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Abstract. Mountain seasonal snow cover is undergoing ma-
jor changes due to global climate change. Assessments of
future snow cover usually rely on physically based mod-
els, and often include post-processed meteorology. Alterna-
tively, we here propose a direct statistical adjustment of snow
cover fraction from regional climate models by using long-
term remote-sensing observations. We compared different
bias-adjustment routines (delta change, quantile mapping,
and quantile delta mapping) and explored a downscaling
based on historical observations for the Greater Alpine Re-
gion in Europe. All bias-adjustment methods account for sys-
tematic biases, for example due to topographic smoothing,
and reduce model spread in future projections. The trend-
preserving methods delta change and quantile delta mapping
were found to be more suitable for snow cover fraction than
quantile mapping. Averaged over the study region and whole
year, snow cover fraction decreases from 12.5 % in 2001–
2020 to 10.4 % (8.9 %, 11.5 %; model spread) in 2071–2100
under RCP2.6 (representative concentration pathway), and to
6.4 % (4.1 %, 7.8 %) under RCP8.5 (bias-adjusted estimates
from quantile delta mapping). In addition, changes strongly
depended on season and elevation. The comparison of the
statistical downscaling to a high-resolution physically based
model yields similar results for the elevation range covered
by the climate models, but different elevation gradients of
change above and below. Downscaling showed overall po-
tential but requires further research. Since climate model and
remote-sensing observations are available globally, the pro-
posed methods are potentially widely applicable but are lim-
ited to snow cover fraction.

1 Introduction

Mountain regions store large amounts of precipitation in the
form of snow and ice, which provide essential water sup-
ply for downstream regions, affecting an estimated quarter of
humanity (Immerzeel et al., 2020). Global warming has re-
sulted in significant changes of the cryosphere, with melting
glaciers and shifts in the timing and abundance of snow (Huss
et al., 2017), which have already affected the hydrological
cycle (Morán-Tejeda et al., 2014) and will continue to do so
in the future (Hanzer et al., 2018). These changes imply con-
sequences for water supplies for domestic use, hydropower,
and agriculture. Seasonal snow cover responds rapidly to cli-
mate variability and change, in contrast to glaciers, which
are out of balance with current climate and will, to some
extent, continue to melt even if climate targets are achieved
(Marzeion et al., 2018). Finally, besides acting as water stor-
age, snow cover causes a significant atmospheric feedback
due to its high albedo, modulating mountain weather (Wal-
lace and Minder, 2021) and causing large uncertainties in
climate projections of northern hemisphere land warming
(Thackeray et al., 2018).

Snow cover can be modeled using a large variety of mod-
els, which can be roughly grouped into conceptual empirical
models (e.g., temperature index models such as Hock, 2003),
complex energy-balance models with snow physics (Brun et
al., 1989), and simplified energy-balance models with few
layers, which are used in land–surface schemes of climate
and hydrological models (e.g., Zanotti et al., 2004). In order
to estimate future snow cover, conceptual empirical models
can fail because climate change violates the assumption of
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stationarity, while the most complex energy-balance models
might be computationally unfeasible or accumulate artifacts
in long-term simulations.

Recently, regional climate models (RCMs) have become a
feasible alternative to study large-scale snow cover (Räisänen
and Eklund, 2012), even in complex terrain such as the Eu-
ropean Alps (Steger et al., 2013), owing to increases in res-
olution and model performance. RCMs dynamically down-
scale global general circulation models (GCMs) for a lim-
ited domain but with higher resolution. Using snow cover
output directly from RCMs instead of taking meteorological
forcing from RCMs and feeding it into dedicated snow mod-
els has some benefits. First, it provides a consistent physical
signal with land–atmosphere feedbacks. Second, it removes
the need to perform bias adjustment of meteorological in-
put for the dedicated snow model. The main downside of
RCMs is their coarse resolution and limited representation of
snow processes, which can be a limiting factor especially for
mountain areas. For example, the EURO-CORDEX (Euro-
pean branch of the Coordinated Regional Climate Downscal-
ing Experiment) scenarios for Europe are available at 0.11◦

horizontal spacing. However, single higher resolution runs of
RCMs at 1–5 km are available (Warscher et al., 2019; Lüthi
et al., 2019), but they still lack the breadth of the EURO-
CORDEX ensemble with up to 55 members (Coppola et al.,
2021), which allows assessment of multiple scenarios and
model uncertainty.

Additionally, RCMs suffer from biases, for instance in
temperature and precipitation (Vautard et al., 2021), which
would be the meteorological forcing for dedicated snow
models, but also from biases caused by the relatively sim-
ple snow schemes of RCMs. In high mountain regions, eval-
uations of snow from RCMs are challenging because of a
general lack of suitable reference data and scale mismatches
between observations and models. The arguably most rele-
vant snow parameter, snow water equivalent (SWE), is also
the most difficult to estimate. In situ observations are sparse,
and estimates based on remote sensing suffer from large un-
certainties (Largeron et al., 2020). For the European Alps,
Terzago et al. (2017) evaluated SWE from EURO-CORDEX
RCMs using an array of remote-sensing and reanalysis prod-
ucts, and found a large spread in reference datasets, lo-
cally large overestimation of SWE, and differences between
GCM- and reanalysis-driven RCMs. Using an interpolated
SWE dataset based on in situ data in Switzerland, Steger et
al. (2013) found a general underestimation of SWE for eleva-
tions below 1000 m and overestimation above 1500 m. On the
other hand, Matiu et al. (2020b) focused on different snow
parameters, namely snow depth from in situ observations and
snow cover fraction from remote sensing, and found a good
agreement between RCMs and observations when account-
ing for elevation and temperature differences between obser-
vations and models. It is likely that scale mismatches (low-
vs. high-resolution grids or point vs. grid cell), associated el-

evation biases, and the different reference dataset uncertain-
ties are causing these contradicting results.

Before climate model output can be used for climate
change assessments or impact models, it usually undergoes
some post-processing, such as bias adjustment and downscal-
ing. These serve to overcome systematic biases between ob-
servations and model output, which can be caused by model
inadequacies, inherited biases in RCMs from their driving
GCMs, or biases associated to the mismatch between spatial
resolution of reference observations and model. The refer-
ence observations can be points or grids, are often limited
in extent compared to RCMs, and feature, in case of grids,
typically higher resolutions.

The simplest form of bias adjustment is the delta-change
(DC) approach, where the mean climate change signal (e.g.,
in temperature) is superimposed on the observation series.
However, DC cannot reflect any change in the future distri-
bution of the considered variable. The most widely used ap-
proach for bias adjustment is quantile mapping (QM), which
can simultaneously perform downscaling, too. QM matches
observed and modelled distributions and the non-parametric
variant performs better in reproducing observed climatol-
ogy than parametric versions (Gudmundsson et al., 2012).
Since QM has been show to modify trends in a few cases
(Maurer and Pierce, 2014), quantile delta mapping (QDM)
was developed, which represents a trend-preserving QM ap-
proach (Cannon et al., 2015). The flexibility, performance,
and ease-of-use has made QM or QDM a standard approach
for national climate change assessments (e.g., Switzerland
(CH2018, 2018) or Germany (Krähenmann et al., 2021)).

For assessing future changes in snow cover based on cli-
mate model scenarios, two methods are mainly employed.
The first is to use downscaled and bias-adjusted meteoro-
logical forcing from climate models to drive dedicated snow
or hydrological models (DeBeer et al., 2021; Hanzer et al.,
2018). The second is to use snow cover output from cli-
mate models directly (see above). However, the availability
of long-term high-resolution satellite imagery has enabled a
third option, i.e., to use remote sensing for bias adjustment
and downscaling of RCM snow cover. To the best of our
knowledge, this has not yet been performed. We restrict the
study to snow cover fraction, which is, in contrast to snow
depth and SWE, globally available at high spatial resolution
and with high accuracy. The presented method therefore has
a global potential for application.

The aims of this study are to bias adjust and downscale
snow cover fraction from RCMs using remote-sensing ob-
servations for the European Alps, and to compare this, for a
limited area, to the use of a dedicated snow model forced by
downscaled RCM output. The motivation behind the statis-
tical adjustment of snow cover fraction from RCMs is that
the biases are systematic. They were shown to be mainly
caused by orography and temperature, partly also precipita-
tion, mismatches (Matiu et al., 2020b). These systematic bi-
ases seem to be predominantly constant across time, and thus
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future change estimates can be statistically adjusted. While
bias adjustment cannot add information beyond what is con-
tained in the RCM, it can reduce model spread. Additionally,
it can make information on future projections more mean-
ingful compared to solely providing change estimates, which
are sometimes hard to interpret. Unbiased absolute values are
better for climate change information and for impact assess-
ments, which often depend on absolute thresholds, and for
which biased estimates would not be representative. By ex-
ploiting the morphological dependence of snow cover on to-
pography, downscaling can improve local spatial patterns of
RCM snow cover fraction. Finally, the comparison between
downscaling RCMs and using a snow model shall highlight
benefits and limitations of the presented method.

The study combines the proof-of-concept of applying bias
adjustment and downscaling to snow cover fraction with its
application to assess future scenarios of snow cover frac-
tion over the European Alps. The remainder of the paper is
structured as follows: Sect. 2 introduces the study region and
datasets; Sect. 3 explains the methods used for bias adjust-
ment and downscaling; Sect. 4 presents results and discus-
sion; and Sect. 5 contains the conclusion.

2 Data

2.1 Study area

The study region (Fig. 1) encompasses the European Alps
and spans from approximately 43 to 48.5◦ N and from 5 to
17◦ E, which roughly corresponds to the Greater Alpine Re-
gion (Auer et al., 2007). The large-scale climatic setting in-
cludes influences from the Atlantic Ocean, the Mediterranean
Sea, and the European continent. The region is character-
ized by complex topography with strong elevational gradi-
ents. The comparison of statistical downscaling to a dedi-
cated snow model is performed for a small subset, the Ötztal
Alps region in Austria (1850 km2, 862–3770 m a.s.l., Fig. 1b
and d); see Hanzer et al. (2018) for a detailed description of
the Ötztal Alps region.

2.2 Observed snow cover fraction from remote sensing

As for remote-sensing observations, we relied on MODIS
(Moderate Resolution Imaging Spectroradiometer), because
it offers the best tradeoff between temporal availability (two
decades, daily) and spatial resolution (250 m) to perform
a downscaling – in contrast to coarser products such as
those based on AVHRR (Advanced Very-High-Resolution
Radiometer), which have a longer period into the past (start-
ing in the 1980s), but are of coarse resolution and lower qual-
ity for complex mountain terrain than higher-resolution sen-
sors. A cloud-filtered product was used (Matiu et al., 2020a),
which is based on the snow maps developed in Notarnicola
et al. (2013a). The processing included a sequence of spa-
tial and temporal filters to remove nearly all cloud cover-

Figure 1. Topography (a–b) and average annual snow cover du-
ration (c–d) of the study region, the European Alps (a, c), and the
Ötztal Alps region (b, d). The bias adjustment and downscaling was
performed on the whole area denoted in panels (a) and (c). Ded-
icated snow model (AMUNDSEN) simulations were available for
the Ötztal Alps region (b, d), which is also indicated with a tiny
square in panels (a) and (c). Snow cover duration maps are based
on remote sensing and averaged over the hydrological years 2001–
2020 (see also Sect. 2.2).

age. More specifically, it included a mean filter to correct
for errors in misclassifications of snow vs. clouds, which
sometimes occurred at the edges of cloudy and snowy areas.
This was followed by a conservative temporal filter, which
is based on the persistence of snow and which filled short
gaps between periods of snow or absence of snow. Then an
elevational filter was applied that filled cloud pixels above a
snow line and below a land line with the respective classes.
Finally, a greedy temporal filter was applied, which filled val-
ues with the next available observation in time. This was of-
ten achieved within 3 to 7 d, but if the next available observa-
tion was more than 10 d away, the pixel remained cloud. For
more specific details, we refer to Matiu et al. (2020a), where
an additional step is described, namely the merging of Terra
and Aqua acquisitions. Here, we only used Terra, in order to
extend the temporal extent to 2000.

Consequently, nearly cloud-free binary (snow or land)
snow cover maps were available at daily scale for the com-
plete period 24 February 2000 to 23 August 2020 at 250 m
resolution in Lambert azimuthal equal-area projection for the
domain denoted in Fig. 1. While the actual horizontal reso-
lution of the maps is 232 m, the approximation 250 m will be
used throughout the manuscript for simplicity. Nearly cloud
free means that less than 0.1 % of observations (over all pix-
els and all days) contained clouds. These cloudy pixels were
removed from the subsequent analysis.

The high-resolution binary snow maps were aggregated
into low-resolution snow cover fraction maps that match the
RCM resolution of 0.11◦, which is approximately 8.6 by
12.2 km for the Alps. Each low-resolution grid cell then con-
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tained 1961 (37× 53) high-resolution pixels. From now on,
the term pixel shall refer to the high-resolution area (250 m
by 250 m) and grid cell to the coarse-resolution area (0.11◦

by 0.11◦) for both MODIS and RCMs.
To derive annual snow cover duration (SCD) maps, we

used hydrological years defined such as to maximize the
available data within the MODIS period. The split was in
summer, which is the least important period for seasonal
snow in mountains. A hydrological year is defined here as
starting 1 August and ending 31 July, and designated by the
year it ends. The past SCD climatology (Fig. 1) is thus based
on the (hydrological) years 2001 to 2020, which cover the
period 1 August 2000 to 31 July 2020. For simplicity, the
term year will be used as a substitute for hydrological year
from now on, thus also when referring to the climate model
data.

Scale issues in the study area

The aggregation of maps of snow cover duration from 250 m
pixels to 0.11◦ grid cells creates scale issues that hinder com-
parisons between high and low resolution. The aggregation
smoothens the spatial patterns and creates systematic dif-
ferences between high and low elevations (Fig. S1 in the
Supplement). When the SCD maps are then further aggre-
gated by elevation, the resulting SCD differs substantially
between high and low resolutions, especially between 1000
and 2000 m (Fig. S2), and this despite the fact that the dis-
tribution of pixel and grid cell elevations is almost identi-
cal between high and low resolutions (Fig. S2b). At 1500 m,
SCD from the low-resolution map is more than 15 d (i.e., ap-
proximately 18 %) higher than in the high-resolution map.
Consequently, also for the future maps, SCD cannot be com-
pared between high and low resolutions without introducing
the same errors from scale issues. This holds for the abso-
lute number of SCD, i.e., how many days with snow cover
there are at a specific location or elevation. However, it is still
possible to compare future absolute and relative change esti-
mates, i.e., how many fewer or more days with snow cover
there are. These change estimates should be unbiased, since
subtracting past from future values also subtracts the biases
introduced by scale mismatches.

2.3 Snow cover fraction from regional climate models

The EURO-CORDEX ensemble consists of 11 RCMs driven
by 8 GCMs from CMIP5 (Coupled Model Intercompari-
son Project Phase 5); see Coppola et al. (2021) for more
information on the general ensemble setup. However, not
all models provide all variables and/or all emission scenar-
ios. For instance, temperature and precipitation are avail-
able from all models, but snow parameters such as SWE
or snow cover fraction are only available for a subset of
models. Regarding scenarios, we used the RCP2.6 (rep-
resentative concentration pathway) and RCP8.5 scenarios,

where RCP2.6 is likely to keep global warming below
2 ◦C until 2100, while RCP8.5 corresponds to approxi-
mately 4 to 5 ◦C global warming. Regarding snow cover
fraction (SNC), the available ensemble for this study in-
cluded, for RCP8.5, 6 RCMs driven by 6 GCMs with a
total of 29 simulations, and, for RCP2.6, 4 RCMs driven
by 5 GCMs with a total of 8 simulations (Table S1). The
list of used RCMs is CLMcom-CCLM4-8-17, CLMcom-
ETH-COSMO-crCLIM-v1-1, CNRM-ALADIN63, IPSL-
WRF381P, KNMI-RACMO22E, and SMHI-RCA4. Even
though DMI-HIRHAM5 also provides SNC, we excluded it
because the SNC values over the Alps were unrealistically
low, although snow depths were well reproduced (Matiu et
al., 2020b).

The RCM SNC maps were reprojected onto the low-
resolution MODIS maps using nearest-neighbor resampling
in order to have a one-to-one correspondence of grid cells in
the spatial domain. Nearest neighbor was favored over other
resampling methods, such as bilinear, because it preserves
the two-sided bounded nature of SNC, which goes from 0 to
1 and thus keeps the same

limits, while bilinear resampling can introduce lower max-
ima or higher minima.

Some models display snow accumulation issues (Terzago
et al., 2017; Matiu et al., 2020b; EURO-CORDEX Errata,
2021) and affected grid cells were removed based on thresh-
olds on snow water equivalent or snow depth, as described
in Matiu et al. (2020b). These were mostly grid cells with
the highest elevation and the number of affected cells was
between 0 and 233, depending on model, out of a total of
approximately 5000 land grid cells in the study domain (see
Fig. S3 and Table S2 for location and number of affected cells
by RCM). Spatial averages and ensemble means are based
on the common subset of grid cells available to all models.
KNMI-RACMO22E was strongly affected by snow accumu-
lation, and we thus removed it from results that show spa-
tial or ensemble means, since otherwise too many grid cells
would have to be removed. Consequently, for calculating en-
semble means, 23 simulations were available for RCP8.5, but
only 4 for RCP2.6. While it would have been possible to
restrict the number of simulations to the same GCM–RCM
pairs for both RCP2.6 and RCP8.5, we still decided to take
all possible simulations in order to have a better estimate of
the model spread. However, model spread is likely underes-
timated for RCP2.6 due to the low number of available sim-
ulations.

2.4 Snow cover fraction from AMUNDSEN

The fully distributed snow and hydroclimatological model
AMUNDSEN (Strasser, 2008), now available as openA-
MUNDSEN in Python (Warscher et al., 2021), has been pre-
viously applied to study the future snow and ice evolution
in the Ötztal Alps region in Austria (Hanzer et al., 2018);
see Fig. 1b and d for the area. AMUNDSEN dynamically re-
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solves the mass and energy balance of snow and ice and was
driven by projected meteorological data based on EURO-
CORDEX RCMs, which includes a subset of the same RCMs
mentioned above. The input meteorology was bias adjusted
and downscaled using QM to point scale, and further tem-
porally disaggregated and spatially distributed to provide 3-
hourly forcing at 100 m horizontal resolution for the whole
catchment. For more details, see Hanzer et al. (2018). The
modelled snow water equivalents were converted into binary
indicators (snow or land) using a threshold of 5 mm. We also
evaluated a threshold of 15 mm but found differences to be
negligible. Snow cover fraction was then calculated by aver-
aging over time (e.g., months), space (which includes eleva-
tion bands), or both.

For the comparison, we decided to focus on ensemble
means and not compare results between individual GCM–
RCM pairs directly. Only few GCM–RCM pairs overlap be-
tween Hanzer et al. (2018) and this study. In addition, the
QM in Hanzer et al. (2018) was applied using the period
1970 to 2005 as baseline, while the baseline in this study
was 2001 to 2020. Finally, the ensemble size is similar, since
Hanzer et al. (2018) used 14 GCM–RCM for RCP8.5 and 3
GCM–RCM pairs for RCP2.6, compared to 19 and 3 here, re-
spectively (CNRM-ALADIN63 was removed only from the
comparison to AMUNDSEN, because half of the Ötztal Alps
area was affected by snow accumulation).

3 Methods

The overall methodology is summarized in Fig. 2a. It con-
sists of two separate steps, bias adjustment and downscaling,
which are both explained in detail below. MODIS observa-
tions are used overarchingly: as reference climatology, for
bias adjustment, to derive the downscaling relationship, and
to validate the downscaling approach.

3.1 Bias adjustment of snow cover fraction

We compared four different bias-adjustment methods rou-
tinely applied for temperature and precipitation series in
terms of their applicability for snow cover fraction: DC, QM
(Gudmundsson et al., 2012), QDM (Cannon et al., 2015),
and multivariate QDM (Cannon, 2018). In all cases, the past
refers to years with MODIS observations available, i.e., 2001
to 2020.

For the climate model runs, the historical period, which
goes from 1950 or 1970 to 2005, was merged with the RCP
scenario run, which covers 2006 to 2100, in order to have the
same common period for the past as available from MODIS
(2001 to 2020). Thus, for applying the bias correction, each
scenario had its own past time series (i.e., for each RCP sce-
nario), while usually the calibration is performed on the same
historical run for all scenarios. However, this was not pos-
sible here, since the overlap between historical period and

MODIS is only 5 years, which is too little to derive robust
distributional estimates of the snow cover climatology. As
the future period, we considered 2071 to 2100. The bias ad-
justment was applied at the same spatial (0.11◦) and temporal
scale (daily).

For the DC approach, we calculated the multiplicative
change ratios between the past and future from RCMs and
applied it to the observations from MODIS. This was done
separately for each grid cell and each month. For QM and
QDM, we employed the standard routines with empirically
derived distribution functions (Gudmundsson et al., 2012;
Cannon et al., 2015), as available in the R packages qmap
and MBCn, again month by month and grid cell by grid cell.
For QDM, multiplicative change ratios were used. The mul-
tivariate QDM was applied in the spatial domain; thus, the
multivariate component was to account for the spatial corre-
lation in SNC between grid cells. However, we found results
to be almost identical to standard univariate QDM, and we
do not show it further in results. We assume this similarity
to be caused by the high spatial correlation in SNC, and the
fact that this spatial correlation is similar in both model and
observed series.

Because SNC is bounded not only at the minimum of 0
but also at the maximum of 1, the standard QM and QDM
algorithms were both modified as follows: the trace condi-
tion, which sets all values below a threshold (here: 0.001,
also called trace value) to exact zeros, has also been ap-
plied to the maximum, so that all values above 0.999 were
set to exact ones. In addition, the distribution of RCM SNC
contained many exact zeros and ones in comparison to ob-
served SNC, which was more regularly distributed across the
[0, 1] interval, caused by the sub-grid variability in observa-
tions. This caused problems in estimating and matching the
modelled and observed quantiles. To alleviate this issue, we
added a random component to all SNC values near 0 and 1,
where near means half of the trace value. The random val-
ues were randomly sampled from a uniform distribution with
minimum of the machine epsilon (the lowest value without
rounding issue in floating point arithmetic) and maximum of
half the trace value, i.e., effectively from the [0, 0.0005] in-
terval. This random component helps in matching quantiles
(and thus distributions) but breaks the temporal consistency
in the bias-adjusted SNC time series. Since it is applied in a
distributional manner over all days in each month for a 20- or
30-year period, the monthly climatologies are fine. But at the
daily scale, the random component might lead to inconsis-
tencies, such as sudden jumps in the snow cover fraction time
series or increasing snow cover fraction in the melt season.
Consequently, no estimates of interannual variability can be
calculated.

3.2 Downscaling of snow cover fraction to binary snow

The proposed downscaling approach converts low-resolution
snow cover fraction (SNC) from RCMs into high-resolution
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Figure 2. (a) Overview of methodology. (b) Downscaling exemplified at one low-resolution (lr) grid cell. The SNCp50 values determine the
conversion from lr SNC to hr binary snow, which is shown for three example SNC values. (c) Detailed view of the estimation of SNCp50
based on CP curves. CP curves show the probability of the respective pixel being snow covered as a function of the encompassing grid cell
SNC. Abbreviations: lr (low-resolution), hr (high-resolution), SNC (snow cover fraction), RCM (regional climate model).

binary snow cover (snow or land), from which we extracted
monthly and annual snow cover duration (SCD). The down-
scaling is based on the morphological dependence of snow
cover (Premier et al., 2021). It uses a conditional probability
(CP) approach (Dong and Menzel, 2016) to define the re-
lationship between snow cover fraction of a low-resolution

grid cell and the probability of a high-resolution pixel be-
ing snow covered or snow free. The procedure first estimates
these CP values, which are then used to derive the SNCp50
threshold (Fig. 2c). SNCp50 is the SNC value for which the
probability of a pixel being snow covered is higher than 0.5.
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These SNCp50 values then convert continuous SNC from a
grid cell into high-resolution binary snow pixels (Fig. 2b).

We used the 20 years of daily MODIS snow maps to cal-
culate the CP that a high-resolution pixel is snow covered de-
pending on the SNC of the low-resolution MODIS grid cell
(which itself has been aggregated from the high-resolution
maps). For this, we split the maps by grid cells. For each
grid cell, the 20 years of daily SNC observations were di-
vided into 22 bins with breaks 0, 0.001, 0.05, 0.1, . . . , 0.95,
0.999, 1. These are SNC bins of width 0.05 with additional
bins at the minimum and maximum to catch nearly exact ze-
ros and ones. For each bin, we defined the CP of each high-
resolution pixel as the fraction of days each pixel was snow
covered divided by the total number of days in the respective
bin. Bins that contained less than 30 d were omitted, which
were mostly with low SNC at high elevations and high SNC
at low elevations (see Fig. S4). For each pixel, this results
in up to 22 empirically estimated probabilities that a pixel
is snow covered based on the encompassing SNC value (de-
rived as the average of the range of the SNC bins). These cor-
respond to the 22 CP maps(all pixels, one bin; e.g., Fig. 2a
or Fig. S4) or CP curves (one pixel, all bins; e.g., Fig. 2c
or Fig. S5d). The CP curve with up to 22 points can be con-
sidered an empirical approximation to a smooth function that
gives the probability of a pixel being snow covered as a func-
tion of the encompassing grid cell SNC.

From these CP estimates, SNCp50 was derived in three
ways. First, with a linear approximation (64 % of cases); if
this failed, then using a similar pixel approach (7 % of cases);
if this also failed, then with a similar elevation approach (re-
maining 29 % of cases). These steps are described in detail
below.

SNCp50 is the x-value (SNC) at which the CP curve
crosses y= 0.5. This value can be extracted from the em-
pirical CP curves via linear approximation. A sufficient con-
dition for a unique solution is a monotonically increasing re-
lationship between low-resolution SNC and the probability
of high-resolution snow, which is a physically valid assump-
tion for any given high-resolution pixel. A non-monotonic
curve could imply that the y= 0.5 line is crossed multiple
times, thus resulting in multiple SNCp50 values. But because
of noise and errors in the MODIS time series, monotonicity
was not always the case, so we selected the longest increas-
ing subsequence. Additionally, to have robust estimates of
this SNCp50 threshold, we removed points with probability
exactly zero and one, thus requiring some points that iden-
tify the curve (Fig. 2c, last row). The linear approximation
worked for 64 % of pixels.

In the remaining 36 %, the linear approximation failed
to estimate SNCp50, either because no empirical estimates
were available (except for ones and zeros) or all were above
or below 0.5 (see, e.g., point (3) in Fig. S5d). For these pixels,
SNCp50 was imputed in two steps, first using a similar-pixel
approach and if this failed, with a simpler elevational filter.

For the similar-pixel approach (Li et al., 2020), we se-
lected another reference pixel with available SNCp50 that
is similar with respect to, first, the sub-grid topography of
the encompassing low-resolution grid cell and, second, to
the high-resolution probability curves. For the first, similar-
ity between low-resolution grid cells was assessed with the
Wasserstein distance (also called earth-mover’s distance) us-
ing the high-resolution pixel elevations. We expect two grid
cells to be similar if the two distributions of pixel elevations
within the respective grid cells are similar. The Wasserstein
distance is especially designed for comparing distributions:
if the two distributions are thought of as earth piles, it calcu-
lates how much and how far “earth” has to be moved, such
that the two distributions agree. Other distance metrics, such
as Euclidean, would in this case require a pairing of all val-
ues (pixel elevations) between the two grid cells, and are not
well suited to compare distributions. See Fig. S6 for example
elevation distributions and Wasserstein distances.

For each high-resolution pixel with missing SNCp50, we
selected the 50 nearest low-resolution grid cells (includ-
ing the low-resolution grid cell with missing high-resolution
SNCp50); nearest in terms of the Wasserstein distance. We
then calculated the mean absolute error (MAE) between CP
curves for pixels that deviate at most 150 m from the miss-
ing pixel elevation and have at least 5 values to compare CP
curves. The SNCp50 from the pixel with minimal MAE was
used to fill the gap. The similar-pixel approach filled an ad-
ditional 7 % of SNCp50 values.

The remaining 29 % of missing SNCp50 were mostly lo-
cated above 3000 or below 500 m. For these, the second im-
putation step involved a simpler elevation filter and no com-
parison of probability curves. Again, we selected the 50 most
similar low-resolution grid cells in terms of the Wasserstein
distance. All high-resolution pixels in these 50 grid cells
were ordered by their elevation difference to the gap pixel
and up to 100 pixels with at most 150 m elevation difference
were selected. The average SNCp50 from these up to 100
pixels was then used to fill the gap. After this step, < 0.001 %
pixels were missing and these were omitted from the rest of
the analyses.

We excluded glacierized pixels with more 10 % glacier-
ized area from further analysis of the downscaling because of
a systematic bias (see validation in Sect. 4.2) in addition to
the difficulties of distinguishing snow and ice with MODIS
(Fugazza et al., 2021). In addition, they had a strong over-
lap with the already removed low-resolution RCM grid cells
with snow accumulation (Sect. 2.3). Glacier extents were ex-
tracted from the Randolph Glacier Inventory 6.0 (RGI Con-
sortium, 2017).

An example of the SNCp50 values is shown in Fig. S5,
which shows the expected negative relationship between
SNCp50 and elevation, which implies that as SNC increases
from 0 to 1, the snow cover is more likely to be found go-
ing from high to low elevations. But while elevation is the
main influence, SNCp50 can vary considerably for similar
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elevations (e.g., points (1), (3), and (4) in Fig. S5 are approx-
imately the same elevation) due to local terrain factors.

For validation of the downscaling, we applied the pro-
cedure to the upscaled MODIS snow cover fraction maps
and compared the downscaled maps with the original maps,
which were used in the upscaling, too. This compari-
son involves a contingency table for a binary classifica-
tion (snow or land), where we define snow as a posi-
tive outcome. From the numbers of true positives (TP, cor-
rectly downscaled snow), false positives (FP, downscaled
snow, but actually land), true negatives (TN, correctly down-
scaled land), and false negatives (FN, downscaled land,
but actually snow) we calculated the following metrics:
accuracy, which is the overall fraction of correct values
(TP+TN) / (TP+FP+TN+FN), positive predictive value
(PPV), which is the fraction of correctly downscaled snow
of all snow TP / (TP+FP), and the negative predictive value
(NPV), which is the fraction of correctly downscaled land
of all land TN / (TN+FN). The PPV and NPV are similar
to the sensitivity and specificity metrics, but adjust for the
prevalence of each category.

The downscaling was applied for QDM bias-adjusted low-
resolution snow cover fraction only, and not for the other
bias-adjustment methods. QM showed artificial modification
of trends (see Sect. 4.1), and DC is theoretically inferior to
QDM, since DC only adjusts the mean, while QDM adjusts
the whole distribution.

4 Results and Discussion

4.1 Bias adjustment and future changes in snow cover
fraction

The RCMs reproduced overall seasonal and large-scale spa-
tial patterns of past snow cover fraction well (see RAW in
Figs. 3 and 4). For instance, Winter (December–February)
snow cover fraction spatial patterns agreed not only for the
high-elevation Alpine region, but also for lower-elevation
mountains, such as the northern Alpine foreland, Dinarides,
or the Northern Apennines. However, because of the coarse
resolution and smoothed model orography, the RCMs did not
capture the fine-scale complex patterns found in the Alps
(Fig. 4). Additionally, the monthly areal averages of snow
cover fraction were over- and underestimated, depending on
both RCM and GCM (Fig. 3), as has also been shown previ-
ously (Terzago et al., 2017; Matiu et al., 2020b). This model
bias depended more strongly on the RCM and only secondly
on the driving GCM.

Applying DC, QM, and QDM bias adjustment to past
RCM output enforced it to match the distribution of observed
SNC and consequently also reduced the model spread for the
future (Fig. 3). In addition, it introduced the fine-scale spa-
tial patterns into the smoothed model output (Fig. 4). QM
and QDM, by definition, resulted in the same patterns for

the past. Bias-adjusted future estimates were similar for the
two trend-preserving approaches DC and QDM, which them-
selves differed substantially from QM. For example, QM
showed less reduction in SNC under the RCP8.5 scenario for
spring (March–May) than DC and QDM (Figs. 3 and 4).

Average winter SNC over the whole study domain was
29.3 % for the past (2001–2020) from MODIS observations,
and the raw model mean was 30.2 % (23.4 %, 43.3 %; model
spread). For 2071–2100 under the low-emission scenario
RCP2.6, SNC decreased by 4.1 (2.4, 8.1) percentage points
(pp) based on QDM, which corresponds to a relative reduc-
tion of 14.0 %. Under the high-emission scenario RCP8.5,
the reduction was 14.2 (10.1, 19.1) pp, which corresponds
to 48.5 %. Observed past-spring SNC was 13.5 %, while the
raw model mean was 13.0 % (7.7 %, 21.7 %). Future changes
under RCP2.6 were −2.7 (−4.5, 0.1) pp, in relative terms
20.8 %, while under RCP8.5, changes were −6.5 (−9.2,
−4.6) pp, in relative terms 50.0 %. The estimates for RCP2.6
are based on a much smaller ensemble of only 4 GCM–RCM
combinations compared to 23 for RCP8.5, and are thus less
likely to represent model uncertainty well.

Projected changes until the end of the century depended
strongly on elevation, and the strongest absolute reductions
in winter SNC were observed between 400 and 2000 m and
in spring above 1000 m (Figs. S7 and S8, Tables S3 and
S4). On the other hand, relative reductions were strongest
at the lowest elevations, and became gradually less with
increasing elevation (Fig. S9, Tables S5 and S6). Under
RCP2.6, winter SNC decreased approximately 7 pp (15 %)
at 1000 m elevation, while above 2000 m this was less
than 2 pp (< 2 %) and the model uncertainty includes no
change (Tables S3 and S5). Under RCP8.5, winter SNC
decreased more than 15 pp between 400 and 2000 m ele-
vation (corresponding to −21.1 % at 400 m and −3.4 % at
2000 m), with strongest absolute changes at 1200 to 1400 m,
which amounted to −25.1 (−35.0, −17.7) pp or −12.0 %
(−27.3 %, −4.5 %). In spring under RCP2.6, strongest ab-
solute reductions in SNC were observed at 1400 to 2000 m,
with more than 10 pp decreases in SNC (16 % to 23 %). On
the other hand, under RCP8.5, reductions in SNC were al-
most twice as large and also remained high above 2000 m
compared to RCP2.6, where they gradually diminished; for
example, at 2200 to 2400 m, changes were −23.3 (−43.2,
−4.7) pp or −27.3 % (−50.9 %, −5.5 %) under RCP8.5 and
−6.0 (−12.1, −1.2) pp or −7.1 % (−14.2 %, −1.4 %) under
RCP2.6 (Tables S4 and S6). In addition, a high model uncer-
tainty in projected changes of spring SNC above 2000 m un-
der RCP8.5 was observed: the model spread ranged from al-
most no change to an approximate halving of SNC (Figs. S7
and S9).

This model spread in spring SNC under RCP8.5 is likely
caused by the snow schemes in the climate model’s land-
surface schemes in combination with the projected temper-
ature and precipitation changes, which directly affect SWE
and, since SNC is parameterized on SWE, also SNC. Higher
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Figure 3. Average monthly snow cover fraction over the whole study domain before and after bias adjustment. Black points denote observa-
tions from remote sensing for the period 2001–2020 (the same in all panels), and colored lines the regional climate model (RCM) simulations
with associated general circulation model (GCM). The first row shows monthly averages for the past (2001–2020), while the middle and
last rows are for 2071–2100 averages for two emission scenarios (RCP, representative concentration pathway). Column RAW is for original
RCM output, DC is the delta change approach, QM is quantile mapping, and QDM quantile delta mapping. The panel for DC and 2001–2020
shows no lines, since DC has no past RCM observations of its own.

Figure 4. Average seasonal snow cover fraction (SNC), as observed from remote sensing (OBS) and simulated with the CLMcom-CCLM4-8-
17 regional climate model driven by CNRM-CERFACS-CNRM-CM5 under the RCP8.5 emission scenario. Abbreviations: remotely sensed
observations (OBS), raw climate model output (RAW), quantile mapping (QM), quantile delta mapping (QDM), delta change approach
(DC), December–January–February (DJF), March–April–May (MAM). For maps of the other climate models and emission scenarios, see
Matiu (2022).
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uncertainties are expected in spring, because potential errors
accumulate over the snow season. However, a detailed dis-
cussion on snow model processes and uncertainties is beyond
the scope of this study, and better addressed in dedicated
projects, such as ESM-SnowMIP (Krinner et al., 2018).

An in-depth view of the bias-adjustment results at a sin-
gle grid cell highlights the main differences between raw cli-
mate model SNC and observations as well as between QM
and QDM (Fig. S10). RCMs have more saturated SNC at
both 0 (snow free) and 1 (snow covered), and thus display
fully snow-free or snow-covered conditions over time more
often as compared to MODIS. This is likely caused by sub-
grid variability, which is prominent in MODIS, since it is
based on 250 m information. The trend-preserving attribute
of QDM keeps the distribution of SNC identical between
past and future when raw model SNC does not change, e.g.,
for the fraction of time in which the grid cell is fully snow
covered (Fig. S10). In the same situation, QM shows reduc-
tions in SNC. Additionally, QM has spurious breaks caused
by applying the method month by month, but QDM does
not. While these breaks could be alleviated by applying the
bias adjustment with a moving-window approach (e.g., 3–
6 months) or using the whole year, QM still suffers from
artificial modification of trends, as has been partly shown
before for precipitation (Maurer and Pierce, 2014; Maraun,
2013). Consequently, it should be treated with caution for
snow cover fraction, too. For the downscaling below, we thus
only used results from QDM.

4.2 Validation of the downscaling

The downscaling approach was validated by applying it to
the upscaled MODIS snow cover fraction, and then compar-
ing it to the original maps, which were used for upscaling.
This comparison involved the whole domain and all daily
maps, resulting in approximately 71 billion pixels (7305 d
times 9.8 million pixels per map). The overall accuracy of
the downscaling was 96.4 %, the PPV 89.1 %, and the NPV
97.4 %. Consequently, snow was downscaled less correctly
than land, but accuracies are still high. In addition, there was
a seasonal and elevational dependence of the downscaling er-
rors. Lowest accuracies were found for the elevation at which
the transition from land to snow occurs, and this elevation
varied by season (Fig. S11). For example, in December, the
lowest accuracy was 83 % at 1400 m, but in May, the lowest
accuracy was 87 % at 2000 m. In absolute terms, the number
of correctly downscaled pixels outweighs the errors by large
(Fig. S12).

To evaluate the errors in downscaled climatologies of
SCD, we compared the downscaled QDM bias-adjusted
past RCM to the observed high-resolution climatology from
MODIS. By definition of QDM, the empirical distribution of
past snow cover fraction at the 0.11◦ resolution is identical
between RCMs and MODIS. Thus, the difference between
the downscaled average annual snow cover duration (SCD)

and the observed high-resolution MODIS SCD is an indica-
tor of the downscaling error. The mean downscaling bias was
−3.0 d and the MAE 5.2 d. In addition, there was an eleva-
tion dependence of the bias (Fig. S13). A negative bias was
found for elevations below 1000 m, almost no average bias
between 1000 and 3000 m, and positive bias above 3000 m.
Glacierized surfaces exhibited strong positive bias, except if
SNCp50 was imputed by the second elevational step.

The downscaling procedure assumes seasonal stationarity.
Across the snow season, the processes governing snow ac-
cumulation and ablation differ substantially, so seasonal sta-
tionarity is questionable. However, the downscaling proce-
dure employed in this study is based on terrain morphology,
which stays constant across the season. For the spatial scales
used here with 250 m spacing, this resolves to mostly ele-
vation and only partly aspect and slope. For higher spatial
spacings, such as tens of meters, preferential deposition of
snow, terrain shading, and wind start to play strong roles, and
stationarity becomes increasingly less plausible. We evalu-
ated the stationarity assumption for our study by calculating
two different SNCp50 values, one for the start of the season
(September to February) and one for the end of the season
(March to August). The average bias between the seasonal
and annual SNCp50 values was −0.018 for the start and
0.007 for the end of the season, with an MAE of 0.057 and
0.041, respectively. Most of the bias was confined to lowest
elevations (below 1000 m), which do not have a proper start
and end of season, but multiple intermittent episodes. Given
these low differences between seasonal SNCp50 values, the
seasonal stationarity assumptions seems justified.

4.3 Downscaled projections of snow cover duration

Downscaled projections of high-resolution snow cover du-
ration (SCD) based on low-resolution snow cover fraction
(SNC) showed decreases in annual SCD under both emission
scenarios, but were much stronger under the high-emission
RCP8.5 scenarios (Fig. 5). Similar to Sect. 4.1, changes
strongly depended on elevation (Fig. S14, Table S7). In ab-
solute terms, SCD decreased more strongly with increasing
elevation, while in relative terms, the reductions were highest
at the lowest elevations (Table S8). For example, averaged
over all pixels between 800 and 1000 m in the study area,
SCD decreased by 9 d (3, 17) under RCP2.6 and by 26 d (19,
33) under RCP8.5. At higher elevations of 1800 to 2000 m,
SCD decreased by 25 d (11, 47) under RCP2.6 and by 68 d
(41, 106) under RCP8.5, while at 2800 to 3000 m, SCD de-
creased by 35 d (21, 56) under RCP2.6 and by 92 d (49, 163)
under RCP8.5. In relative terms, these reductions amount to
22 %, 15 %, and 11 % under RCP2.6 for 800–1000, 1800–
2000, and 2800–3000 m, respectively, and 64 %, 41 %, and
30 % under RCP8.5.

The European Alps have a prominent north–south climatic
divide (Auer et al., 2007), which manifests itself in snow
cover duration, too. Taking anomalies of SCD by elevation
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Figure 5. Future 2071–2100 annual snow cover duration (SCD) maps and differences to past (dSCD). (a) Downscaled SCD maps for low-
and high-emission scenarios (RCP, representative concentration pathway) based on an ensemble of 4 models for RCP2.6 (regional climate
models driven by general circulation models) and 23 models for RCP8.5. Empty areas denote pixels removed because of snow accumulation
issues (see Methods), glaciers, or water bodies. (b) Differences between future (2071–2100) and past (2001–2020) model output in absolute
days. (c) Relative differences; pixels with >+100 % difference omitted, because low values of observed SCD caused noise in relative
estimates for low SCD (most of the remaining positive changes are for areas with SCD5 5 d, too).

shows, on average, higher SCD north of the main ridge and
lower SCD south of it (Fig. S15a). These patterns were repro-
duced in RCMs, too, and changed in the future period: com-
paring RCP2.6 to RCP8.5, the north–south gradient in SCD
was less strong for lower elevations and more pronounced
for higher elevations (Fig. S15). In addition, a stronger rel-
ative decline in SCD was observed south and west of the
Alps compared to north and east (Fig. 5c) under RCP2.6. An
analysis of station snow depth and SCD trends over the last
five decades in the Alps similarly showed stronger declines
south than north (Matiu et al., 2021). Consequently, this trend
might continue in the future given the findings in this study.

The downscaling introduced some bias at elevations be-
low 1500 m, while above the procedure is largely unbiased
(Fig. S14b and c, left panel). But even at the lower eleva-
tions, the bias was lower than the model spread and future
change estimates. Thus, the largest part of uncertainty of fu-
ture projections was less because of the downscaling method,
but more caused by the spread in GCM forcing together with
RCM snow schemes. Since there is no single “best” climate
model (Vautard et al., 2021) and no single best snow model
(Etchevers et al., 2004; Rutter et al., 2009; Menard et al.,
2021), we conclude it is safe to take model spread as repre-
sentative of model uncertainty for future projections.
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The employed statistical downscaling method extrapolates
information beyond the elevation coverage of the RCMs. At
0.11◦, and not considering the grid cells with snow accu-
mulation, the highest grid cell from low-resolution RCMs
was at approximately 3000 m, which contained single high-
resolution pixels with elevations up to 4105 m. The down-
scaled estimates above 3000 m should thus be treated with
caution, even though the observed stronger reductions at ele-
vations above 3000 m from downscaling are similar to the re-
sults of the simulations from a high-resolution RCM, which
explicitly resolved elevations up to 3500/4000 m (Lüthi et al.,
2019).

A benefit of the proposed downscaling approach is that
it is based on truly local features, which were derived from
20 years of observations. In contrast, the final imputation
step of SNCp50 is based on a simple elevational dependence
of snow cover, and could thus directly be estimated from a
low-resolution RCM signal. At least the initial derivation of
SNCp50 and the first imputation step can be assumed to pro-
vide downscaled estimates based on local features, while the
results of pixels that were subject to the final elevation impu-
tation are more generalized. On the other hand, applying the
downscaling grid cell by grid cell introduced artifacts at the
low-resolution grid cell boundaries (see, e.g., Fig. 5c). For
the future, other downscaling techniques could be explored,
such as analogue, perfect prog, or weather typing methods
(Zorita and von Storch, 1999; Gutiérrez et al., 2013), as well
as spatially explicit gridded downscaling approaches (Werner
and Cannon, 2016).

One assumption in the downscaling is that the remotely
sensed observations from MODIS are true, but these also
have errors and noise. Generally, accuracies in determin-
ing binary snow information (snow or land) are largely
above 90 % for MODIS (Parajka and Blöschl, 2006; Gafurov
and Bárdossy, 2009). However, considerable uncertainty and
lower accuracies were found for forested areas and loca-
tions affected by terrain shading (Notarnicola et al., 2013b).
Specific to this study is the use of a cloud-filtered product,
which provides gap-free spatiotemporal series. The used fil-
tering techniques resulted in only slightly lower overall ac-
curacies of 91.5 %, compared to 93 % for the original im-
ages (Matiu et al., 2020a). However, the spatial and temporal
filters that were applied to remove clouds might miss short
snow episodes at low elevations and are difficult to validate
at higher elevations, because of low ground station coverage.
A pixel with erroneous information from MODIS will trans-
late to an erroneous downscaled pixel, so relying on single
pixels without consulting the spatial surroundings is not ad-
vised.

In addition, the downscaling assumes no land cover
change, which might be problematic, e.g., where the tree
line increases and forests migrate to higher elevation. This
comes on top to the already challenging estimation of snow
cover fraction from remote sensing for forested areas. Under
a warming climate, complex vegetation–snow interactions

can occur, such as opposing effects on the interception and
subsequent melting of snow in forests (DeBeer et al., 2021).

4.4 Comparison of downscaling to a dedicated snow
model

For the Ötztal Alps region in Austria (Fig. 1), we com-
pared results from bias adjustment and downscaling of RCM
snow cover fraction (SNC) to running a dedicated snow
model (AMUNDSEN) which has been forced by output from
RCMs. For the past period (2001–2020), the downscaling re-
sulted in lower SNC than AMUNDSEN up to approximately
2000 m, similar SNC from 2100 to 2600 m, and higher SNC
for elevations above 2700 m (Figs. S16 and S17). However,
elevations above 2700 m are challenging to compare, since
many pixels were removed from bias adjustment and down-
scaling at these elevations because of snow accumulation is-
sues and glaciers, while AMUNDSEN resolved the whole
domain and explicitly considered ice–snow transitions. Con-
sequently, comparisons above 2700 m are not based on the
same pixels.

The change estimates for the future period (2071–2100)
under RCP8.5 agreed between bias adjustment, downscal-
ing, and AMUNDSEN for elevations between 1800 and
2800 m, considering model ensemble uncertainty (Fig. 6).
But strong disagreement was observed above and below.
For elevations below 1500 m, AMUNDSEN showed much
stronger reductions in SNC than downscaling. The ele-
vation gradient of projected changes under RCP8.5 dif-
fered substantially between AMUNDSEN and downscaling
(Fig. 6). While AMUNDSEN showed mostly constant ab-
solute change across elevation, with slightly stronger de-
creases between 1500 and 2000 m under RCP8.5, the bias-
adjusted or downscaled SNC from RCM showed a strong el-
evational gradient, such that absolute decreases in SNC be-
came stronger with increasing elevation. In relative terms,
AMUNDSEN had the highest change rates at lowest eleva-
tions and the lowest change rates at highest elevations, while
for downscaling, the opposite was true.

This elevation gradient in the relative SNC changes from
downscaling for the Ötztal Alps is counter-intuitive. It is also
different from the gradients for bias adjustment and down-
scaling for the whole study area, which themselves are sim-
ilar to the results from AMUNDSEN for the Ötztal Alps
(Fig. 6). One reason for this discrepancy might be that the
Ötztal Alps region comprises only 15 RCM grid cells with
a very limited elevation range (1800 to 2800 m), which has
to be extrapolated to a much wider elevation range (900
to 3700 m) in the finer spatial resolution. In the case of
AMUNDSEN, this extrapolation is performed on the surface
meteorology, which seems to work better than the extrapola-
tion performed in the SNC downscaling approach.

A further cause of the strong differences in SNC changes
especially at lower elevations might be due to the consider-
ation of forest snow processes in the AMUNDSEN simula-
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Figure 6. Change in future annual snow cover fraction (SNC) for the Ötztal Alps region and the whole study area (GAR, Greater Alpine
Region) by elevation band. Colored lines and transparent regions denote model means and model spread from running a snow and hydro-
climatological model (AMUNDSEN), forced by downscaled meteorology from regional climate models (RCMs), from bias-adjusted SNC
from RCMs, and from downscaled SNC from RCMs. Shaded gray area in the Ötztal Alps panels (above 2700 m) indicates elevations,
where > 20 % of the pixels entering the average per elevation band were removed from MODIS and downscaling but remained included in
AMUNDSEN; these consist of glacierized pixels or pixels subject to snow accumulation in RCMs, while AMUNDSEN resolved the whole
domain. Panel (a) shows absolute changes and panel (b) relative changes.

tions, where a canopy submodule accounts for the intercep-
tion of snow by the trees – from where the snow can subse-
quently sublimate or melt without reaching the ground – as
well as the modification of the meteorological variables for
sub-canopy conditions; for details see Strasser et al. (2011).
As the AMUNDSEN SNC results considered in this study
only correspond to snow on the ground, this can cause differ-
ences to the RCM-based SNC changes, considering the large
proportion of forested areas in the affected elevation bands
(61 % forest coverage for elevations < 2000 m compared to
only 2 % for elevations= 2000 m).

Given this study’s setup, it is not possible to disentangle
how climate change signals and uncertainties flow through
the modeling chain of both approaches with their different
statistical post-processing and physical models. But we pro-
pose that such an assessment would be beneficial for high-
lighting important aspects of the modeling uncertainty of fu-
ture mountain snow cover. A related issue is that for the bias
adjustment of SNC in this study, RCMs caused more of the
overall variability than their driving GCMs, while in Hanzer
et al. (2018), it was the opposite. It seems that for a small
high-elevation area such as the Ötztal Alps, the RCMs can-
not demonstrate their full potential and the large-scale forc-
ing from GCMs takes precedence.

To conclude the comparison of bias adjustment and down-
scaling to using a dedicated snow model, Table 1 offers an

overview of their main features. Both approaches enable as-
sessment of climate model uncertainty by using model en-
sembles. Both suffer from the potential need to extrapolate
the RCM signal (surface meteorology or snow cover) be-
yond its elevation coverage, especially in complex mountain
terrain. Both approaches decouple surface meteorology and
snow cover in the climate change signal. The main differ-
ences between the two approaches are in their spatial extent,
spatial detail, the representation of snow and ice processes,
and the availability of observations.

Previous studies on the future of snow cover in the Eu-
ropean Alps found differing trend magnitudes, but quantita-
tive comparisons are hampered by different study extents and
emission scenarios.

Marty et al. (2017) found decreases of snow cover duration
until the end of the century from 100 to 14–18 d at 1000 m,
157 to 49 d at 1500 m, and 254 to 163 d at 2700 m (see Ta-
ble S2 in Marty et al., 2017), while here we found reduc-
tions that were much lower: 30, 47, and 82 d at the respec-
tive elevations (Table S8). Their estimates were based on the
Alpine3D snow model for subregions of Switzerland, forced
by RCM meteorology from the ENSEMBLES project, un-
der the A2 emission scenario, which has lower greenhouse-
gas concentrations at the end of the century compared to the
RCP8.5 used in this study. The differences in change esti-
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Table 1. Non-exhaustive comparison of benefits (denoted with a+) and drawbacks (denoted with a−) of the two methods considered in this
study. Abbreviations: regional climate model (RCM), snow cover fraction (SNC).

Dedicated model forced by RCM meteorology Bias adjustment (and downscaling) of RCM SNC

+ Strong local (topographic) detail possible − Limited by RCM resolution; artifacts at grid cell
boundaries

+ Detailed representation of snow and ice processes − Limited by adequacy of RCM snow scheme

+ All snow cover variables (water equivalents, depths,
area covered)

− Only snow cover fraction

− Limited spatial extent + Applicable at large spatial scales

− Requires surface meteorology (in situ data,
downscaling of RCM output)

+ Observations from remote sensing globally available

(−) Requires extensive snow modeling experience (+) Mostly statistical and computational skills required

mates might partly be caused by different reference periods
for the past.

Lüthi et al. (2019) found a decrease of 60 % in SWE and
a 2 months shorter snow cover duration by analyzing one re-
gional climate model at 2 km spacing over the Alpine region
under RCP8.5, while we observed a 49 % reduction in SNC
and an average reduction of 22 d in SCD. Trend differences
might be explained by the fact that domain averages strongly
depend on the investigated domain, and Lüthi et al. (2019)
have a different extent of Alpine region compared to this
study. In addition, their domain includes much higher ele-
vations because the horizontal spacing is much finer, and the
higher elevations showed stronger reductions in snow cover.

5 Conclusion

Bias adjustment of snow cover fraction from RCMs us-
ing aggregated MODIS remote-sensing observations offers
a promising approach to evaluate future changes of snow
cover fraction in mountain areas under a climate model en-
semble view. While limited by the resolution of RCMs, it of-
fers consistent large-scale patterns of snow cover fraction for
the past and future, and is potentially applicable on a global
scale. Consequently, it might be a viable alternative in re-
mote or less monitored areas. Providing snow cover fraction
as output variable (in addition to snow water equivalent) is
probably not a priority for climate modeling groups; how-
ever, the proposed bias adjustment could benefit from a larger
ensemble of climate models with snow cover fraction avail-
able. Regarding bias-adjustment methods, trend-preserving
approaches, such as delta change or quantile delta mapping,
were found to be superior to quantile mapping for snow cover
fraction.

The downscaling of RCM SNC with high-resolution
MODIS observations falls under an “experimental” label. It
suffers from many inadequacies, such as snow accumulation
in RCMs and noise in observations, and is likely inappropri-

ate for glacierized areas. However, it can provide auxiliary
and high spatial resolution information while accounting for
climate model uncertainty. The discrepancies to results from
a dedicated snow model for a smaller area (the Ötztal Alps)
require further research before a final recommendation can
be given, though differences are likely caused by the small
spatial extent and catchment specifics (forest distribution,
glaciers), which are features that fall outside of the RCM’s
scope and capabilities.

For the study region, which is approximately the Greater
Alpine Region, results showed an overall reduction in snow
cover fraction for 2071–2100 compared to 2001–2020 of
14 % for RCP2.6 and 48 % under RCP8.5. However, strong
elevational and seasonal dependencies of changes were
found (Tables S3 to S8, Figs. S8, S9, S14, S18, S19). Ab-
solute reductions became higher with increasing elevation,
while relative reductions became lower (Table 2). Downscal-
ing resulted in slightly more negative estimates of change
than those solely from bias adjustment. In addition, spatial
patterns of change emerged, with stronger relative decreases
in the south and west compared to the north and east (Fig. 5),
which are consistent with past trends of station observations
of snow depth (Matiu et al., 2021). Results for the low-
emission scenario RCP2.6 are based on a smaller ensemble
than for the high-emission scenario RCP8.5 (4 vs. 23 mod-
els), and thus model uncertainty might be underestimated for
RCP2.6.

Potential uses of the downscaled information include hy-
drological or glacier-modeling studies that require snow line
information. They might help in determining winter sport re-
liability, even though future assessments that do not account
for technical snow are most likely not very useful (Spandre
et al., 2019; Morin et al., 2021). Finally, downscaling ap-
proaches should be kept in mind considering the new gen-
eration of soon to be available high-resolution RCMs (at or
below 2 km), e.g., from CORDEX flagship pilot studies, to-
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Table 2. Summary of changes in annual snow cover fraction (BA, bias adjustment) and annual snow cover duration (DS, downscaling) by
emission scenario at three representative elevations. Columns show model mean with model spread in parentheses for absolute (abs.) changes
in percentage points (pp) for BA, days for DS, as well as relative (rel.) changes for BA and DS. RCP stands for representative concentration
pathway. Results are based on quantile delta mapping as BA method.

Scenario Elevation BA abs. (pp) BA rel. DS abs. (d) DS rel.
(m)

RCP2.6 500 −1.5 (−2.6, −0.5) −21.2 % (−37.0 %, −7.9 %) −5 (−9, −1) −23.6 % (−44.3 %, −6.1 %)
1500 −4.4 (−7.7, −2.0) −14.0 % (−24.8 %, −6.5 %) −18 (−32, −7) −18.1 % (−32.6 %, −7.6 %)
2500 −5.8 (−9.9, −2.7) −8.4 % (−14.5 %, −4.0 %) −26 (−47, −14) −10.7 % (−19.5 %, −6.0 %)

RCP8.5 500 −4.7 (−6.0, −2.7) −68.6 % (−87.1 %, −39.6 %) −16 (−19, −10) −76.3 % (−93.0 %, −45.9 %)
1500 −13.2 (−19.0, −9.0) −42.3 % (−60.9 %, −28.9 %) −47 (−65, −35) −48.1 % (−66.9 %, −36.3 %)
2500 −17.2 (−32.8, −6.4) −25.2 % (−48.0 %, −9.4 %) −76 (−134, −33) −31.4 % (−55.3 %, −13.7 %)

gether with long-term remote-sensing observations at tens of
meters scale, such as harmonized Landsat Sentinel series.

Code and data availability. All code to perform
the analysis is available in a public repository
(https://doi.org/10.5281/zenodo.6489002, Matiu, 2022). The
repository also holds final processed data of the snow cover
duration climatologies from MODIS, as well as single GCM-RCM
maps from bias correction and downscaling. The input data are not
shared, because of the large size. The RCM data is available for non-
commercial use after registration (https://cordex.org/data-access/;
WCRP, 2022). For access to the MODIS observations, see
Matiu et al. (2020a). The AMUNDSEN data is available from
Florian Hanzer upon request.
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