Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-5175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5175-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relative humidity gradients as a key constraint on terrestrial water and energy fluxes
Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, V6T1Z4, Canada
Monica Garcia
Department of Environmental Engineering, Technical University of
Denmark, Lyngby, 2800, Denmark
Laura Morillas
Centre for Sustainable Food Systems, University of British Columbia, Vancouver, V6T1Z4, Canada
Ulrich Weber
Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10,
07745 Jena, Germany
T. Andrew Black
Faculty of Land and Food Systems, University of British Columbia,
Vancouver, V6T1Z4, Canada
Mark S. Johnson
Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, V6T1Z4, Canada
Centre for Sustainable Food Systems, University of British Columbia, Vancouver, V6T1Z4, Canada
Department of Earth, Ocean and Atmospheric Sciences, University of
British Columbia, Vancouver, V6T1Z4, Canada
Related authors
No articles found.
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Hamdi, and Martin Jung
Biogeosciences, 22, 3965–3987, https://doi.org/10.5194/bg-22-3965-2025, https://doi.org/10.5194/bg-22-3965-2025, 2025
Short summary
Short summary
This study evaluates machine learning approaches for upscaling evapotranspiration from the site to the global scale. Sequential models capture temporal dynamics better, especially with precipitation data, but all models show biases in data-scarce regions. Improved upscaling requires richer training data, informed covariate selection, and physical constraints to enhance robustness and reduce extrapolation errors.
Alan Barr, T. Andrew Black, Warren Helgason, Andrew Ireson, Bruce Johnson, J. Harry McCaughey, Zoran Nesic, Charmaine Hrynkiw, Amber Ross, and Newell Hedstrom
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-492, https://doi.org/10.5194/essd-2024-492, 2025
Preprint under review for ESSD
Short summary
Short summary
The Boreal Ecosystem Research and Monitoring Sites comprise three forest and one wetland flux towers near the southern edge of the boreal forest in western Canada. The data, spanning 1997 to 2023, have been used to: characterize the exchanges of carbon, water and energy between boreal ecosystems and the atmosphere; improve climate, hydrologic, and ecosystem carbon-cycle models, and refine remote-sensing methods.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Mélanie Weynants, Chaonan Ji, Nora Linscheid, Ulrich Weber, Miguel D. Mahecha, and Fabian Gans
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-396, https://doi.org/10.5194/essd-2024-396, 2024
Preprint under review for ESSD
Short summary
Short summary
Climate extremes are intensifying. The impacts of heatwaves and droughts can be made worse when they happen at the same time. Dheed is a global database of dry and hot compound extreme events from 1950 to 2022. It can be combined with other data to study the impacts of those events on terrestrial ecosystems, specific species or human societies. Dheed's analysis confirms that extremely dry and hot days have become more common on all continents in recent decades, especially in Europe and Africa.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Sung-Ching Lee, Sara H. Knox, Ian McKendry, and T. Andrew Black
Atmos. Chem. Phys., 22, 2333–2349, https://doi.org/10.5194/acp-22-2333-2022, https://doi.org/10.5194/acp-22-2333-2022, 2022
Short summary
Short summary
Wildfire smoke alters land–atmosphere exchange. Here, measurements in a forest and a wetland during four smoke episodes over four summers showed that impacts on radiation and heat budget were the greatest when smoke arrived in late summer. Both sites sequestered more CO2 under smoky days, partly due to diffuse light, but emitted CO2 when smoke was dense. This kind of field study is important for validating predictions of smoke–productivity feedbacks and has climate change implications.
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Simon Besnard, Sujan Koirala, Maurizio Santoro, Ulrich Weber, Jacob Nelson, Jonas Gütter, Bruno Herault, Justin Kassi, Anny N'Guessan, Christopher Neigh, Benjamin Poulter, Tao Zhang, and Nuno Carvalhais
Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, https://doi.org/10.5194/essd-13-4881-2021, 2021
Short summary
Short summary
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. Yet, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. In this paper, we introduced a new global distribution of forest age inferred from forest inventory, remote sensing and climate data in support of a better understanding of the global dynamics in the forest water and carbon cycles.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Virginie Moreaux, Simon Martel, Alexandre Bosc, Delphine Picart, David Achat, Christophe Moisy, Raphael Aussenac, Christophe Chipeaux, Jean-Marc Bonnefond, Soisick Figuères, Pierre Trichet, Rémi Vezy, Vincent Badeau, Bernard Longdoz, André Granier, Olivier Roupsard, Manuel Nicolas, Kim Pilegaard, Giorgio Matteucci, Claudy Jolivet, Andrew T. Black, Olivier Picard, and Denis Loustau
Geosci. Model Dev., 13, 5973–6009, https://doi.org/10.5194/gmd-13-5973-2020, https://doi.org/10.5194/gmd-13-5973-2020, 2020
Short summary
Short summary
The model GO+ describes the functioning of managed forests based upon biophysical and biogeochemical processes. It accounts for the impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes versatile descriptions of management operations. Its sensitivity and uncertainty are detailed and predictions are compared with observations about mass and energy exchanges, hydrological data, and tree growth variables from different sites.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Naixin Fan, Sujan Koirala, Markus Reichstein, Martin Thurner, Valerio Avitabile, Maurizio Santoro, Bernhard Ahrens, Ulrich Weber, and Nuno Carvalhais
Earth Syst. Sci. Data, 12, 2517–2536, https://doi.org/10.5194/essd-12-2517-2020, https://doi.org/10.5194/essd-12-2517-2020, 2020
Short summary
Short summary
The turnover time of terrestrial carbon (τ) controls the global carbon cycle–climate feedback. In this study, we provide a new, updated ensemble of diagnostic terrestrial carbon turnover times and associated uncertainties on a global scale. Despite the large variation in both magnitude and spatial patterns of τ, we identified robust features in the spatial patterns of τ which could contribute to uncertainty reductions in future projections of the carbon cycle–climate feedback.
Cited articles
Ameriflux: CR-Fsc site (Filadelfia sugar cane cropland), available at: https://ameriflux.lbl.gov/, last access: 22 September 2021.
Anderson, M. C., Zolin, C. A., Hain, C. R., Semmens, K., Tugrul Yilmaz, M.,
and Gao, F.: Comparison of satellite-derived LAI and precipitation anomalies
over Brazil with a thermal infrared-based Evaporative Stress Index for
2003–2013, J. Hydrol., 526, 287–302,
https://doi.org/10.1016/j.jhydrol.2015.01.005, 2015.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., and Evans, R.: FLUXNET: A new tool to
study the temporal and spatial variability of ecosystem-scale carbon
dioxide, water vapor, and energy flux densities, B. Am.
Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Baldocchi, D., Knox, S., Dronova, I., Verfaillie, J., Oikawa, P.,
Sturtevant, C., Matthes, J. H., and Detto, M.: The impact of expanding
flooded land area on the annual evaporation of rice,
Agr. Forest Meteorol., 223, 181–193, https://doi.org/10.1016/j.agrformet.2016.04.001, 2016.
Baldocchi, D., Ma, S., and Verfaillie, J.: On the inter- and intra-annual
variability of ecosystem evapotranspiration and water use efficiency of an
oak savanna and annual grassland subjected to booms and busts in rainfall,
Glob. Change Biol., 27, 359–375, https://doi.org/10.1111/gcb.15414, 2021.
Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D., and Harman,
I. N.: Moving beyond the incorrect but useful paradigm: reevaluating
big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes
– a review, Agr. Forest Meteorol., 306, 108435,
https://doi.org/10.1016/j.agrformet.2021.108435, 2021.
Bouchet, R. J.: Evapotranspiration réelle et potentielle, signification
climatique, IAHS Publ, 62, 134–142, 1963.
Byrne, M. P. and O'Gorman, P. A.: Understanding Decreases in Land Relative
Humidity with Global Warming: Conceptual Model and GCM Simulations, J. Climate, 29, 9045–9061, https://doi.org/10.1175/jcli-d-16-0351.1, 2016.
Byrne, M. P. and O'Gorman, P. A.: Trends in continental temperature and
humidity directly linked to ocean warming,
P. Natl. Acad. Sci. USA, 115, 4863–4868, https://doi.org/10.1073/pnas.1722312115, 2018.
Chen, S., McColl, K. A., Berg, A., and Huang, Y.: Surface flux equilibrium
estimates of evapotranspiration at large spatial scales, J.
Hydrometeorol., 22, 765–779, https://doi.org/10.1175/jhm-d-20-0204.1, 2021.
Cuxart, J. and Boone, A. A.: Evapotranspiration over Land from a
Bound.-Lay. Meteorol. Perspective, Bound.-Lay. Meteorol., 177, 427–459,
https://doi.org/10.1007/s10546-020-00550-9, 2020.
de Bruin, H. and Trigo, I.: A new method to estimate reference crop
evapotranspiration from geostationary satellite imagery: Practical
considerations, Water, 11, 382, https://doi.org/10.3390/w11020382, 2019.
de Bruin, H. A. R., Trigo, I. F., Bosveld, F. C., and Meirink, J. F.: A
Thermodynamically Based Model for Actual Evapotranspiration of an Extensive
Grass Field Close to FAO Reference, Suitable for Remote Sensing Application,
J. Hydrometeorol., 17, 1373–1382, https://doi.org/10.1175/jhm-d-15-0006.1, 2016.
Eichinger, W. E., Parlange, M. B., and Stricker, H.: On the concept of
equilibrium evaporation and the value of the Priestley-Taylor coefficient,
Water Resour. Res., 32, 161–164, https://doi.org/10.1029/95wr02920, 1996.
Emanuel, K.: The Relevance of Theory for Contemporary Research in
Atmospheres, Oceans, and Climate, AGU Advances, 1, e2019AV000129,
https://doi.org/10.1029/2019AV000129, 2020.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the
land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data,
validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919,
https://doi.org/10.1016/j.rse.2007.06.025, 2008.
Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B.,
Cawse-Nicholson, K., Wang, A., Anderson, R. G., Aragon, B., Arain, M. A.,
Baldocchi, D. D., Baker, J. M., Barral, H., Bernacchi, C. J., Bernhofer, C.,
Biraud, S. C., Bohrer, G., Brunsell, N., Cappelaere, B., Castro-Contreras,
S., Chun, J., Conrad, B. J., Cremonese, E., Demarty, J., Desai, A. R., De
Ligne, A., Foltýnová, L., Goulden, M. L., Griffis, T. J.,
Grünwald, T., Johnson, M. S., Kang, M., Kelbe, D., Kowalska, N., Lim,
J.-H., Maïnassara, I., McCabe, M. F., Missik, J. E. C., Mohanty, B. P.,
Moore, C. E., Morillas, L., Morrison, R., Munger, J. W., Posse, G.,
Richardson, A. D., Russell, E. S., Ryu, Y., Sanchez-Azofeifa, A., Schmidt,
M., Schwartz, E., Sharp, I., Šigut, L., Tang, Y., Hulley, G., Anderson,
M., Hain, C., French, A., Wood, E., and Hook, S.: ECOSTRESS: NASA's Next
Generation Mission to Measure Evapotranspiration From the International
Space Station, Water Resour. Res., 56, e2019WR026058,
https://doi.org/10.1029/2019wr026058, 2020.
FLUXCOM: FLUXCOM energy flux data, available at:
http://www.fluxcom.org/EF-Download/, last access: 16 April 2020.
FLUXET community: FLUXNET2015 SUBSET data, available at: https://fluxnet.org/data/download-data/, last access: 19 November 2019.
García, M., Sandholt, I., Ceccato, P., Ridler, M., Mougin, E., Kergoat,
L., Morillas, L., Timouk, F., Fensholt, R., and Domingo, F.: Actual
evapotranspiration in drylands derived from in situ and satellite data:
Assessing biophysical constraints, Remote Sens. Environ., 131,
103–118, https://doi.org/10.1016/j.rse.2012.12.016, 2013.
Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G., and Duchemin, B.:
Analysis of evaporative fraction diurnal behaviour, Agr. Forest Meteorol., 143, 13–29, https://doi.org/10.1016/j.agrformet.2006.11.002, 2007.
Gentine, P., Entekhabi, D., and Polcher, J.: The Diurnal Behavior of
Evaporative Fraction in the Soil–Vegetation–Atmospheric Boundary Layer
Continuum, J. Hydrometeorol., 12, 1530–1546,
https://doi.org/10.1175/2011jhm1261.1, 2011.
Hatala, J. A., Detto, M., and Baldocchi, D. D.: Gross ecosystem
photosynthesis causes a diurnal pattern in methane emission from rice,
Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2012GL051303, 2012.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Hund, S. V., Allen, D. M., Morillas, L., and Johnson, M. S.: Groundwater
recharge indicator as tool for decision makers to increase
socio-hydrological resilience to seasonal drought, J. Hydrol.,
563, 1119–1134, https://doi.org/10.1016/j.jhydrol.2018.05.069, 2018.
Iribarne, J. V. and Godson, W. L.: Atmospheric Thermodynamics, in: Geophysics and Astrophysics Monographs, 2nd Edn., edited by: McCormac, B. M., Kluwer Academic Publishers, Boston, 1981.
Jarvis, P. G. and McNaughton, K. G.: Stomatal control of transpiration: Scaling up from leaf to region, in: Advances in Ecological Research, edited by: MacFadyen, A. and Ford, E. D., Academic Press, Cambridge, USA, 1–49, 1986.
Johnson, M. S., Couto, E. G., Pinto Jr., O. B., Milesi, J., Santos Amorim, R.
S., Messias, I. A. M., and Biudes, M. S.: Soil CO2 Dynamics in a Tree Island
Soil of the Pantanal: The Role of Soil Water Potential, PLOS ONE, 8, e64874,
https://doi.org/10.1371/journal.pone.0064874, 2013.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G.,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Scientific Data, 6, 74,
https://doi.org/10.1038/s41597-019-0076-8, 2019.
Kim, D. and Rhee, J.: A drought index based on actual evapotranspiration
from the Bouchet hypothesis, Geophys. Res. Lett., 43,
10277–10285, https://doi.org/10.1002/2016GL070302, 2016.
Kleidon, A. and Schymanski, S.: Thermodynamics and optimality of the water
budget on land: A review, Geophys. Res. Lett., 35, L20404,
https://doi.org/10.1029/2008gl035393, 2008.
Kleidon, A., Schymanski, S., and Stieglitz, M.: Thermodynamics,
Irreversibility, and Optimality in Land Surface Hydrology, in:
Bioclimatology and Natural Hazards, edited by: Střelcová, K.,
Mátyás, C., Kleidon, A., Lapin, M., Matejka, F., Blaženec, M.,
Škvarenina, J., and Holécy, J., Springer Netherlands, Dordrecht, the Netherlands, 107–118, 2009.
Knauer, J., El-Madany, T. S., Zaehle, S., and Migliavacca, M.: Bigleaf – An
R package for the calculation of physical and physiological ecosystem
properties from eddy covariance data, PLOS ONE, 13, e0201114,
https://doi.org/10.1371/journal.pone.0201114, 2018a.
Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A.,
Migliavacca, M., Kauwe, M. G. D., Werner, C., Keitel, C., Kolari, P.,
Limousin, J. M., and Linderson, M. L.: Towards physiologically meaningful
water-use efficiency estimates from eddy covariance data, Glob. Change Biol., 24, 694–710, https://doi.org/10.1111/gcb.13893, 2018b.
Lee, T. J. and Pielke, R. A.: Estimating the soil surface specific
humidity, J. Appl. Meteorol. Clim., 31, 480–484, 1992.
Lee, X., Yu, Q., Sun, X., Liu, J., Min, Q., Liu, Y., and Zhang, X.:
Micrometeorological fluxes under the influence of regional and local
advection: a revisit, Agr. Forest Meteorol., 122, 111–124,
https://doi.org/10.1016/j.agrformet.2003.02.001, 2004.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer,
G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law,
B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K.
T., Richardson, A. D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao, L.:
Observed increase in local cooling effect of deforestation at higher
latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588, 2011.
Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., and Tu, K.: A simple
surface conductance model to estimate regional evaporation using MODIS leaf
area index and the Penman-Monteith equation, Water Resour. Res., 44, W10419,
https://doi.org/10.1029/2007wr006562, 2008.
Leuning, R., van Gorsel, E., Massman, W. J., and Isaac, P. R.: Reflections
on the surface energy imbalance problem, Agr. Forest Meteorol., 156, 65–74, https://doi.org/10.1016/j.agrformet.2011.12.002, 2012.
Li, D. and Wang, L.: Sensitivity of surface temperature to land use and
land cover change-Induced biophysical changes: the scale Issue, Geophys. Res. Lett., 46, 9678–9689, https://doi.org/10.1029/2019gl084861, 2019.
Lovell-Smith, J. W., Feistel, R., Harvey, A. H., Hellmuth, O., Bell, S. A.,
Heinonen, M., and Cooper, J. R.: Metrological challenges for measurements of
key climatological observables. Part 4: atmospheric relative humidity,
Metrologia, 53, R40–R59, https://doi.org/10.1088/0026-1394/53/1/r40, 2015.
Ma, H.-Y., Klein, S. A., Xie, S., Zhang, C., Tang, S., Tang, Q., Morcrette,
C. J., Van Weverberg, K., Petch, J., Ahlgrimm, M., Berg, L. K., Cheruy, F.,
Cole, J., Forbes, R., Gustafson Jr., W. I., Huang, M., Liu, Y., Merryfield,
W., Qian, Y., Roehrig, R., and Wang, Y.-C.: CAUSES: On the Role of Surface
Energy Budget Errors to the Warm Surface Air Temperature Error Over the
Central United States, J. Geophys. Res.-Atmos., 123,
2888–2909, https://doi.org/10.1002/2017jd027194, 2018.
Mallick, K., Jarvis, A. J., Boegh, E., Fisher, J. B., Drewry, D. T., Tu, K.
P., Hook, S. J., Hulley, G., Ardö, J., Beringer, J., Arain, A., and
Niyogi, D.: A Surface Temperature Initiated Closure (STIC) for surface
energy balance fluxes, Remote Sens. Environ., 141, 243–261,
https://doi.org/10.1016/j.rse.2013.10.022, 2014.
Marsh, A.: Psychrometric Chart, available at: https://drajmarsh.bitbucket.io/psychro-chart2d.html (last access: 22 September 2020), 2018.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Massmann, A., Gentine, P., and Lin, C.: When Does Vapor Pressure Deficit
Drive or Reduce Evapotranspiration?, J. Adv. Model. Earth
Syst., 11, 3305–3320, https://doi.org/10.1029/2019ms001790, 2019.
Mauder, M., Foken, T., and Cuxart, J.: Surface-Energy-Balance Closure over
Land: A Review, Bound.-Lay. Meteorol., 177, 395–426, https://doi.org/10.1007/s10546-020-00529-6,
2020.
McColl, K. A.: Practical and theoretical benefits of an alternative to the
Penman-Monteith evapotranspiration equation, Water Resour. Res., 56,
e2020WR027106, https://doi.org/10.1029/2020wr027106, 2020.
McColl, K. A. and Rigden, A. J.: Emergent Simplicity of Continental
Evapotranspiration, Geophys. Res. Lett., 47, e2020GL087101,
https://doi.org/10.1029/2020gl087101, 2020.
McColl, K. A., Salvucci, G. D., and Gentine, P.: Surface flux equilibrium
theory explains an empirical estimate of water-limited daily
evapotranspiration, J. Adv. Model. Earth Syst., 11,
2036–2049, https://doi.org/10.1029/2019ms001685, 2019.
McNaughton, K. and Spriggs, T.: An evaluation of the Priestley and Taylor
equation and the complementary relationship using results from a mixed-layer
model of the convective boundary layer, IAHS publication, 177, 89–104, 1989.
McNaughton, K. G. and Jarvis, P. G.: Predicting effects of vegetation
changes on transpiration and evaporation, Water deficits and plant growth,
7, 1–47, 1983.
Meyers, T. P. and Hollinger, S. E.: An assessment of storage terms in the
surface energy balance of maize and soybean, Agr. Forest Meteorol., 125, 105–115, https://doi.org/10.1016/j.agrformet.2004.03.001, 2004.
Monteith, J. L.: Evaporation and environment. The state and movement of water in living organisms, Symposium of the society of experimental biology, 19, 205–234, 1965.
Monteith, J. L.: Evaporation and surface temperature, Q. J. Roy. Meteor. Soc., 107, 1–27, https://doi.org/10.1002/qj.49710745102, 1981.
Monteith, J. L. and Unsworth, M.: Principles of environmental physics: plants, animals, and the atmosphere, Academic Press, Oxford, 2013.
Moon, M., Li, D., Liao, W., Rigden, A. J., and Friedl, M. A.: Modification
of surface energy balance during springtime: The relative importance of
biophysical and meteorological changes, Agr. Forest Meteorol.,
284, 107905, https://doi.org/10.1016/j.agrformet.2020.107905, 2020.
Morillas, L., Hund, S. V., and Johnson, M. S.: Water Use Dynamics in Double
Cropping of Rainfed Upland Rice and Irrigated Melons Produced Under
Drought-Prone Tropical Conditions, Water Resour. Res., 55, 4110–4127,
https://doi.org/10.1029/2018wr023757, 2019.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global
terrestrial evapotranspiration algorithm, Remote Sens. Environ.,
115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Novick, K. A. and Katul, G. G.: The Duality of Reforestation Impacts on
Surface and Air Temperature, J. Geophys. Res.-Biogeo., 125, e2019JG005543, https://doi.org/10.1029/2019jg005543, 2020.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G.,
Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N.,
Scott, R. L., Wang, L., and Phillips, R. P.: The increasing importance of
atmospheric demand for ecosystem water and carbon fluxes, Nat. Clim. Change,
6, 1023, https://doi.org/10.1038/nclimate3114, 2016.
Oki, T. and Kanae, S.: Global hydrological cycles and world water
resources, Science, 313, 1068–1072, 2006.
Padrón, R. S., Gudmundsson, L., Michel, D., and Seneviratne, S. I.: Terrestrial water loss at night: global relevance from observations and climate models, Hydrol. Earth Syst. Sci., 24, 793–807, https://doi.org/10.5194/hess-24-793-2020, 2020.
Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., and Running, S. W.: Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, 2020.
Paw U, K. T. and Gao, W.: Applications of solutions to non-linear energy
budget equations, Agr. Forest Meteorol., 43, 121–145,
https://doi.org/10.1016/0168-1923(88)90087-1, 1988.
Peng, L., Zeng, Z., Wei, Z., Chen, A., Wood, E. F., and Sheffield, J.:
Determinants of the ratio of actual to potential evapotranspiration, Glob. Change Biol., 25, 1326–1343, https://doi.org/10.1111/gcb.14577, 2019.
Penman, H. L.: Natural evaporation from open water, bare soil and grass,
P. Roy. Soc. Lond. A Mat., 193, 120–145, 1948.
Polhamus, A., Fisher, J. B., and Tu, K. P.: What controls the error
structure in evapotranspiration models?, Agr. Forest Meteorol., 169, 12–24, https://doi.org/10.1016/j.agrformet.2012.10.002, 2013.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat
flux and evaporation using large-scale parameters, Mon. Weather Rev.,
100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2, 1972.
Ramírez, J. A., Hobbins, M. T., and Brown, T. C.: Observational
evidence of the complementary relationship in regional evaporation lends
strong support for Bouchet's hypothesis, Geophys. Res. Lett., 32, L15401,
https://doi.org/10.1029/2005gl023549, 2005.
Raupach, M. R.: Combination theory and equilibrium evaporation, Q. J. Roy. Meteor. Soc., 127, 1149–1181,
https://doi.org/10.1002/qj.49712757402, 2001.
Rigden, A. J. and Salvucci, G. D.: Evapotranspiration based on equilibrated
relative humidity (ETRHEQ): Evaluation over the continental U.S, Water Resour. Res., 51, 2951–2973, https://doi.org/10.1002/2014wr016072, 2015.
Rigden, A. J. and Salvucci, G. D.: Stomatal response to humidity and CO2
implicated in recent decline in US evaporation, Glob. Change Biol., 23,
1140–1151, https://doi.org/10.1111/gcb.13439, 2017.
Roesch, A., and Schmidbauer, H.: WaveletComp: Computational Wavelet Analysis, R package version 1, 2014.
Salvucci, G. D. and Gentine, P.: Emergent relation between surface vapor
conductance and relative humidity profiles yields evaporation rates from
weather data, P. Natl. Acad. Sci. USA, 110,
6287–6291, https://doi.org/10.1073/pnas.1215844110, 2013.
Schmidt, W.: Strahlung und Verdunstung an freien Wasserflächen; ein
Beitrag zum Wärmehaushalt des Weltmeers und zum Wasserhaushalt der Erde,
Ann. Calender Hydrographie und Maritimen Meteorologie, 43, 111–124, 1915.
Sherwood, S. and Fu, Q.: A Drier Future?, Science, 343, 737–739,
https://doi.org/10.1126/science.1247620, 2014.
Tan, C. S., Black, T. A., and Nnyamah, J. U.: A Simple Diffusion Model of
Transpiration Applied to a Thinned Douglas-Fir Stand, Ecology, 59,
1221–1229, https://doi.org/10.2307/1938235, 1978.
Thom, A. S.: Momentum, mass and heat exchange of vegetation, Q. J. Roy. Meteor. Soc., 98, 124–134,
https://doi.org/10.1002/qj.49709841510, 1972.
Wang, W., Lee, X., Xiao, W., Liu, S., Schultz, N., Wang, Y., Zhang, M., and
Zhao, L.: Global lake evaporation accelerated by changes in surface energy
allocation in a warmer climate, Nat. Geosci., 11, 410–414,
https://doi.org/10.1038/s41561-018-0114-8, 2018.
Wehr, R. and Saleska, S. R.: Calculating canopy stomatal conductance from eddy covariance measurements, in light of the energy budget closure problem, Biogeosciences, 18, 13–24, https://doi.org/10.5194/bg-18-13-2021, 2021.
Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, 2014.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier,
P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom,
A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel,
W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at
FLUXNET sites, Agr. Forest Meteorol., 113, 223–243,
https://doi.org/10.1016/S0168-1923(02)00109-0, 2002.
Wohlfahrt, G., Haslwanter, A., Hörtnagl, L., Jasoni, R. L.,
Fenstermaker, L. F., Arnone, J. A., and Hammerle, A.: On the consequences of
the energy imbalance for calculating surface conductance to water vapour,
Agr. Forest Meteorol., 149, 1556–1559,
https://doi.org/10.1016/j.agrformet.2009.03.015, 2009.
Wu, A., Black, T. A., Verseghy, D. L., Novak, M. D., and Bailey, W. G.:
Testing the α and β methods of estimating evaporation from
bare and vegetated surfaces in class, Atmos.-Ocean, 38, 15–35,
https://doi.org/10.1080/07055900.2000.9649638, 2000.
Short summary
Here, we present a novel physically based evaporation model to demonstrate that vertical relative humidity (RH) gradients from the land surface to the atmosphere tend to evolve towards zero due to land–atmosphere equilibration processes. Collapsing RH gradients on daily to yearly timescales indicate an emergent land–atmosphere equilibrium, making it possible to determine evapotranspiration using only meteorological information, independent of land surface conditions and vegetation controls.
Here, we present a novel physically based evaporation model to demonstrate that vertical...