Articles | Volume 26, issue 5
https://doi.org/10.5194/hess-26-1459-2022
https://doi.org/10.5194/hess-26-1459-2022
Research article
 | 
16 Mar 2022
Research article |  | 16 Mar 2022

Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream

Nataline Simon, Olivier Bour, Mikaël Faucheux, Nicolas Lavenant, Hugo Le Lay, Ophélie Fovet, Zahra Thomas, and Laurent Longuevergne

Data sets

Kerbernez: Active-Distributed Temperature Sensing (DTS) measurements - April 6th, 2016 N. Simon, M. Faucheux, and O. Bour http://geowww.agrocampus-ouest.fr/geonetwork/apps/georchestra/?uuid=535a3738-0ed7-4376-99f1-9a7a652b893d

Kerbernez: Long-term monitoring of streambed temperature through Passive-Distributed Temperature Sensing (DTS) measurements - From December 2nd, 2015 to July 05th, 2016 N. Simon, M. Faucheux, and O. Bour http://geowww.agrocampus-ouest.fr/geonetwork/apps/georchestra/?uuid=a5f2a68f-bf63-469c-839b-1e1edf1f8624

Download
Short summary
Groundwater discharge into streams plays a major role in the preservation of stream ecosystems. There were two complementary methods, both based on the use of the distributed temperature sensing technology, applied in a headwater catchment. Measurements allowed us to characterize the spatial and temporal patterns of groundwater discharge and quantify groundwater inflows into the stream, opening very promising perspectives for a novel characterization of the groundwater–stream interface.