Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-511-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-511-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit
Center for Wireless Networks and Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri, India
John Thomas Reager
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Ali Behrangi
Department of Hydrology and Atmospheric Sciences, the University of
Arizona, Tucson, AZ 85721, USA
Related authors
No articles found.
Aniket Gupta, Ali Behrangi, Mohammad Farmani, Patrick Broxton, and Guo-Yue Niu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3884, https://doi.org/10.5194/egusphere-2025-3884, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Most hydrological models tend to underestimate snow over the southwest US mountains. This includes inaccurate precipitation input and/or inadequate representations of snow-vegetation interactions that strongly affect snow accumulation/melt due to the important but counteracting effects of interception and shading of the vegetation canopy. Through model experiments, we show the importance of downscaling and vegetation shading effects to improve the accuracy of snow modeling over the southwest US.
Mohammad A. Farmani, Ali Behrangi, Aniket Gupta, Ahmad Tavakoly, Matthew Geheran, and Guo-Yue Niu
Hydrol. Earth Syst. Sci., 29, 547–566, https://doi.org/10.5194/hess-29-547-2025, https://doi.org/10.5194/hess-29-547-2025, 2025
Short summary
Short summary
Soil moisture memory (SMM) shows how long soil stays moist after rain, impacting climate and ecosystems. Current models often overestimate SMM, causing inaccuracies in evaporation predictions. We enhanced a land model, Noah-MP, to include better water flow and ponding processes, and we tested it against satellite and field data. This improved model reduced overestimations and enhanced short-term predictions, helping create more accurate climate and weather forecasts.
Miguel Ricardo A. Hilario, Avelino F. Arellano, Ali Behrangi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Michael A. Shook, Luke D. Ziemba, and Armin Sorooshian
Atmos. Meas. Tech., 17, 37–55, https://doi.org/10.5194/amt-17-37-2024, https://doi.org/10.5194/amt-17-37-2024, 2024
Short summary
Short summary
Wet scavenging strongly influences aerosol lifetime and interactions but is a large uncertainty in global models. We present a method to identify meteorological variables relevant for estimating wet scavenging. During long-range transport over the tropical western Pacific, relative humidity and the frequency of humid conditions are better predictors of scavenging than precipitation. This method can be applied to other regions, and our findings can inform scavenging parameterizations in models.
Elias C. Massoud, A. Anthony Bloom, Marcos Longo, John T. Reager, Paul A. Levine, and John R. Worden
Hydrol. Earth Syst. Sci., 26, 1407–1423, https://doi.org/10.5194/hess-26-1407-2022, https://doi.org/10.5194/hess-26-1407-2022, 2022
Short summary
Short summary
The water balance on river basin scales depends on a number of soil physical processes. Gaining information on these quantities using observations is a key step toward improving the skill of land surface hydrology models. In this study, we use data from the Gravity Recovery and Climate Experiment (NASA-GRACE) to inform and constrain these hydrologic processes. We show that our model is able to simulate the land hydrologic cycle for a watershed in the Amazon from January 2003 to December 2012.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology
Project (GPCP) Monthly Precipitation Analysis (1979–Present), J.
Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Awange, J. L., Khandu, Schumacher, M., Forootan, E., and Heck, B.: Exploring
hydro-meteorological drought patterns over the Greater Horn of Africa (1979–2014) using remote sensing and reanalysis products, Adv. Water
Resour., 94, 45–59, https://doi.org/10.1016/j.advwatres.2016.04.005, 2016.
Behrangi, A., Nguyen, H., and Granger, S.: Probabilistic Seasonal Prediction
of Meteorological Drought Using the Bootstrap and Multivariate Information, J. Appl. Meteorol. Clim., 54, 1510–1522, https://doi.org/10.1175/JAMC-D-14-0162.1,
2015.
Behrangi, A., Gardner, A., Reager, J. T., Fisher, J. B., Yang, D., Huffman, G. J., and Adler, R. F.: Using GRACE to Estitmate Snowfall Accumulation and
Assess Gauge Undercatch Corrections in High Latitudes, J. Climate, 31, 8689–8704, https://doi.org/10.1175/JCLI-D-18-0163.1, 2018.
Chen, J. L., Wilson, C. R., Tapley, B. D., Yang, Z. L., and Niu, G. Y.: 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models, J. Geophys. Res., 114, B05404,
https://doi.org/10.1029/2008JB006056, 2009.
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and
21st century drying, Clim. Dynam., 43, 2607–2627, https://doi.org/10.1007/s00382-014-2075-y, 2014.
Cook, B. I., Mankin, J. S., and Anchukaitis, K. J.: Climate Change and Drought: From Past to Future, Curr. Clim. Change Rep., 4, 164–179,
https://doi.org/10.1007/s40641-018-0093-2, 2018.
Dettinger, M. D.: Atmospheric Rivers as Drought Busters on the U.S. West
Coast, J. Hydrometeorol., 14, 1721–1732, https://doi.org/10.1175/JHM-D-13-02.1, 2013.
Eicker, A., Forootan, E., Springer, A., Longuevergne, L., and Kusche, J.:
Does GRACE see the terrestrial water cycle “intensifying”?, J. Geophys. Res.-Atmos., 121, 733–745, https://doi.org/10.1002/2015JD023808, 2016.
Eltahir, E. A. B. and Yeh, P. J.-F.: On the asymmetric response of aquifer
water level to floods and droughts in Illinois, Water Resour. Res., 35, 1199–1217, https://doi.org/10.1029/1998WR900071, 1999.
Famiglietti, J. S., Rudnicki, J. W., and Rodell, M.: Variability in surface
moisture content along a hillslope transect: Rattlesnake Hill, Texas, J. Hydrol., 210, 259–281, https://doi.org/10.1016/S0022-1694(98)00187-5, 1998.
Fasullo, J. T., Lawrence, D. M., and Swenson, S. C.: Are GRACE-era Terrestrial Water Trends Driven by Anthropogenic Climate Change?, Adv. Meteorol., 2016, e4830603, https://doi.org/10.1155/2016/4830603, 2016.
Forootan, E., Khaki, M., Schumacher, M., Wulfmeyer, V., Mehrnegar, N., van Dijk, A. I. J. M., Brocca, L., Farzaneh, S., Akinluyi, F., Ramillien, G.,
Shum, C. K., Awange, J., and Mostafaie, A.: Understanding the global hydrological droughts of 2003–2016 and their relationships with
teleconnections, Sci. Total Environ., 650, 2587–2604, https://doi.org/10.1016/j.scitotenv.2018.09.231, 2019.
Frappart, F., Papa, F., Santos da Silva, J., Ramillien, G., Prigent, C.,
Seyler, F., and Calmant, S.: Surface freshwater storage and dynamics in the
Amazon basin during the 2005 exceptional drought, Environ. Res. Lett., 7,
044010, https://doi.org/10.1088/1748-9326/7/4/044010, 2012.
Gerdener, H., Engels, O., and Kusche, J.: A framework for deriving drought
indicators from the Gravity Recovery and Climate Experiment (GRACE), Hydrol. Earth Syst. Sci., 24, 227–248, https://doi.org/10.5194/hess-24-227-2020, 2020.
Guevara-Murua, A., Williams, C. A., Hendy, E. J., and Imbach, P.: 300 years of hydrological records and societal responses to droughts and floods on the
Pacific coast of Central America, Clim. Past, 14, 175–191,
https://doi.org/10.5194/cp-14-175-2018, 2018.
Hao, Z., Singh, V. P., and Xia, Y.: Seasonal Drought Prediction: Advances,
Challenges, and Future Prospects, Rev. Geophys., 56, 108–141,
https://doi.org/10.1002/2016RG000549, 2018.
Houborg, R., Rodell, M., Li, B., Reichle, R., and Zaitchik, B. F.: Drought
indicators based on model-assimilated Gravity Recovery and Climate
Experiment (GRACE) terrestrial water storage observations: GRACE-Based Drought Indicators, Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291, 2012.
Keshavarz, M. R., Vazifedoust, M., and Alizadeh, A.: Drought monitoring using
a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data, Agr. Water Manage., 132, 37–45, https://doi.org/10.1016/j.agwat.2013.10.004, 2014.
Keys, R.: Cubic convolution interpolation for digital image processing, IEEE
Trans. Acoust. Speech Signal Process., 29, 1153–1160,
https://doi.org/10.1109/TASSP.1981.1163711, 1981.
Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B.
F., de Goncalves, L. G. , Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S.,
Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I.
B., Daira, D., Bila, M., de Lannoy, G., Mocko, D., Steele-Dunne, S. C., Save, H., and Bettadpur, S.: Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges, Water Resour. Res., 55, 7564–7586, https://doi.org/10.1029/2018WR024618, 2019.
Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y., Fernando, D. N., and
Save, H.: GRACE satellite monitoring of large depletion in water storage in
response to the 2011 drought in Texas: GRACE-Based Drought Monitoring, Geophys. Res. Lett., 40, 3395–3401, https://doi.org/10.1002/grl.50655, 2013.
Lyon, B. and DeWitt, D. G.: A recent and abrupt decline in the East African
long rains, Geophys. Res. Lett., 39, L02702, https://doi.org/10.1029/2011GL050337, 2012.
Maity, R., Suman, M., and Verma, N. K.: Drought prediction using a wavelet
based approach to model the temporal consequences of different types of
droughts, J. Hydrol., 539, 417–428, https://doi.org/10.1016/j.jhydrol.2016.05.042, 2016.
Martínez-Fernández, J., González-Zamora, A., Sánchez, N., and Gumuzzio, A.: A soil water based index as a suitable agricultural drought indicator, J. Hydrol., 522, 265–273, https://doi.org/10.1016/j.jhydrol.2014.12.051, 2015.
Maxwell, J. T., Ortegren, J. T., Knapp, P. A., and Soulé, P. T.: Tropical
Cyclones and Drought Amelioration in the Gulf and Southeastern Coastal United States, J. Climate, 26, 8440–8452, https://doi.org/10.1175/JCLI-D-12-00824.1, 2013.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Eighth Conference on Applied Climatology, 17–22 January 1993, Anaheim, California, 179–184, 1993.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Mishra, S. K., Sahu, R. K., Eldho, T. I., and Jain, M. K.: A generalized relation between initial abstraction and potential maximum retention in
SCS-CN-based model, Int. J. River Basin Manage., 4, 245–253, https://doi.org/10.1080/15715124.2006.9635294, 2006.
Mo, K. C.: Drought onset and recovery over the United States, J. Geophys. Res.-Atmos., 116, D20106, https://doi.org/10.1029/2011JD016168, 2011.
NASA: Measuring Earth's Surface Mass and Water Changes, available at: https://grace.jpl.nasa.gov/, last access: 3 March 2019.
NOAA: Physical Sciences Laboratory, available at: https://psl.noaa.gov/, last access: 20 May 2019.
Otkin, J. A., Anderson, M. C., Hain, C., Mladenova, I. E., Basara, J. B., and
Svoboda, M.: Examining Rapid Onset Drought Development Using the Thermal
Infrared-Based Evaporative Stress Index, J. Hydrometeorol., 14, 1057–1074, https://doi.org/10.1175/JHM-D-12-0144.1, 2013.
Otkin, J. A., Anderson, M. C., Hain, C., and Svoboda, M.: Using Temporal
Changes in Drought Indices to Generate Probabilistic Drought Intensification
Forecasts, J. Hydrometeorol., 16, 88–105, https://doi.org/10.1175/JHM-D-14-0064.1, 2015.
Özger, M., Mishra, A. K., and Singh, V. P.: Low frequency drought variability associated with climate indices, J. Hydrol., 364, 152–162, https://doi.org/10.1016/j.jhydrol.2008.10.018, 2009.
Palmer, W. C.: Meteorological Drought, Research Paper No. 45, US Department of Commerce Weather Bureau, Washington, D.C., available at:
https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf (last access: 11 January 2018), 1965.
Pan, M., Yuan, X., and Wood, E. F.: A probabilistic framework for assessing
drought recovery, Geophys. Res. Lett., 40, 3637–3642, https://doi.org/10.1002/grl.50728, 2013.
Reager, J. T. and Famiglietti, J. S.: Characteristic mega-basin water storage behavior using GRACE, Water Resour. Res., 49, 3314–3329,
https://doi.org/10.1002/wrcr.20264, 2013.
Schwalm, C. R., Anderegg, W. R. L., Michalak, A. M., Fisher, J. B., Biondi, F., Koch, G., Litvak, M., Ogle, K., Shaw, J. D., Wolf, A., Huntzinger, D. N., Schaefer, K., Cook, R., Wei, Y., Fang, Y., Hayes, D., Huang, M., Jain, A., and Tian, H.: Global patterns of drought recovery, Nature, 548, 202–205, https://doi.org/10.1038/nature23021, 2017.
Seager, R., Nakamura, J., and Ting, M.: Mechanisms of Seasonal Soil Moisture
Drought Onset and Termination in the Southern Great Plains, J. Hydrometeorol., 20, 751–771, https://doi.org/10.1175/JHM-D-18-0191.1, 2019.
Singh, A., Behrangi, A., Fisher, J. B., and Reager, J. T.: On the Desiccation
of the South Aral Sea Observed from Spaceborne Missions, Remote Sens., 10, 793, https://doi.org/10.3390/rs10050793, 2018.
Singh, P. K., Mishra, S. K., Berndtsson, R., Jain, M. K., and Pandey, R. P.:
Development of a Modified SMA Based MSCS-CN Model for Runoff Estimation, Water Resour. Manage., 29, 4111–4127, https://doi.org/10.1007/s11269-015-1048-1, 2015.
Springer, A., Eicker, A., Bettge, A., Kusche, J., and Hense, A.: Evaluation
of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE, Water,
9, 289, https://doi.org/10.3390/w9040289, 2017.
Sridhar, V., Hubbard, K. G., You, J., and Hunt, E. D.: Development of the
Soil Moisture Index to Quantify Agricultural Drought and Its “User
Friendliness” in Severity-Area-Duration Assessment, J. Hydrometeorol., 9,
660–676, https://doi.org/10.1175/2007JHM892.1, 2008.
Sun, A. Y., Scanlon, B. R., AghaKouchak, A., and Zhang, Z.: Using GRACE Satellite Gravimetry for Assessing Large-Scale Hydrologic Extremes, Remote
Sens., 9, 1287, https://doi.org/10.3390/rs9121287, 2017.
Swenson, S. and Wahr, J.: Estimating Large-Scale Precipitation Minus
Evapotranspiration from GRACE Satellite Gravity Measurements, J. Hydrometeorol., 7, 252–270, https://doi.org/10.1175/JHM478.1, 2006.
Thomas, A. C., Reager, J. T., Famiglietti, J. S., and Rodell, M.: A GRACE-based water storage deficit approach for hydrological drought
characterization, Geophys. Res. Lett., 41, 1537–1545, https://doi.org/10.1002/2014GL059323, 2014.
Vereecken, H., Kamai, T., Harter, T., Kasteel, R., Hopmans, J., and Vanderborght, J.: Explaining soil moisture variability as a function of mean
soil moisture: A stochastic unsaturated flow perspective, Geophys. Res. Lett., 34, L22402, https://doi.org/10.1029/2007GL031813, 2007.
Verma, S., Mishra, S. K., Singh, A., Singh, P. K., and Verma, R. K.: An
enhanced SMA based SCS-CN inspired model for watershed runoff prediction,
Environ. Earth Sci., 76, 736, https://doi.org/10.1007/s12665-017-7062-2, 2017.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2009.
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Solid, 120, 2648–2671, https://doi.org/10.1002/2014JB011547, 2015.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W., and Watkins, M. M.:
JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height Release 06 Coastal Resolution Improvement (CRI) Filtered Version 1.0, Dataset, PO.DAAC, CA, USA, https://doi.org/10.5067/TEMSC-3MJC6, 2018.
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon: The
Role of Definitions, Water Int., 10, 111–120, https://doi.org/10.1080/02508068508686328, 1985.
Yirdaw, S. Z., Snelgrove, K. R., and Agboma, C. O.: GRACE satellite observations of terrestrial moisture changes for drought characterization in
the Canadian Prairie, J. Hydrol., 356, 84–92, https://doi.org/10.1016/j.jhydrol.2008.04.004, 2008.
Yuan, X., Wood, E. F., Chaney, N. W., Sheffield, J., Kam, J., Liang, M., and
Guan, K.: Probabilistic Seasonal Forecasting of African Drought by Dynamical
Models, J. Hydrometeorol., 14, 1706–1720, https://doi.org/10.1175/JHM-D-13-054.1, 2013.
Zhang, D., Zhang, Q., Werner, A. D., and Liu, X.: GRACE-Based Hydrological
Drought Evaluation of the Yangtze River Basin, China, J. Hydrometeorol., 17, 811–828, https://doi.org/10.1175/JHM-D-15-0084.1, 2015.
Zhao, C., Huang, Y., Li, Z., and Chen, M.: Drought Monitoring of Southwestern
China Using Insufficient GRACE Data for the Long-Term Mean Reference Frame
under Global Change, J. Climate, 31, 6897–6911, https://doi.org/10.1175/JCLI-D-17-0869.1, 2018.
Zhao, M. A. G., Velicogna, I., and Kimball, J. S.: A Global Gridded Dataset
of GRACE Drought Severity Index for 2002–14: Comparison with PDSI and SPEI and a Case Study of the Australia Millennium Drought, J. Hydrometeorol., 18, 2117–2129, https://doi.org/10.1175/JHM-D-16-0182.1, 2017.
Short summary
The study demonstrates the utility of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies (TWSAs) for obtaining statistics of hydrological droughts, i.e., recovery periods and required precipitation in different precipitation scenarios. The findings of this study are that the GRACE-based drought index is valid for estimating the required precipitation for drought recovery, and the period of drought recovery depends on the intensity of the precipitation.
The study demonstrates the utility of Gravity Recovery and Climate Experiment (GRACE)...