Articles | Volume 26, issue 12
https://doi.org/10.5194/hess-26-3037-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3037-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bias adjustment and downscaling of snow cover fraction projections from regional climate models using remote sensing for the European Alps
Institute for Earth Observation, Eurac Research, Bolzano, 39100, Italy
Florian Hanzer
Department of Geography, University of Innsbruck, Innsbruck, 6020,
Austria
Related authors
Alice Crespi, Michael Matiu, Giacomo Bertoldi, Marcello Petitta, and Marc Zebisch
Earth Syst. Sci. Data, 13, 2801–2818, https://doi.org/10.5194/essd-13-2801-2021, https://doi.org/10.5194/essd-13-2801-2021, 2021
Short summary
Short summary
A 250 m gridded dataset of 1980–2018 daily mean temperature and precipitation records for Trentino–South Tyrol (north-eastern Italian Alps) was derived from a quality-controlled and homogenized archive of station observations. The errors associated with the final interpolated fields were assessed and thoroughly discussed. The product will be regularly updated and is meant to support regional climate studies and local monitoring and applications in integration with other fine-resolution data.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021, https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Short summary
A service to enable real-time optimization of grooming and snow-making at ski resorts was developed and evaluated using both GNSS-measured snow depth and spaceborne snow maps derived from Copernicus Sentinel-2. The correlation to the ground observation data was high. Potential sources for the overestimation of the snow depth by the simulations are mainly the impact of snow redistribution by skiers, compensation of uneven terrain, or spontaneous local adaptions of the snow management.
Alice Crespi, Michael Matiu, Giacomo Bertoldi, Marcello Petitta, and Marc Zebisch
Earth Syst. Sci. Data, 13, 2801–2818, https://doi.org/10.5194/essd-13-2801-2021, https://doi.org/10.5194/essd-13-2801-2021, 2021
Short summary
Short summary
A 250 m gridded dataset of 1980–2018 daily mean temperature and precipitation records for Trentino–South Tyrol (north-eastern Italian Alps) was derived from a quality-controlled and homogenized archive of station observations. The errors associated with the final interpolated fields were assessed and thoroughly discussed. The product will be regularly updated and is meant to support regional climate studies and local monitoring and applications in integration with other fine-resolution data.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Florian Hanzer, Kristian Förster, Johanna Nemec, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, https://doi.org/10.5194/hess-22-1593-2018, 2018
Short summary
Short summary
Climate change effects on snow, glaciers, and hydrology are investigated for the Ötztal Alps region (Austria) using a hydroclimatological model driven by climate projections for the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show declining snow amounts and strongly retreating glaciers with moderate effects on catchment runoff until the mid-21st century, whereas annual runoff volumes decrease strongly towards the end of the century.
Kristian Förster, Florian Hanzer, Elena Stoll, Adam A. Scaife, Craig MacLachlan, Johannes Schöber, Matthias Huttenlau, Stefan Achleitner, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 22, 1157–1173, https://doi.org/10.5194/hess-22-1157-2018, https://doi.org/10.5194/hess-22-1157-2018, 2018
Short summary
Short summary
This article presents predictability analyses of snow accumulation for the upcoming winter season. The results achieved using two coupled atmosphere–ocean general circulation models and a water balance model show that the tendency of snow water equivalent anomalies (i.e. the sign of anomalies) is correctly predicted in up to 11 of 13 years. The results suggest that some seasonal predictions may be capable of predicting tendencies of hydrological model storages in parts of Europe.
Jan Schmieder, Florian Hanzer, Thomas Marke, Jakob Garvelmann, Michael Warscher, Harald Kunstmann, and Ulrich Strasser
Hydrol. Earth Syst. Sci., 20, 5015–5033, https://doi.org/10.5194/hess-20-5015-2016, https://doi.org/10.5194/hess-20-5015-2016, 2016
Short summary
Short summary
We present novel research on the spatiotemporal variability of snowmelt isotopic content in a high-elevation catchment with complex terrain
to improve the isotope-based hydrograph separation method. A modelling approach was used to weight the plot-scale snowmelt isotopic content
with melt rates for the north- and south-facing slope. The investigations showed that it is important to sample at least north- and south-facing slopes,
because of distinct isotopic differences between both slopes.
Kristian Förster, Felix Oesterle, Florian Hanzer, Johannes Schöber, Matthias Huttenlau, and Ulrich Strasser
Proc. IAHS, 374, 143–150, https://doi.org/10.5194/piahs-374-143-2016, https://doi.org/10.5194/piahs-374-143-2016, 2016
Short summary
Short summary
We present first results of a coupled seasonal prediction modelling system that runs at monthly time steps for a small catchment in the Austrian Alps. Meteorological forecasts are obtained from the CFSv2 model which are downscaled to the Alpine Water balance And Runoff Estimation model AWARE. Initial conditions are obtained using the physically based, hydro-climatological snow model AMUNDSEN. In this way, ensemble simulations of the coupled model are compared to observations.
Florian Hanzer, Kay Helfricht, Thomas Marke, and Ulrich Strasser
The Cryosphere, 10, 1859–1881, https://doi.org/10.5194/tc-10-1859-2016, https://doi.org/10.5194/tc-10-1859-2016, 2016
Short summary
Short summary
The hydroclimatological model AMUNDSEN is set up to simulate snow and ice accumulation, ablation, and runoff for a study region in the Ötztal Alps (Austria) in the period 1997–2013. A new validation concept is introduced and demonstrated by evaluating the model performance using several independent data sets, e.g. snow depth measurements, satellite-derived snow maps, lidar data, glacier mass balances, and runoff measurements.
Kristian Förster, Florian Hanzer, Benjamin Winter, Thomas Marke, and Ulrich Strasser
Geosci. Model Dev., 9, 2315–2333, https://doi.org/10.5194/gmd-9-2315-2016, https://doi.org/10.5194/gmd-9-2315-2016, 2016
Short summary
Short summary
For many applications in geoscientific modelling hourly meteorological time series are required, which generally cover shorter periods of time compared to daily time series. We present an open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST) capable of disaggregating temperature, precipitation, humidity, wind speed, and shortwave radiation (i.e. making 24 out of 1 value). Results indicate a good reconstruction of diurnal features at five sites in different climates.
T. Marke, E. Mair, K. Förster, F. Hanzer, J. Garvelmann, S. Pohl, M. Warscher, and U. Strasser
Geosci. Model Dev., 9, 633–646, https://doi.org/10.5194/gmd-9-633-2016, https://doi.org/10.5194/gmd-9-633-2016, 2016
Short summary
Short summary
This article describes the extension of the ESCIMO.spread spreadsheet-based point energy balance snow model by (i) an advanced approach for precipitation phase detection, (ii) a concept for cold and liquid water storage consideration and (iii) a canopy sub-model that allows one to quantify the effect of a forest canopy on the meteorological conditions inside the forest as well as the simulation of snow accumulation and ablation inside a forest stand.
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Mathematical applications
Investigating ANN architectures and training to estimate snow water equivalent from snow depth
Comparing Bayesian and traditional end-member mixing approaches for hydrograph separation in a glacierized basin
Variability in snow cover phenology in China from 1952 to 2010
Predicting streamflows in snowmelt-driven watersheds using the flow duration curve method
Konstantin F. F. Ntokas, Jean Odry, Marie-Amélie Boucher, and Camille Garnaud
Hydrol. Earth Syst. Sci., 25, 3017–3040, https://doi.org/10.5194/hess-25-3017-2021, https://doi.org/10.5194/hess-25-3017-2021, 2021
Short summary
Short summary
This article shows a conversion model of snow depth into snow water equivalent (SWE) using an ensemble of artificial neural networks. The novelty is a direct estimation of SWE and the improvement of the estimation by in-depth analysis of network structures. The usage of an ensemble allows a probabilistic estimation and, therefore, a deeper insight. It is a follow-up study of a similar study over Quebec but extends it to the whole area of Canada and improves it further.
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020, https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Short summary
Quantifying the seasonal contributions of the runoff components, including groundwater, snowmelt, glacier melt, and rainfall, to streamflow is highly necessary for understanding the dynamics of water resources in glacierized basins given the vulnerability of snow- and glacier-dominated environments to the current climate warming. Our study provides the first comparison of two end-member mixing approaches for hydrograph separation in glacierized basins.
Chang-Qing Ke, Xiu-Cang Li, Hongjie Xie, Dong-Hui Ma, Xun Liu, and Cheng Kou
Hydrol. Earth Syst. Sci., 20, 755–770, https://doi.org/10.5194/hess-20-755-2016, https://doi.org/10.5194/hess-20-755-2016, 2016
Short summary
Short summary
The heavy snow years in China include 1955, 1957, 1964, and 2010, and light snow years include 1953, 1965, 1999, 2002, and 2009. The reduction in number of days with temperature below 0 °C and increase in mean air temperature are the main reasons for the delay of snow cover onset date and advance of snow cover end date. This explains why only 15 % of the stations show significant shortening of snow cover days and differ with the overall shortening of the snow period in the Northern Hemisphere.
D. Kim and J. Kaluarachchi
Hydrol. Earth Syst. Sci., 18, 1679–1693, https://doi.org/10.5194/hess-18-1679-2014, https://doi.org/10.5194/hess-18-1679-2014, 2014
Cited articles
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R.,
Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P.,
Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre,
O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V.,
Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar,
T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and
Nieplova, E.: HISTALP – historical instrumental climatological surface time
series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46,
https://doi.org/10.1002/joc.1377, 2007.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An
Energy and Mass Model of Snow Cover Suitable for Operational Avalanche
Forecasting, J. Glaciol., 35, 333–342,
https://doi.org/10.3189/S0022143000009254, 1989.
Cannon, A. J.: Multivariate quantile mapping bias correction: an
N-dimensional probability density function transform for climate model
simulations of multiple variables, Clim. Dynam., 50, 31–49,
https://doi.org/10.1007/s00382-017-3580-6, 2018.
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM
Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in
Quantiles and Extremes?, J. Climate, 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.
CH2018: CH2018 – Climate Scenarios for Switzerland, Technical Report,
National Centre for Climate Services, Zurich, ISBN 978-3-9525031-4-0, 2018.
Coppola, E., Nogherotto, R., Ciarlo', J. M., Giorgi, F., van Meijgaard, E.,
Kadygrov, N., Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P.,
Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J.,
Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., Christensen, O.
B., Boberg, F., Sørland, S. L., Demory, M.-E., Bülow, K., Teichmann,
C., Warrach-Sagi, K., and Wulfmeyer, V.: Assessment of the European Climate
Projections as Simulated by the Large EURO-CORDEX Regional and Global
Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032356,
https://doi.org/10.1029/2019JD032356, 2021.
DeBeer, C. M., Wheater, H. S., Pomeroy, J. W., Barr, A. G., Baltzer, J. L., Johnstone, J. F., Turetsky, M. R., Stewart, R. E., Hayashi, M., van der Kamp, G., Marshall, S., Campbell, E., Marsh, P., Carey, S. K., Quinton, W. L., Li, Y., Razavi, S., Berg, A., McDonnell, J. J., Spence, C., Helgason, W. D., Ireson, A. M., Black, T. A., Elshamy, M., Yassin, F., Davison, B., Howard, A., Thériault, J. M., Shook, K., Demuth, M. N., and Pietroniro, A.: Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology, Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, 2021.
Dong, C. and Menzel, L.: Producing cloud-free MODIS snow cover products with
conditional probability interpolation and meteorological data, Remote Sens.
Environ., 186, 439–451, https://doi.org/10.1016/j.rse.2016.09.019, 2016.
Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E.,
Boone, A., Dai, Y.-J., Essery, R., Fernandez, A., Gusev, Y., Jordan, R.,
Koren, V., Kowalczyk, E., Nasonova, N. O., Pyles, R. D., Schlosser, A.,
Shmakin, A. B., Smirnova, T. G., Strasser, U., Verseghy, D., Yamazaki, T.,
and Yang, Z.-L.: Validation of the energy budget of an alpine snowpack
simulated by several snow models (Snow MIP project), Ann. Glaciol., 38,
150–158, https://doi.org/10.3189/172756404781814825, 2004.
EURO-CORDEX Errata:
https://docs.google.com/spreadsheets/d/1Vcob7VlE4H98g0IdMzdy5Ae4Y-WU0lRktI1mPneibXM/edit?usp=embed_facebook, last access: 23 July 2021.
Fugazza, D., Manara, V., Senese, A., Diolaiuti, G., and Maugeri, M.: Snow
Cover Variability in the Greater Alpine Region in the MODIS Era
(2000–2019), Remote Sens., 13, 2945, https://doi.org/10.3390/rs13152945, 2021.
Gafurov, A. and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product, Hydrol. Earth Syst. Sci., 13, 1361–1373, https://doi.org/10.5194/hess-13-1361-2009, 2009.
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012.
Gutiérrez, J. M., San-Martín, D., Brands, S., Manzanas, R., and
Herrera, S.: Reassessing Statistical Downscaling Techniques for Their Robust
Application under Climate Change Conditions, J. Climate, 26, 171–188,
https://doi.org/10.1175/JCLI-D-11-00687.1, 2013.
Hanzer, F., Förster, K., Nemec, J., and Strasser, U.: Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach, Hydrol. Earth Syst. Sci., 22, 1593–1614, https://doi.org/10.5194/hess-22-1593-2018, 2018.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol.,
282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague,
J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., Mark, B. G.,
Milner, A. M., Weingartner, R., and Winder, M.: Toward mountains without
permanent snow and ice, Earths Future, 5, 418–435,
https://doi.org/10.1002/2016EF000514, 2017.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch,
T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink,
P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter,
T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
Krähenmann, S., Walter, A., and Klippel, L.: Statistische Aufbereitung
von Klimaprojektionen: Downscaling und multivariate Bias-Adjustierung Im
Rahmen des BMVI-Expertennetzwerkes entwickelte Verfahren zum Postprocessing
von Klimamodelldaten, ISBN 978-3-88148-528-9, 2021.
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.: ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, 2018.
Largeron, C., Dumont, M., Morin, S., Boone, A., Lafaysse, M., Metref, S.,
Cosme, E., Jonas, T., Winstral, A., and Margulis, S. A.: Toward Snow Cover
Estimation in Mountainous Areas Using Modern Data Assimilation Methods: A
Review, Front. Earth Sci., 8, 325, https://doi.org/10.3389/feart.2020.00325, 2020.
Li, M., Zhu, X., Li, N., and Pan, Y.: Gap-Filling of a MODIS Normalized
Difference Snow Index Product Based on the Similar Pixel Selecting
Algorithm: A Case Study on the Qinghai–Tibetan Plateau, Remote Sens., 12,
1077, https://doi.org/10.3390/rs12071077, 2020.
Lüthi, S., Ban, N., Kotlarski, S., Steger, C. R., Jonas, T., and
Schär, C.: Projections of Alpine Snow-Cover in a High-Resolution Climate
Simulation, Atmosphere, 10, 463, https://doi.org/10.3390/atmos10080463,
2019.
Maraun, D.: Bias Correction, Quantile Mapping, and Downscaling: Revisiting
the Inflation Issue, J. Climate, 26, 2137–2143,
https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.
Marty, C., Schlögl, S., Bavay, M., and Lehning, M.: How much can we save? Impact of different emission scenarios on future snow cover in the Alps, The Cryosphere, 11, 517–529, https://doi.org/10.5194/tc-11-517-2017, 2017.
Marzeion, B., Kaser, G., Maussion, F., and Champollion, N.: Limited
influence of climate change mitigation on short-term glacier mass loss, Nat.
Clim. Change, 8, 305–308, https://doi.org/10.1038/s41558-018-0093-1, 2018.
Matiu, M.: Bias adjusted and downscaled snow cover fraction from EURO-CORDEX RCMs for the Greater Alpine Region (v1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.6489002, 2022.
Matiu, M., Jacob, A., and Notarnicola, C.: Daily MODIS Snow Cover Maps for
the European Alps from 2002 onwards at 250 m Horizontal Resolution Along
with a Nearly Cloud-Free Version, Data, 5, 1,
https://doi.org/10.3390/data5010001, 2020a.
Matiu, M., Petitta, M., Notarnicola, C., and Zebisch, M.: Evaluating Snow in
EURO-CORDEX Regional Climate Models with Observations for the European Alps:
Biases and Their Relationship to Orography, Temperature, and Precipitation
Mismatches, Atmosphere, 11, 46, https://doi.org/10.3390/atmos11010046,
2020b.
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European Alps: 1971 to 2019, The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.
Maurer, E. P. and Pierce, D. W.: Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean, Hydrol. Earth Syst. Sci., 18, 915–925, https://doi.org/10.5194/hess-18-915-2014, 2014.
Menard, C. B., Essery, R., Krinner, G., Arduini, G., Bartlett, P., Boone,
A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Dai, Y., Decharme, B., Dutra,
E., Fang, X., Fierz, C., Gusev, Y., Hagemann, S., Haverd, V., Kim, H.,
Lafaysse, M., Marke, T., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J.,
Schädler, G., Semenov, V. A., Smirnova, T., Strasser, U., Swenson, S.,
Turkov, D., Wever, N., and Yuan, H.: Scientific and Human Errors in a Snow
Model Intercomparison, B. Am. Meteorol. Soc., 102, E61–E79,
https://doi.org/10.1175/BAMS-D-19-0329.1, 2021.
Morán-Tejeda, E., Lorenzo-Lacruz, J., López-Moreno, J. I., Rahman,
K., and Beniston, M.: Streamflow timing of mountain rivers in Spain: Recent
changes and future projections, J. Hydrol., 517, 1114–1127,
https://doi.org/10.1016/j.jhydrol.2014.06.053, 2014.
Morin, S., Samacoïts, R., François, H., Carmagnola, C. M., Abegg,
B., Demiroglu, O. C., Pons, M., Soubeyroux, J.-M., Lafaysse, M., Franklin,
S., Griffiths, G., Kite, D., Hoppler, A. A., George, E., Buontempo, C.,
Almond, S., Dubois, G., and Cauchy, A.: Pan-European meteorological and snow
indicators of climate change impact on ski tourism, Clim. Serv., 22, 100215,
https://doi.org/10.1016/j.cliser.2021.100215, 2021.
Notarnicola, C., Duguay, M., Moelg, N., Schellenberger, T., Tetzlaff, A.,
Monsorno, R., Costa, A., Steurer, C., and Zebisch, M.: Snow Cover Maps from
MODIS Images at 250 m Resolution, Part 1: Algorithm Description, Remote
Sens., 5, 110–126, https://doi.org/10.3390/rs5010110, 2013a.
Notarnicola, C., Duguay, M., Moelg, N., Schellenberger, T., Tetzlaff, A.,
Monsorno, R., Costa, A., Steurer, C., and Zebisch, M.: Snow Cover Maps from
MODIS Images at 250 m Resolution, Part 2: Validation, Remote Sens., 5,
1568–1587, https://doi.org/10.3390/rs5041568, 2013b.
Parajka, J. and Blöschl, G.: Validation of MODIS snow cover images over Austria, Hydrol. Earth Syst. Sci., 10, 679–689, https://doi.org/10.5194/hess-10-679-2006, 2006.
Premier, V., Marin, C., Steger, S., Notarnicola, C., and Bruzzone, L.: A
novel approach based on a hierarchical multi-resolution analysis of optical
time series to reconstruct the daily high-resolution snow cover area, IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 9223–9240,
https://doi.org/10.1109/JSTARS.2021.3103585, 2021.
Räisänen, J. and Eklund, J.: 21st Century changes in snow climate in
Northern Europe: a high-resolution view from ENSEMBLES regional climate
models, Clim. Dynam., 38, 2575–2591, https://doi.org/10.1007/s00382-011-1076-3, 2012.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Colorado, USA, Digital Media [data set], https://doi.org/10.7265/N5-RGI-60,
2017.
Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I.,
Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, H., Dutra, E., Elder,
K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson,
D., Hellström, R., Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V.,
Kuragina, A., Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova,
O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M., Schädler,
G., Shmakin, A., Smirnova, T. G., Stähli, M., Stöckli, R., Strasser,
U., Su, H., Suzuki, K., Takata, K., Tanaka, K., Thompson, E., Vesala, T.,
Viterbo, P., Wiltshire, A., Xia, K., Xue, Y., and Yamazaki, T.: Evaluation
of forest snow processes models (SnowMIP2), J. Geophys. Res.-Atmos., 114, D06111, https://doi.org/10.1029/2008JD011063, 2009.
Spandre, P., François, H., Verfaillie, D., Pons, M., Vernay, M., Lafaysse, M., George, E., and Morin, S.: Winter tourism under climate change in the Pyrenees and the French Alps: relevance of snowmaking as a technical adaptation, The Cryosphere, 13, 1325–1347, https://doi.org/10.5194/tc-13-1325-2019, 2019.
Steger, C., Kotlarski, S., Jonas, T., and Schär, C.: Alpine snow cover
in a changing climate: a regional climate model perspective, Clim. Dynam., 41, 735–754, https://doi.org/10.1007/s00382-012-1545-3, 2013.
Strasser, U.: Modelling of the mountain snow cover in the Berchtesgaden
National Park, Berchtesgaden National Park, Berchtesgaden, ISBN 978-3-922325-62-8, 2008.
Strasser, U., Warscher, M., and Liston, G. E.: Modeling Snow-Canopy
Processes on an Idealized Mountain, J. Hydrometeorol., 12, 663–677,
https://doi.org/10.1175/2011JHM1344.1, 2011.
Terzago, S., von Hardenberg, J., Palazzi, E., and Provenzale, A.: Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models, The Cryosphere, 11, 1625–1645, https://doi.org/10.5194/tc-11-1625-2017, 2017.
Thackeray, C. W., Qu, X., and Hall, A.: Why Do Models Produce Spread in Snow
Albedo Feedback?, Geophys. Res. Lett., 45, 6223–6231,
https://doi.org/10.1029/2018GL078493, 2018.
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K.,
Coppola, E., Corre, L., van Meijgaard, E., Nogherotto, R., Sandstad, M.,
Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlo, J.
M., Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K.,
Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann,
J., Solidoro, C., Sørland, S. L., Steger, C., Teichmann, C.,
Warrach-Sagi, K., and Wulfmeyer, V.: Evaluation of the Large EURO-CORDEX
Regional Climate Model Ensemble, J. Geophys. Res.-Atmos., 126,
e2019JD032344, https://doi.org/10.1029/2019JD032344, 2021.
Wallace, B. and Minder, J. R.: The impact of snow loss and soil moisture on
convective precipitation over the Rocky Mountains under climate warming,
Clim. Dynam., 56, 2815–2939, https://doi.org/10.1007/s00382-020-05622-7, 2021.
Warscher, M., Wagner, S., Marke, T., Laux, P., Smiatek, G., Strasser, U.,
and Kunstmann, H.: A 5 km Resolution Regional Climate Simulation for Central
Europe: Performance in High Mountain Areas and Seasonal, Regional and
Elevation-Dependent Variations, Atmosphere, 10, 682,
https://doi.org/10.3390/atmos10110682, 2019.
Warscher, M., Hanzer, F., Becker, C., and Strasser, U.: Monitoring snow processes in the Ötztal Alps (Austria) and development of an open source snow model framework, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-9101, https://doi.org/10.5194/egusphere-egu21-9101, 2021.
WCRP: Data access – How to access the data, https://cordex.org/data-access/, last access: 5 May 2022.
Werner, A. T. and Cannon, A. J.: Hydrologic extremes – an intercomparison of multiple gridded statistical downscaling methods, Hydrol. Earth Syst. Sci., 20, 1483–1508, https://doi.org/10.5194/hess-20-1483-2016, 2016.
Zanotti, F., Endrizzi, S., Bertoldi, G., and Rigon, R.: The GEOTOP snow
module, Hydrol. Process., 18, 3667–3679, https://doi.org/10.1002/hyp.5794, 2004.
Zorita, E. and von Storch, H.: The Analog Method as a Simple Statistical
Downscaling Technique: Comparison with More Complicated Methods, J. Climate,
12, 2474–2489, https://doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2, 1999.
Short summary
Regional climate models not only provide projections on temperature and precipitation, but also on snow. Here, we employed statistical post-processing using satellite observations to reduce bias and uncertainty from model projections of future snow-covered area and duration under different greenhouse gas concentration scenarios for the European Alps. Snow cover area/duration decreased overall in the future, three times more strongly with 4–5° global warming as compared to 1.5–2°.
Regional climate models not only provide projections on temperature and precipitation, but also...