Articles | Volume 26, issue 5
https://doi.org/10.5194/hess-26-1341-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1341-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Saline groundwater evolution in the Luanhe River delta (China) during the Holocene: hydrochemical, isotopic, and sedimentary evidence
Xianzhang Dang
School of Environmental Studies, China University of Geosciences, 388 Lumo Rd, Wuhan, 430074, China
Qingdao Institute of Marine Geology, CGS, Qingdao, 266237, China
Chinese Academy of Geological Sciences, Beijing, 100037, China
Maosheng Gao
CORRESPONDING AUTHOR
Qingdao Institute of Marine Geology, CGS, Qingdao, 266237, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao, 266237, China
School of Environmental Studies, China University of Geosciences, 388 Lumo Rd, Wuhan, 430074, China
Guohua Hou
Qingdao Institute of Marine Geology, CGS, Qingdao, 266237, China
Laboratory for Marine Geology, Pilot National Laboratory for Marine
Science and Technology, Qingdao, 266237, China
Hamza Jakada
Department of Civil Engineering, Baze University, Abuja, Nigeria
Daniel Ayejoto
School of Environmental Studies, China University of Geosciences, 388 Lumo Rd, Wuhan, 430074, China
Qiming Sun
School of Environmental Studies, China University of Geosciences, 388 Lumo Rd, Wuhan, 430074, China
Qingdao Institute of Marine Geology, CGS, Qingdao, 266237, China
Chinese Academy of Geological Sciences, Beijing, 100037, China
Related authors
No articles found.
Xue Ping, Zhang Wen, Yang Xian, Menggui Jin, and Stefan Krause
EGUsphere, https://doi.org/10.5194/egusphere-2025-2631, https://doi.org/10.5194/egusphere-2025-2631, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Bedform migration affects hyporheic exchange, its impact on surface-groundwater mixing and groundwater-borne contaminant removal in groundwater-fed streams remained unclear. This study numerically simulated how bedform migration influences mixing and mixing-induced nitrate reduction. In fine-to-medium sands, higher bedform migration celerities reshape mixing zones, enhance mixing flux and extent, but reduce nitrate removal rate and efficiency, thus impairing hyporheic purification capacity.
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024, https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary
Short summary
Meandering rivers are an integral part of many landscapes around the world. Here we used a new modeling approach to look at how the slope of riverbanks influences water flow and solute transport from a meandering river channel through its bank and into/out of the connected groundwater compartment (aquifer). We found that the bank slope can be a significant factor to be considered, especially when bank slope angles are small, and riverbank and aquifer conditions only allow for slow water flow.
Cited articles
Akouvi, A., Dray, M., Violette, S., de Marsily, G., and Zuppi, G. M.: The
sedimentary coastal basin of Togo: example of a multilayered aquifer still
influenced by a palaeo-seawater intrusion, Hydrogeol. J., 16, 419–436,
https://doi.org/10.1007/s10040-007-0246-1, 2008.
Aquilina, L., Vergnaud-Ayraud, V., Les Landes, A. A., Pauwels, H., Davy, P.,
Petelet-Giraud, E., Labasque, T., Roques, C., Chatton, E., and Bour, O.:
Impact of climate changes during the last 5 million years on groundwater in
basement aquifers, Sci. Rep.-UK, 5, 14132, https://doi.org/10.1038/srep14132,
2015.
Bouchaou, L., Michelot, J. L., Qurtobi, M., Zine, N., Gaye, C. B., Aggarwal,
P. K., Marah, H., Zerouali, A., Taleb, H., and Vengosh, A.: Origin and
residence time of groundwater in the Tadla basin (Morocco) using multiple
isotopic and geochemical tools, J. Hydrol., 379, 323–338,
https://doi.org/10.1016/j.jhydrol.2009.10.019, 2009.
Cartwright, I., Currell, M., Cendon, D., and Meredith, K.: A review of the
use of radiocarbon to estimate groundwater residence times in semi-arid and
arid areas, J. Hydrol., 580, 124247,
https://doi.org/10.1016/j.jhydrol.2019.124247, 2020.
Cary, L., Petelet-Giraud E., Bertrand, G., Kloppmann, W., Aquilina, L.,
Martins, V., Hirata, R., Montenegro, S., Pauwels, H., Chatton, E., Franzen,
M., and Aurouet, A.: Origins and processes of groundwater salinization in
the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope
approach, Sci. Total Environ., 530–531, 411–429,
https://doi.org/10.1016/j.scitotenv.2015.05.015, 2015.
Chen, Z. Y., Qi, J. X., Xu, J. M., Xu, J. M., Ye, H., and Nan, Y. J.:
Paleoclimatic interpretation of the past 30 ka from isotopic studies of the
deep confined aquifer of the North China Plain, Appl. Geochem., 18, 997–1009,
https://doi.org/10.1016/S0883-2927(02)00206-8, 2003.
Cheng, L. Y., Xu, Q. M., Guo, H., Li, M., Yang, N., Liu, J. B., Zhao, J. J.,
and Guo, J. J.: The Late Holocene Stratum and evolution in the Luanhe River
Delta, Quaternary Sciences, 40, 751-763,
https://doi.org/10.27355/d.cnki.gtjsy.2020.000012, 2020 (in Chinese with
English abstract).
Clark, I. D. and Fritz, P. (Eds): Environmental Isotopes in Hydrogeology,
Lewis Publishers, New York, https://doi.org/10.1201/9781482242911, 1997.
Colombani, N., Cuoco, E., and Mastrocicco, M.: Origin and pattern of
salinization in the Holocene aquifer of the southern Po Delta (NE Italy), J.
Geochem. Explor., 175, 130–137, https://doi.org/10.1016/j.gexplo.2017.01.011,
2017.
Costall, A. R., Harris, B. D., Teo, B., Schaa, R., Wagner, F. M., and Pigois,
J. P.: Groundwater Throughflow and Seawater intrusion in High Quality
coastal Aquifers, Sci. Rep.-UK, 10, 9866,
https://doi.org/10.1038/s41598-020-66516-6, 2020.
Craig, H.: Standard for reporting concentration of deuterium and oxygen-18
in natural water, Science, 133, 1833–1834,
https://doi.org/10.1126/science.133.3467.1833, 1961.
Currell, M. J., Cartwright, I., Bradley, D. C., and Han, D. M.: Recharge
history and controls on groundwater quality in the Yuncheng Basin, north
China, J. Hydrol., 385, 216–229,
https://doi.org/10.1016/j.jhydrol.2010.02.022, 2010.
Dang, X. Z., Gao, M. S., Wen, Z., Jakada, H., Hou, G. H., and Liu, S.:
Evolutionary process of saline groundwater influenced by palaeo-seawater
trapped in coastal deltas: A case study in Luanhe River Delta, China, Estuar.
Coast. Shelf S., 244, 106894, https://doi.org/10.1016/j.ecss.2020.106894,
2020.
de Montety, V., Radakovitch, O., Vallet-Coulomb, C., Blavoux, B., Hermitte,
D., and Valles, V.: Origin of groundwater salinity and hydrogeochemical
processes in a confined coastal aquifer: case of the Rhone delta (Southern
France), Appl. Geochem., 23, 2337–2349,
https://doi.org/10.1016/j.apgeochem.2008.03.011, 2008.
Delsman, J. R., Hu-a-ng, K. R. M., Vos, P. C., de Louw, P. G. B., Oude Essink, G. H. P., Stuyfzand, P. J., and Bierkens, M. F. P.: Paleo-modeling of coastal saltwater intrusion during the Holocene: an application to the Netherlands, Hydrol. Earth Syst. Sci., 18, 3891–3905, https://doi.org/10.5194/hess-18-3891-2014, 2014.
Douglas, M., Clark, I. D., Raven, K., and Bottomley, D.: Groundwater mixing
dynamics at a Canadian Shield mine, J. Hydrol., 235, 88–103,
https://doi.org/10.1016/S0022-1694(00)00265-1, 2000.
Du, Y., Ma, T., Chen, L. Z., Shan, H. M., Xiao, C., Lu, Y., Liu, C. F., and
Cai, H. S.: Genesis of salinized groundwater in Quaternary aquifer system of
coastal plain, Laizhou Bay, China: Geochemical evidences, especially from
bromine stable isotope, Appl. Geochem., 59, 155–165,
https://doi.org/10.1016/j.apgeochem.2015.04.017, 2015.
Du, Y., Ma, T., Chen, L., Xiao, C., and Liu, C. F.: Chlorine isotopic
constraint on contrastive genesis of representative coastal and inland
shallow brine in China, J. Geochem. Explor., 170, 21–29,
https://doi.org/10.1016/j.gexplo.2016.07.024, 2016.
Edmunds, W. M.: Palaeowaters in European coastal aquifers-the goals and main
conclusions of the PALAEAUX project, Geological Society London Special
Publications, 189, 1–16, https://doi.org/10.1144/GSL.SP.2001.189.01.02,
2001.
Fairbanks, R. G.: A 17,000-year glacio-eustatic sea level record: influence
of glacial melting rates on the Younger Dryas event and deep ocean
circulation, Nature, 342, 637–647, https://doi.org/10.1038/342637a0, 1989.
Feng, J. and Zhang, W.: The evolution of the modern Luanhe River delta,
north China, Geomorphology, 25, 269–278,
https://doi.org/10.1016/S0169-555X(98)00066-X, 1998.
Ferguson, G. and Gleeson, T.: Vulnerability of coastal aquifers to
groundwater use and climate change, Nat. Clim. Change, 2, 342–345,
https://doi.org/10.1038/nclimate1413, 2012.
Fontes, J. C. and Garnier, J. M.: Determination of the initial 14C
activity of the total dissolved carbon: a review of the existing models and
a new approach, Water Resour. Res., 15, 399–413,
https://doi.org/10.1029/wr015i002p00399, 1979.
Gao, S. M.: Facies and sedimentary model of the Luan River delta, Acta
Geographica Sinica, 48, 303–314, 1981 (in Chinese with English
abstract).
Giambastiani, B. M. S., Colombani, N., Mastrocicco, M., and Fidelibus, M. D.:
Characterization of the lowland coastal aquifer of Comacchio (Ferrara,
Italy): Hydrology, hydrochemistry and evolution of the system, J. Hydrol.,
501, 35–44, https://doi.org/10.1016/j.jhydrol.2013.07.037, 2013.
Gibson, J. J., Edwards, T. W., Bursey, G. G., and Prowse, T. D.: Estimating
evaporation using stable isotopes: quantitative results and sensitivity
analysis for two catchments in Northern Canada, Nord. Hydrol., 24, 79–94,
https://doi.org/10.2166/nh.1993.0015, 1993.
Groen, J., Velstra, J., and Meesters, A.: Salinization processes in
paleowaters in coastal sediments of Suriname: evidence from δ37Cl analysis and diffusion modelling, J. Hydrol., 234, 1–20,
https://doi.org/10.1016/S0022-1694(00)00235-3, 2000.
Han, D. M., Kohfahl, C., Song, X. F., Xiao, G. Q., and Yang, J. L.:
Geochemical and isotopic evidence for Palaeo-Seawater intrusion into the
south coast aquifer of Laizhou Bay, China, Appl. Geochem., 26, 863–883,
https://doi.org/10.1016/j.apgeochem.2011.02.007, 2011.
Han, D. M., Song, X. F., Currell, M. J., Yang, J. L., and Xiao, G. Q.:
Chemical and isotopic constraints on the evolution of groundwater
salinization in the coastal plain aquifer of Laizhou Bay,China, J. Hydrol.,
508, 12–27, https://doi.org/10.1016/j.jhydrol.2013.10.040, 2014.
Han, D. and Currell, M. J.: Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence, Hydrol. Earth Syst. Sci., 22, 3473–3491, https://doi.org/10.5194/hess-22-3473-2018, 2018.
Han, D. M., Cao, G. L., Currell, M. J., Priestley, S. C., and Love, A. J.:
Groundwater salinization and flushing during glacial-interglacial cycles:
insights from aquitard porewater tracer profiles in the North China Plain,
China, Water Resour. Res., 56, e2020WR027879, https://doi.org/10.1029/2020WR027879,
2020.
He, L., Amorosi, A., Ye, S. Y., Xue, C. T., Yang, S. X., and Laws, E. A.: River
avulsions and sedimentary evolution of the Luanhe fan-delta system (North
China) since the late Pleistocene, Mar. Geol., 425, 106194,
https://doi.org/10.1016/j.margeo.2020.106194, 2020.
Hendry, M. J. and Wassenaar, L. I.: Controls on the distribution of major
ions in pore waters of thick surficial aquitard, Water Resour. Res., 36,
503–513, https://doi.org/10.1029/1999WR900310, 2000.
IAEA/WMO: Global Network of Isotopes in Precipitation, The GNIP Database,
Vienna, http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html (last access: 18 November 2013), 2006.
Jayathunga, K., Diyabalanage, S., Frank, A. H., Chandrajith, R., and Barth, J.
A. C.: Influences of seawater intrusion and anthropogenic activities on
shallow coastal aquifers in Sri Lanka: evidence from hydrogeochemical and
stable isotope data, Environ. Sci. Pollut. R., 27, 23002–23014,
https://doi.org/10.1007/s11356-020-08759-4, 2020.
Jiao, J. J. and Post, V. (Eds): Coastal Hydrology, Cambridge University Press, New York, https://doi.org/10.1017/9781139344142, 2019.
Jin, X. F.: The spore-pollen assemblages and the stratigraphy and
palaeogeography in western Bohai Sea since late Pleistocene, Marine Science
Bullition 3, 16–24, 1984 (in Chinese with English abstract).
Kooi, H., Groen, J., and Leijnse, A.: Modes of seawater intrusion during
transgressions, Water Resour. Res., 36, 3581–3589,
https://doi.org/10.1029/2000wr900243, 2000.
Kreuzer, A. M., Rohden, C. V., Friedrich, R., Chen, Z. Y., Shi, J. S.,
Hajdas, I., Kipfer, R., and Aeschbach-Hertig, W.: A record of temperature
and monsoon intensity over the past 40 kyr from groundwater in the North
China Plain, Chem. Geol., 259, 168–180,
https://doi.org/10.1016/j.chemgeo.2008.11.001, 2009.
Larsen, F., Tran, L. V., Van Hoang, H., Tran, L. T., Christiansen, A. V.,
and Phan, N. Q.: Groundwater salinity influenced by Holocene seawater trapped
in incised valleys in the Red River delta, Nat. Geosci., 10, 376–381,
https://doi.org/10.1038/ngeo2938, 2017.
Lee, S., Currell, M., and Cendon, D. I.: Marine water from mid-Holocene sea
level highstand trapped in a coastal aquifer: Evidence from groundwater
isotopes, and environmental significance, Sci. Total Environ., 544, 995–1007,
https://doi.org/10.1016/j.scitotenv.2015.12.014, 2016.
Li, G. X., Li, P., Liu, Y., Qiao, L. L., Ma, Y. Y., Xu, J. S., and Yang, Z.
G.: Sedimentary system response to the global sea level change in the East
China Seas since the last glacial maximum, Earth-Sci. Rev., 139,
390–405, https://doi.org/10.1016/j.earscirev.2014.09.007, 2014.
Li, H. M. and Wang, J. D.: Palaeomagnetic study on drill core from northern
Bohai coastal plain, Geochimica, 2, 196–204, 1983 (in Chinese with English
abstract).
Li, J., Liang, X., Jin, M. G., and Mao, X. M.: Geochemical signature of
aquitard pore water and its paleo-environment implications in Caofeidian
Harbor, China, Geochem. J., 47, 37–50,
https://doi.org/10.2343/geochemj.2.0238, 2013.
Li, J., Liang, X., Jin, M. G., Yang, J. L., Ma, B., Ge, Q.: Origin and Evolution of Aquitard Porewater in the Western Coastal Plain of Bohai Bay, China, Groundwater, 55, 917—925, https://doi.org/10.1111/gwat.12590, 2017.
Li, Y. F., Gao, S. M., and An, F. T.: A preliminary study of the Quaternary
marine strata and its paleogeographic significance in the Luanhe delta
region, Oceanologia et Limnologia Sinica, 13, 433–439, 1982 (in Chinese
with English abstract).
Liu, S., Tang, Z. H., Gao, M. S., and Hou, G.H.: Evolutionary process of
saline-water intrusion in Holocene and Late Pleistocene groundwater in
southern Laizhou Bay, Sci. Total Environ., 607–608, 586–599,
https://doi.org/10.1016/j.scitotenv.2017.06.262, 2017.
Ma, F. S., Wei, A. H., Deng, Q. H., and Zhao H. J.: Hydrochemical
Characteristics and the Suitability of Groundwater in the Coastal Region of
Tangshan, China, J. Earth Sci.-China, 26, 1067–1075,
https://doi.org/10.1007/s12583-014-0492-9, 2014.
Niu, Z. X., Jiang, X. W., and Hu, Y. Z.: Characteristics and causes of
hydrochemical evolution of deep groundwater in the Luanhe delta,
Hydrogeology and Engineering Geology, 46, 27–34, 2019 (in Chinese with
English abstract).
Parkhurst, D. L. and Appelo, C. A. J.: Description of Input and Examples for PHREEQC Version 3 – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, in: Techniques and Methods, book 6, chap. A43, US Geological Survey, Denver, p. 497, https://pubs.usgs.gov/tm/06/a43/ (last access: October 2019), 2013.
Peng, G., Jiao, W. Q., Li, D. M., and Li, G. Y.: Division and correlation of
the late Quaternary stratigraphy and discussion on the recent tectonic
movement in the region of the Luanhe River Delta, Seismoloqy and Geology, 3,
31–36, 1981 (in Chinese with English abstract).
Pearson, F. J. and Hanshaw, B. B.: Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating, in:
IAEA, Isotope Hydrology, IAEA, Vienna, 271–285, 1970.
Post, V. E. and Kooi, H.: Rates of salinization by free convection in
high-permeability sediments: insight from numerical modeling and application
to Dutch coastal area, Hydrogeol. J., 11, 549–559,
https://doi.org/10.1007/s10040-003-0271-7, 2003.
Qi, H. H., Ma, C. M., He, Z. K., Hu, X. J., and Gao, L.: Lithium and its
isotopes as tracers of groundwater salinization: A study in the southern
coastal plain of Laizhou Bay, China, Sci. Total Environ., 650, 878–890,
https://doi.org/10.1016/j.scitotenv.2018.09.122, 2019.
Reilly, T. E. and Goodman, A. S.: Quantitative analysis of
saltwater-freshwater relationships in groundwater systems-a historical
perspective, J. Hydrol., 80, 125–160,
https://doi.org/10.1016/0022-1694(85)90078-2, 1985.
Sanford, W. E.: Groundwater hydrology: Coastal flow, Nat. Geosci., 3, 671–672,
https://doi.org/10.1038/ngeo958, 2010.
Santucci, L., Carol, E., and Kruse E.: Identification of palaeo-seawater
intrusion in groundwater using minor ions in a semi-confined aquifer of the
Río de la Plata littoral (Argentina), Sci. Total Environ., 566–567,
1640–1648, https://doi.org/10.1016/j.scitotenv.2016.06.066, 2016.
Sola, F., Vallejos, A., Daniele, L., and Pulido-Bosch, A.: Identification of a
Holocene aquifer-lagoon system using hydrogeochemical data, Quaternary Res.,
82, 121–131, https://doi.org/10.1016/j.yqres.2014.04.012, 2014.
Stumpp, C., Ekdal, A., Gönenc, I. E., and Maloszewski, P.: Hydrological dynamics of water sources in a Mediterranean lagoon, Hydrol. Earth Syst. Sci., 18, 4825–4837, https://doi.org/10.5194/hess-18-4825-2014, 2014.
Tulipano, L., Fidelibus, M. D., and Panagopoulos, A.: COST ACTION 621 Final Report, Groundwater Management of Coastal Karstic Aquifers, Office for the Official Publications of European Communitied, Luxembourg, Vol. II, 366 pp., ISBN 92-894-0015-1, 2005.
Tran, D. A., Tsujimura, M., Vo L. P., Nguyen, V. T., Kambuku, D., and Dang, T.
D.: Hydrogeochemical characteristics of a multi-layered coastal aquifer
system in the Mekong Delta, Vietnam, Environ. Geochem. Hlth., 42, 661–680,
https://doi.org/10.1007/s10653-019-00400-9, 2020.
UN Atlas: 44 Percent of us Live in Coastal Areas, http://coastalchallenges.com/2010/01/31/un-atlas-60-of-us-live-in-the-coastal-areas (last access: 12 June 2013), 2010.
Vallejos, A., Sola, F., Yechieli, Y., and Pulido-Bosch, A.: Influence of the
paleogeographic evolution on the groundwater salinity in a coastal aquifer.
Cabo de Gata aquifer, SE Spain, J. Hydrol., 557, 55–66,
https://doi.org/10.1016/j.jhydrol.2017.12.027, 2018.
van Engelen, J., Oude Essink, G. H. P., Kooi, H., and Bierkens, M. F. P.: On
the origins of hypersaline groundwater in the Nile Delta aquifer, J. Hydrol.,
560, 301–317, https://doi.org/10.1016/j.jhydrol.2018.03.029, 2018.
van Engelen, J., Verkaik, J., King, J., Nofal, E. R., Bierkens, M. F. P., and Oude Essink, G. H. P.: A three-dimensional palaeohydrogeological reconstruction of the groundwater salinity distribution in the Nile Delta Aquifer, Hydrol. Earth Syst. Sci., 23, 5175–5198, https://doi.org/10.5194/hess-23-5175-2019, 2019.
Wang, P. X., Min, Q. B., Bian, Y. H., and Cheng, X. R.: Strata of Quaternary
transgressions in east China: A preliminary study, Acta Geol. Sin.,
1981, 1–13, 1981 (in Chinese with English abstract).
Wang, Y. and Jiao, J. J.: Origin of groundwater salinity and
hydrogeochemical processes in the confined Quaternary aquifer of the Pearl
River Delta, China, J. Hydrol., 438–439, 112–124,
https://doi.org/10.1016/j.jhydrol.2012.03.008, 2012.
Wang, Y., Fu, G., and Zhang, Y.: River-sea interactive sedimentation and
plain morphological evolution, Quaternary Science, 27, 674–689,
https://doi.org/10.3321/j.issn:1001-7410.2007.05.009, 2007 (in Chinese with
English abstract).
Werner, A. D.: A review of seawater intrusion and its managementin
Australia, Hydrogeol. J., 18, 281–285,
https://doi.org/10.1007/s10040-009-0465-8, 2010.
Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C. H., Ataie-Ashtiani, B., Simmons, C. T., and Barry, D. A.: Seawater intrusion
processes, investigation and management: Recent advances and future
challenges, Adv. Water Resour., 51, 3–26,
https://doi.org/10.1016/j.advwatres.2012.03.004, 2013.
Xu, Q. M., Yuan, G. B., Zhang, J. Q., and Qin, Y. F.: Stratigraphic division of
the Late Quaternary strata along the coast of Bohai bay and its geology
significance, Acta Geol. Sin., 85, 1352–1367, 2011 (in Chinese
with English abstract).
Xu, Q. M., Yang, J. L., Yuan, G. B., Chu, Z. X., and Zhang, Z. K.:
Stratigraphic sequence and episodes of the ancient Huanghe Delta along the
southwestern Bohai Bay since the LGM, Mar. Geol., 367, 69–82,
https://doi.org/10.1016/j.margeo.2015.05.008, 2015.
Xu, Q. M., Yang, J. L., Hu, Y. Z., Yuan, G. B., and Deng, C. L.:
Magnetostratigraphy of two deep boreholes in the southwestern BohaiBay: its
tectonic implications and constraints on ages of volcanic layers, Quat.
Geochronol., 43, 102–114, https://doi.org/10.1016/j.quageo.2017.08.006, 2018.
Xu, Q. M., Meng, L. S., Yuan, G. B., Teng, F., Xin, H. T., and Sun, X. M.:
Transgressive wave-and tide-dominated barrier-lagoon system and sea-level
rise since 8.2 ka recorded in sediments in northern Bohai Bay, China,
Geomorphology, 352, 106978, https://doi.org/10.1016/j.geomorph.2019.106978,
2020.
Xue, C. T.: Historical changes of coastlines on west and south coasts of
Bohai Sea since 7000 a B.P., Scientia Geographic Sinica, 29, 217–222,
https://doi.org/10.3969/j.issn.1000-0690.2009.02.012, 2009 (in Chinese with
English abstract).
Xue, C. T.: Missing evidence for stepwise postglacial sea level rise and an
approach to more precise determination of former sea levels on East China
Sea Shelf. Mar. Geol., 348, 52–62,
https://doi.org/10.1016/j.margeo.2013.12.004, 2014.
Xue, C. T.: Extents, type and evolution of Luanhe River fan-delta system,
China, Marine Geology & Quaternary Geology, 36, 13–22, 2016 (in
Chinese with English abstract).
Zhou, X.: Basic characteristics and resource classification of subsurface
brines in deep-seated aquifers, Hydrogeology & Engineering Geology, 40, 4–10, 2013 (in Chinese with English abstract).
Short summary
Due to the widespread salinity in coastal zones, freshwater supplies are now under pressure. This study analyzes the recharge and salinity sources of coastal groundwater (brine, saline, brackish, fresh), as well as salinization and freshening processes, using hydrochemical and isotopic methods. The evolution of saline groundwater is studied using sedimentary characteristics as multiple lines of evidence. This study can be used to better understand groundwater evolution in the coastal zone.
Due to the widespread salinity in coastal zones, freshwater supplies are now under pressure....