flood Risk Manage., 3, 88–96, https://doi.org/10.1111/j.1753-318X.2009.01058.x, 2010. a
Ming, X., Liang, Q., Xia, X., Li, D., and Fowler, H. J.: Real-Time Flood
Forecasting Based on a High-Performance 2-D Hydrodynamic Model and Numerical
Weather Predictions, Water Resour. Res., 56, 7, https://doi.org/10.1029/2019WR025583, 2020. a, b, c
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Allaire, M., and Matthew,
R. A.: What Is Nuisance Flooding? Defining and Monitoring an Emerging
Challenge, Water Resour. Res., 54, 4218–4227, https://doi.org/10.1029/2018WR022828, 2018. a, b, c
Muthusamy, M., Casado, M. R., Salmoral, G., Irvine, T., and Leinster, P.: A remote sensing based integrated approach to quantify the impact
of fluvial and pluvial flooding in an urban catchment, Remote Sens., 11, 577, https://doi.org/10.3390/rs11050577, 2019. a
National Academies of Sciences Engineering and Medicine: Framing the
Challenge of Urban Flooding in the United States, The National Academies
Press, Washington, DC, https://doi.org/10.17226/25381, 2019. a
Nelson, K. S., Abkowitz, M. D., and Camp, J. V.: A method for creating high
resolution maps of social vulnerability in the context of environmental
hazards, Appl. Geogr., 63, 89–100, https://doi.org/10.1016/j.apgeog.2015.06.011, 2015. a, b, c, d
Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G.,
Silveira, A., Waterloo, M., and Saleska, S.: Height Above the Nearest Drainage – a hydrologically relevant new terrain model, J. Hydrol., 404, 13–29, https://doi.org/10.1016/j.jhydrol.2011.03.051, 2011. a, b
PassaH2O Group: passaH2O/GeoFlood, GitHub [code], https://github.com/passaH2O/GeoFlood, last access: 28 July 2022. a
Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G., and
Dietrich, W. E.: A geometric framework for channel network extraction from
lidar: Nonlinear diffusion and geodesic paths, J. Geophys. Res., 115, 1–18, https://doi.org/10.1029/2009jf001254, 2010. a, b
Peduzzi, P.: The Disaster Risk, Global Change, and Sustainability Nexus,
Sustainability (Switzerland), 11, 1–21, https://doi.org/10.3390/su11040957, 2019. a
Pregnolato, M., Ford, A., Wilkinson, S. M., and Dawson, R. J.: The impact of
flooding on road transport: A depth-disruption function, Transport. Res. Pt. D, 55, 67–81, https://doi.org/10.1016/j.trd.2017.06.020, 2017. a
Preisser, M., Passalacqua, P., Bixler, R. P., and Hofmann, J.: Data, Scripts, and Results for “Intersecting Near-Real Time Fluvial and Pluvial Inundation Estimates with Sociodemographic Vulnerability to Quantify a Household Flood Impact Index”. In Hydrology and Earth System Sciences, Zenodo [data set and code], https://doi.org/10.5281/zenodo.6584401, 2022. a
Rolfe, M. I., Pit, S. W., McKenzie, J. W., Longman, J., Matthews, V., Bailie,
R., and Morgan, G. G.: Social vulnerability in a high-risk flood-affected
rural region of NSW, Australia, Nat. Hazards, 101, 631–650,
https://doi.org/10.1007/s11069-020-03887-z, 2020. a
Rufat, S., Tate, E., Burton, C. G., and Maroof, A. S.: Social vulnerability to floods: Review of case studies and implications for measurement, Int. J. Disast. Risk Reduct., 14, 470–486, https://doi.org/10.1016/j.ijdrr.2015.09.013, 2015. a, b
Rufat, S., Tate, E., Emrich, C. T., and Antolini, F.: How Valid Are Social
Vulnerability Models?, Ann. Am. Assoc. Geogr., 109, 1131–1153, https://doi.org/10.1080/24694452.2018.1535887, 2019. a
Sangireddy, H., Carothers, R. A., Stark, C. P., and Passalacqua, P.: Controls
of climate, topography, vegetation, and lithology on drainage density
extracted from high resolution topography data, J. Hydrol., 537, 271–282, https://doi.org/10.1016/j.jhydrol.2016.02.051, 2016. a
Schumann, G., Frye, S., Wells, G., Adler, R., Brakenridge, R., Bolten, J.,
Murray, J., Slayback, D., Policelli, F., Kirschbaum, D., Wu, H., Cappelaere,
P., Howard, T., Flamig, Z., Clark, R., Stough, T., Chini, M., Matgen, P.,
Green, D., and Jones, B.: Unlocking the full potential of Earth observation
during the 2015 Texas flood disaster, Water Resour. Res., 52, 3288–3293, https://doi.org/10.1002/2015WR018428, 2016. a
Soille, P., Vogt, J., and Colombo, R.: Carving and adaptive drainage
enforcement of grid digital elevation models, Water Resour. Res., 39, 1–13, https://doi.org/10.1029/2002WR001879, 2003. a
Syvitski, J. P., Overeem, I., Brakenridge, G. R., and Hannon, M.: Floods,
floodplains, delta plains – A satellite imaging approach, Sediment. Geol., 267–268, 1–14, https://doi.org/10.1016/j.sedgeo.2012.05.014, 2012. a
Tate, E.: Uncertainty Analysis for a Social Vulnerability Index, Ann. Assoc. Am. Geogr., 103, 526–543, https://doi.org/10.1080/00045608.2012.700616, 2013. a
Tate, E., Strong, A., Kraus, T., and Xiong, H.: Flood recovery and property
acquisition in Cedar Rapids, Iowa, Nat. Hazards, 80, 2055–2079,
https://doi.org/10.1007/s11069-015-2060-8, 2016. a
Tate, E., Rahman, M. A., Emrich, C. T., and Sampson, C. C.: Flood exposure and social vulnerability in the United States, Nat. Hazards, 106, 435–457,
https://doi.org/10.1007/s11069-020-04470-2, 2021. a, b, c, d
Tellman, B., Schank, C., Schwarz, B., Howe, P. D., and de Sherbinin, A.: Using disaster outcomes to validate components of social vulnerability to floods: Flood deaths and property damage across the USA, Sustainability
(Switzerland), 12, 1–28, https://doi.org/10.3390/su12156006, 2020. a, b
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., and Kim, S.:
Flood inundation modelling: A review of methods, recent advances and
uncertainty analysis, Environ. Model. Softw., 90, 201–216,
https://doi.org/10.1016/j.envsoft.2017.01.006, 2017. a
Tsai, C. W.: Applicability of Kinematic, Noninertia, and Quasi-Steady Dynamic
Wave Models to Unsteady Flow Routing, J. Hydraul. Eng., 129, 613–627, https://doi.org/10.1061/(ASCE)0733-9429(2003)129:8(613), 2003.
a
Tsakiris, G.: Flood risk assessment: Concepts, modelling, applications, Nat. Hazards Earth Syst. Sci., 14, 1361–1369, https://doi.org/10.5194/nhess-14-1361-2014, 2014. a, b, c
Ueland, J. and Warf, B.: Racialized Topographies: Altitude and Race in Southern Cities, Geogr. Rev., 96, 50–78, https://doi.org/10.1111/j.1931-0846.2006.tb00387.x, 2006. a
UNDP: Human Development Report 2010: The Real Wealth of Nations – Pathways to Human Development, Tech. rep., UNDP, New York, https://doi.org/10.2307/2137795, 2010. a
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing
risk of compound flooding from storm surge and rainfall for major US cities,
Nat. Clim. Change, 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015. a, b, c
Wang, Y. and Marsooli, R.: Physical Instability of Individuals Exposed to
Storm-Induced Coastal Flooding: Vulnerability of New Yorkers During Hurricane
Sandy, Water Resour. Res., 57, https://doi.org/10.1029/2020WR028616, 2021. a
Wing, O. E., Bates, P. D., Smith, A. M., Sampson, C. C., Johnson, K. A.,
Fargione, J., and Morefield, P.: Estimates of present and future flood risk
in the conterminous United States, Environ. Res. Lett., 13, 1–7, https://doi.org/10.1088/1748-9326/aaac65, 2018. a, b, c
Wing, O. E., Pinter, N., Bates, P. D., and Kousky, C.: New insights into US flood vulnerability revealed from flood insurance big data, Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-15264-2, 2020. a
Wu, Q. and Lane, C. R.: Delineation and Quantification of Wetland Depressions
in the Prairie Pothole Region of North Dakota, Wetlands, 36, 215–227,
https://doi.org/10.1007/s13157-015-0731-6, 2016. a
Wu, Q., Deng, C., and Chen, Z.: Automated delineation of karst sinkholes from
LiDAR-derived digital elevation models, Geomorphology, 266, 1–10,
https://doi.org/10.1016/j.geomorph.2016.05.006, 2016. a
Zheng, X., D'Angelo, C., Maidment, D., and Passlacqua, P.: Application of a
large-scale terrain-analysis-based flood mapping system to Hurricane Harvey,
J. Am. Water Resour. Assoc., 58, 149–163, https://doi.org/10.1111/1752-1688.12987, 2022. a
Short summary
There is rising concern in numerous fields regarding the inequitable distribution of human risk to floods. The co-occurrence of river and surface flooding is largely excluded from leading flood hazard mapping services, therefore underestimating hazards. Using high-resolution elevation data and a region-specific social vulnerability index, we developed a method to estimate flood impacts at the household level in near-real time.
There is rising concern in numerous fields regarding the inequitable distribution of human risk...