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Abstract. Drought is a natural extreme climate phenomenon
that presents great challenges in forecasting and monitoring
for water management purposes. Previous studies have ex-
amined the use of Gravity Recovery and Climate Experi-
ment (GRACE) terrestrial water storage anomalies to mea-
sure the amount of water missing from a drought-affected re-
gion, and other studies have attempted statistical approaches
to drought recovery forecasting based on joint probabilities
of precipitation and soil moisture. The goal of this study
is to combine GRACE data and historical precipitation ob-
servations to quantify the amount of precipitation required
to achieve normal storage conditions in order to estimate a
likely drought recovery time. First, linear relationships be-
tween terrestrial water storage anomaly (TWSA) and cumu-
lative precipitation anomaly are established across a range of
conditions. Then, historical precipitation data are statistically
modeled to develop simplistic precipitation forecast skill
based on climatology and long-term trend. Two additional
precipitation scenarios are simulated to predict the recovery
period by using a standard deviation in climatology and long-
term trend. Precipitation scenarios are convolved with water
deficit estimates (from GRACE) to calculate the best esti-
mate of a drought recovery period. The results show that,
in the regions of strong seasonal amplitude (like a monsoon
belt), drought continues even with above-normal precipita-
tion until its wet season. The historical GRACE-observed
drought recovery period is used to validate the approach. Es-
timated drought for an example month demonstrated an 80 %
recovery period, as observed by the GRACE.

1 Introduction

Drought is a widespread recurring natural hazard with sev-
eral direct and indirect impacts. The shortage of water in an
ecosystem not only reduces water availability for human con-
sumption but also causes extensive flora and fauna mortal-
ity. Dry land, with little vegetation on the surface, increases
soil erosion, reduces water resilience time and enhances the
possibility of forest fires, leading to many indirect disasters.
Big historical droughts have affected millions of lives and
cost billions of dollars in the last half century. For example,
the 1988 USA drought is estimated to have cost USD 40 bil-
lion, and the 1999 drought in Asia affected 60 million people
(Mishra and Singh, 2010). Severe water crises can put soci-
ety in turmoil and drive large-scale migrations, particularly in
the developing parts of the world, e.g., the 2011 East African
drought (Lyon and DeWitt, 2012) or the 2014–2016 dry cor-
ridors of central America (Guevara-Murua et al., 2018).

There are different definitions of drought depending on
the context, including agricultural (soil moisture deficit), me-
teorological (e.g., precipitation deficit or increase in evap-
otranspiration) and hydrological (storage deficit in, for ex-
ample, streamflow or groundwater) droughts (Behrangi et
al., 2015; Mishra et al., 2006; Wilhite and Glantz, 1985).
This study focuses on hydrological drought, which requires
combining both surface (snow and surface water) and sub-
surface (soil moisture and groundwater) hydrological infor-
mation. To monitor and evaluate drought, several drought
indices are available, like the Palmer drought severity in-
dex (PDSI; Palmer, 1965), standardized precipitation index
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(SPI; McKee et al., 1993), standardized precipitation evapo-
ration index (SPEI; Vicente-Serrano et al., 2009), etc. How-
ever, the use of a consistent drought metric for various cli-
matic regimes is essential for global drought studies. They
rely heavily on the accuracy of meteorological inputs and,
hence, become unreliable where ground observations are
sparse (Zhao et al., 2017). With the availability of differ-
ent remote sensing observations, various global drought in-
dices are developed, like the normalized differential vegeta-
tion index (NDVI; Keshavarz et al., 2014), evaporation stress
index (ESI; Otkin et al., 2013), soil moisture index (SMI;
Sridhar et al., 2008) and soil water deficit index (SWDI;
Martínez-Fernández et al., 2015). These traditional drought-
monitoring indices are mostly based on a few hydrologi-
cal parameters (like soil moisture, precipitation and ET) and
have no information about the drought recovery period.

The Gravity Recovery and Climate Experiment (GRACE)
mission enables us to measure the integrated water stor-
age variation in a system, which includes surface water,
soil moisture and groundwater. Many studies have used
GRACE to describe the process and monitoring of drought
(Awange et al., 2016; Forootan et al., 2019; Sun et al., 2017;
Thomas et al., 2014; Yirdaw et al., 2008; Zhang et al., 2015).
Yirdaw et al. (2008) were foremost in exploring the po-
tential of GRACE in drought monitoring in the Canadian
Prairie region. Houborg et al. (2012) developed a GRACE-
based drought indicator by assimilating terrestrial water stor-
age (TWS) into a Catchment Land Surface Model (CLSM)
over North America. Thomas et al. (2014), for the first time,
used a GRACE terrestrial water storage anomaly (TWSA)
as an independent global drought severity index by consider-
ing negative deviations from the monthly climatology of the
time series as storage deficits. While an increasing number of
case studies have used GRACE to characterize drought in dif-
ferent regions, for example, the Amazon (Chen et al., 2009;
Frappart et al., 2012), Texas (Long et al., 2013) and China
(Zhao et al., 2018), a global gridded assessment of the direct
application of GRACE on drought is still lacking (Gerdener
et al., 2020; Li et al., 2019). Unlike other drought indices,
the GRACE-based drought index is independent of the me-
teorological estimates and their combined uncertainties. The
GRACE-based index not only provides the total amount of
missing water from an ecosystem, it also clearly identifies the
beginning and the end of a drought on a monthly timescale.
The ultimate benefit of this approach is that, by quantifying
the amount of water required in storage for a region to re-
turn to historical average conditions, the method allows for
the identification of an explicit hydrological drought recov-
ery target.

Recovery time can be a critical metric of drought im-
pact in terms of showing how long an ecosystem requires
to revert to its predrought functional state (Schwalm et al.,
2017). With the increasing frequency of drought (Cook et
al., 2014, 2018), it is essential for an ecosystem to recover
completely before the next drought, otherwise repeated expo-

sure to stress can degrade the ecosystem in the long term. A
tentative estimate of expected recovery can help water man-
agement authorities to regulate the water supply until a sys-
tem recovers completely from drought stress. Previous stud-
ies have analyzed historical drought events and different pre-
dictors, like teleconnections and local climate variables (tem-
perature and precipitation) for drought prediction (Behrangi
et al., 2015; Maity et al., 2016; Otkin et al., 2015; Yuan et
al., 2013), but not much work has been done on drought
recovery analysis. Many studies have analyzed causes and
patterns of the onset and termination of drought (Dettinger,
2013; Maxwell et al., 2013; Mo, 2011; Seager et al., 2019)
but did not dwell on the statistical evolution of drought re-
covery. Hao et al. (2018) reviewed different kinds of drought
and the prediction methods, based on statistical, dynamical
and hybrid methods. Pan et al. (2013) were the first to de-
velop a probabilistic drought recovery framework based on
an ensemble forecast. They used a copula model to establish
a joint distribution between cumulative precipitation and a
soil-moisture-based drought index to fine-tune their correla-
tion structure. They demonstrated that drought recovery esti-
mates typically have significant uncertainty, and that a prob-
abilistic approach can offer better information on realized
drought risk. The Pan et al. (2013) approach is exclusively
precipitation based. However, above-average rain in a given
month may replenish surface water/soil moisture and support
recovery in vegetation, but the true impact of drought contin-
ues until all hydrological storage compartments, including
deep soil moisture and groundwater, recover. This type of in-
tegrated drought onset and recovery phenomenon can only be
estimated by integrating total water storage in all the storage
compartments. With the sparse availability of in situ ground-
water observations and limited soil moisture observations (up
to top 5 cm of the soil), a complete profile of the water stored
in a column can only be obtained from the GRACE-based
terrestrial water storage.

The intellectual contribution of this paper is in estimating
drought recovery and in conceptually bringing a framework
for drought recovery forecast based on precipitation deficit.
Here, we explored hydrological drought recovery time on a
0.5◦ gridded framework. Building upon previous work, we
apply GRACE-observed storage deficits as a drought indica-
tor and provide different probabilistic scenarios for drought
recovery, based on historical precipitation analysis. Specif-
ically, we estimate the required precipitation to fill a stor-
age deficit by deriving a linear relationship between pre-
cipitation and storage variability. Here, we focus on sub-
decadal drought only because of the availability of 15 years
of GRACE data. The study can be extended to a longer time
frame with the GRACE follow-on observations. Different
precipitation scenarios are generated for precipitation inputs,
based on the distribution of historical observations. The re-
quired precipitation estimates are validated by the duration
of the drought by using the Global Precipitation Climatology
Project (GPCP) and GRACE observations independently.
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2 Data

2.1 GRACE

The GRACE mission operated from April 2002 to June 2017,
with a primary goal to track water redistribution on Earth
and to improve our understanding of the global (Eicker et
al., 2016; Fasullo et al., 2016) and regional water cycle
(Singh et al., 2018; Springer et al., 2017). The GRACE-
based TWSA includes integrated water mass changes in a
vertical column, which may consist of rivers, lakes, snow,
ice, glaciers, soil moisture, permafrost, swamps, groundwa-
ter, etc. We downloaded the GRACE mascon (RL06) so-
lutions from the Jet Propulsion Laboratory (JPL) website
https://grace.jpl.nasa.gov (last access: 3 March 2019; Wiese
et al., 2018). The gravity field signals of GRACE are prepro-
cessed to monthly gridded equivalent water height (EWH)
variations by JPL (Watkins et al., 2015; Wiese et al., 2016).
The mascons are estimated as being 3◦ spherical caps, where
3◦ indicates the radius of the spherical cap. The 3◦ spherical
cap mascon estimates are then represented on a 0.5◦× 0.5◦

grid. The shape and size of the mascon caps vary with lat-
itude. Therefore, the gridded mascon solutions are multi-
plied by a scaling factor grid (https://grace.jpl.nasa.gov/data/
get-data/jpl_global_mascons/, last access: 21 March 2019)
to improve the interpretation of signals at the submascon res-
olution. Since 2011, the GRACE data set has data gaps of
1–2 months in every 5–6 months due to the aging batteries
of the satellites. However, to compare precipitation and stor-
age variability, a continuous monthly TWSA time series is
required. Therefore, the data gaps in the time series are filled
by cubic convolution interpolation (Keys, 1981). Compari-
son between different GRACE solutions are discussed in the
Supplement.

2.2 Global Precipitation Climatology Project (GPCP)

The Global Precipitation Climatology Project (GPCP) is
widely used global precipitation data. Most of the other ob-
servational products do not produce precipitation estimates
beyond 60◦ S/N for a longer historical period (1979–present).
Besides, GPCP applies gauge under catch correction to in
situ precipitation measurements, which has been found im-
portant for improving snowfall measurements (Behrangi et
al., 2018). The latest global monthly precipitation data are
obtained from the GPCP V2.3 from their website https:
//www.esrl.noaa.gov/psd/ (last access: 10 May 2019; Adler
et al., 2003) for 1979–2017. It is a combined satellite-based
product adjusted by rain gauge analysis. The downloaded
2.5◦ resolution data are regridded to 0.5◦ by using bilinear
interpolation to harmonize the data with the GRACE grid.
The spatial resolution of the original GRACE solution (3◦

mascon) and GPCP (2.5◦) are comparable. However, as mas-
con size varies with latitude, both data sets are adjusted to
the 0.5◦ grid to improve the interpretation.

3 Methods

3.1 Storage deficit

It is useful to know the total amount of missing water from
an ecosystem in order to characterize a drought so that an ex-
plicit target can be assumed that defines a drought recovery.
Currently, global gridded total water storage variations can
only be obtained from GRACE TWSA. The TWSA is first
smoothed by a 3-month moving average filter, followed by
the removal of a linear trend to reduce the impact of long-
term signals on the storage. A linear trend in the storage
variability can be caused by continuous/long-term processes
other than just precipitation, like upstream water abstrac-
tion, groundwater pumping, increase/decrease in snowmelt,
etc. We acknowledge the caveat of the possibility of pseudo-
trends due to the unusual signal at the beginning or end of
the record in some regions. The reduced TWSA is termed
the deviation of storage (dTWSA). The dTWSA from its
normal water storage cycle (i.e., its historical climatology)
can give an idea of the severity of drought phenomena. Here,
we define recovery as a return to the climatological storage
state for a given month. The climatology of the time series
is estimated over the 15-year GRACE record (April 2002–
March 2017) by averaging values from the same months of
each year (i.e., all Januaries, all Februaries and so on). The
negative residuals of the dTWSA from its climatology are
considered as being a water storage deficit in a grid cell
(Thomas et al., 2014). If the duration of negative residuals is
longer than 3 months, we designated it as a drought event. If
recurring drought happens within a 1 month gap (i.e., recov-
ery shorter than a 1-month duration), we considered it a con-
tinuation of the same drought. The green plot in Fig. 1 shows
the duration and severity of recurring drought in an exam-
ple location in Australia (centered on 133.75◦ E, 16.75◦ S).
Using this approach, we produce a global gridded drought
characteristics record, which includes the frequency, inten-
sity and duration of drought, for the 2002–2017 period. For
any instance and location, the state of drought and its length
can be identified by quantifying the water storage deficit
from the dTWSA. Eventually, the recovery duration for each
drought can also be observed, i.e., how long negative resid-
uals from climatology continued. For instance, Fig. 1 shows
three major droughts and their respective recovery periods
(of nearly 4, 3, and 1 years) for a sample location in Aus-
tralia.

3.2 Estimation of the required precipitation for storage
deficit

dS/dt = P −ET−R. (1)

The water balance equation, based on hydrological fluxes
(Eq. 1), shows that the change in terrestrial water storage (dS)
in a region for a given month (dt) depends on is the monthly
precipitation (P ; millimeters per month), evapotranspiration
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Figure 1. Water storage deficit from GRACE. The smoothed and
detrended TWSA (dTWSA – red plot) is reduced by its climatology
(black plot) to estimate the deviation from the climatology. The neg-
ative residuals from the climatology are plotted on the upper axis as
a green shaded area and scaled on the right side. The gray shading
indicates ±1 SD (standard deviation) of the climatology.

(ET; millimeters per month) and the streamflow (R, which
includes both surface water and subsurface water; Swenson
and Wahr, 2006). Assuming the relationship between precip-
itation and ET+R remains constant for a region, the variabil-
ity in precipitation gives an idea of the possible variation in
the storage. The amount of required precipitation needed to
overcome a deficit can be estimated using the association be-
tween precipitation and the water storage anomaly (TWSA).

Monthly GPCP observations are first reduced by their
mean for the April 2002–March 2017 period (i.e., the
15-year GRACE data record) to obtain the precipitation
anomaly. Then, the relationship between precipitation and
storage anomalies is derived. For this, first, both variables are
smoothed by a 3-month moving average low-pass filter to re-
move high-frequency noise. Then, their linear trends are re-
moved to reduce the impact of other processes, like ground-
water, upstream abstraction, glacier melts, etc. (as discussed
above), and to focus our analysis on subdecadal drought
events within the GRACE period. The smoothed and de-
trended precipitation anomaly is then integrated in time to
obtain the storage anomaly, which is termed the cumulative
detrended smoothed precipitation anomaly (cdPA). Finally,
the cdPA is compared with the smoothed and detrended stor-
age anomaly (dTWSA).

An ecosystem may behave differently under stress (a
deficit period) than under an excess water situation. In this
study, the linear relationship between storage (dTWSA) and
precipitation (cdPA) has been analyzed only during historical
deficit periods as the system behaves differently under stress
(Famiglietti et al., 1998; Vereecken et al., 2007). Several re-
searchers used rainfall–runoff curves, like the Soil Conser-
vation Service curve number (SCS-CN) for the computation
of surface runoff, based on precipitation, with an assumption

of a stable relation between rainfall and abstraction (Mishra
et al., 2006; Singh et al., 2015; Verma et al., 2017). This
study also assumes that the precipitation intensity for a re-
gion does not change significantly over time; consequently,
the relationship between precipitation and storage variability
can be considered stable.

Figure 2 shows the strength of this relationship with the
correlation coefficients (Fig. 2a) and linear regression coef-
ficients (Fig. 2b). Based on the linear relationship between
dTWSA and cdPA, the required precipitation has been es-
timated. Regression coefficients greater than 1 means the
required precipitation is more than the amount of missing
water. This is because precipitation lost in other hydrologi-
cal processes, like evapotranspiration and runoff (Eq. 1), is
not observed by storage variability. A coefficient equal to 1
means the amount of required precipitation is the same as
that storage loss, which means there is no other dominant
process in the region. Coefficients less than 1 are the re-
gions of weak precipitation–storage coupling, which can be
due to other physical processes, like melting of snow/frozen
surfaces, groundwater extraction, irrigation, etc. (non-red re-
gions in Fig. 2a). Therefore, for most of the regions, the re-
quired precipitation is more than the amount of missing wa-
ter (i.e., regression coefficients greater than 1), except for the
regions with weak precipitation–storage coupling. For exam-
ple, in higher latitudes, mass loss observed by GRACE dur-
ing spring snowmelt is not directly linked to precipitation.
Additionally, highly arid regions also have weak precipita-
tion and storage signals. Therefore, the proposed method is
not suitable for regions with weak precipitation–storage cou-
pling. These regions of the weak association are identified
based on regression coefficients below 1 (Fig. 2b), as less
than 1, or a negative relationship between storage variabil-
ity and precipitation, may describe a case in which storage
variability is not linked to a direct precipitation effect. Also,
locations with less than 5 months of drought in 15 years are
considered as regions of the weak association because we
do not have enough drought samples to derive their associa-
tion. The regions of weak association (with regression coeffi-
cients less than 1) are considered as being unsuitable for the
GRACE-based recovery analysis and have been masked out
in this study.

Based on the derived linear relationship between cdPA and
dTWSA (Fig. 2b), a required precipitation is estimated for
each regional drought period. The method for the estimation
of required precipitation is shown in Fig. 3 at an example
location (133.75◦ E, 16.75◦ S) in Australia. Figure 3a shows
an agreement between cdPA (black plot) and dTWSA (red
plot). In Fig. 3b, an absolute required precipitation (blue plot)
is calculated, by adding precipitation climatology to the es-
timated surplus required precipitation (magenta plot), to fill
the storage deficit (green plot). Analogous to an accounting
methodology, this approach applies the assumption that gen-
erally more precipitation than usual (climatology) is required
to replenish the losses incurred during drought. The example
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Figure 2. (a) Correlation coefficients and (b) regression coefficients between cumulative detrended precipitation anomalies (cdPA) and the
detrended terrestrial water storage anomaly (dTWSA).

location has a strong annual signal (5–150 mm, with predom-
inantly winter rain), which led to a relatively high ratio of
required precipitation to the amount of missing water.

3.3 Historical precipitation analysis

Historical precipitation data from GPCP (1979 to 2017) are
statistically analyzed, using signal decomposition, in order
to create a simplistic precipitation forecast. Note that the
motivation for providing a precipitation forecast here is not
to present a state-of-the-art precipitation prediction but to

demonstrate the potential utility of the terrestrial water stor-
age deficit in determining required precipitation and estimat-
ing a likely time for recovery. This methodology could be
augmented with any type of more complex precipitation fore-
casting approach.

3.3.1 Precipitation signal decomposition

Historical precipitation data are decomposed into a linear
trend, inter-annual signal, annual/climatological cycle and
the sub-seasonal components in order to explore temporal
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Figure 3. Estimation of the required precipitation at an example
location. (a) Cumulative detrended precipitation anomaly (cdPA)
compared with the detrended storage anomaly (dTWSA). (b) Sur-
plus required precipitation is estimated (magenta plot), from the lin-
ear relationship between dTWSA and cdPA, to fill the storage deficit
(green plot). Then, precipitation climatology is added to obtain the
absolute required precipitation (blue plot).

variability. First, a linear trend and an annual signal (mean of
each month; e.g., all of January, February, etc.) are extracted
from the original signal. Then, the residual signal is filtered
by a 12-month low-pass window to split it into a smooth
inter-annual signal and a high-frequency sub-seasonal sig-
nal. Together, the linear trend and inter-annual signal are
considered to contribute to long-term variability. The indi-
vidual variance of the annual, long-term and sub-seasonal
signals is normalized by their sum in order to obtain their
fractional contribution to local variability (Fig. 4). This pro-
vides an overview of the relative importance and spatial dis-
tribution of these components in global temporal variabil-
ity. Figure 4 shows the fractional variance of the decom-
posed signal. For most regions, the annual signal dominates
in precipitation (Fig. 4a). However, regions for which the wet
season is not explicit in their climatology, a high-frequency
signal plays a major role, for example in central Europe,
eastern Siberia, western North America, southern Australia,
etc. (Fig. 4c). Contrarily, the long-term signal obtained by
combining linear trend and the inter-annual signal has the
least variability globally (Fig. 4b). These smooth signals are
driven by climate indices like the El Niño–Southern Oscilla-
tion (ENSO), Pacific Decadal Oscillation (PDO), and North
Pacific Mode (NPM), etc. (Özger et al., 2009). The annual
and long-term signals are directly applied for the signal re-
construction, with the assumption that a similar trend will
continue.

3.3.2 Signal reconstruction and forecasting skill

Based on the above findings, we formulate a statistical model
for hindcasting precipitation. The annual signal and the lin-

ear trend extracted by signal decomposition (Sect. 3.3.1) are
directly used for the precipitation reconstruction, with the as-
sumption of the continuation of the similar variability. Fur-
thermore, inter-annual variability in the precipitation data is
added by autoregression for 10–14 months, depending on
the duration of significant autocorrelation. Finally, the sub-
seasonal signal is added, which is obtained from the resid-
ual of the inter-annual signal. This high-frequency signal has
only 0–3 months of temporal autocorrelation; accordingly,
we have limited skill in synthesizing the sub-seasonal signal.

Figure 5 shows the precipitation hindcast for Jan-
uary 2016–December 2017 at an example location
(56.25◦W, 27.75◦ S) in the La Plata basin. Figure 5a
shows that the reconstructed precipitation (red plot), com-
pared to its climatology (blue plot) and GPCP observations
(black plot) for the same duration. Figure 5b shows the
reconstructed inter-annual precipitation by autoregression.
The figure shows that inter-annual autoregression (blue
plot) signals have a good association with the observed
inter-annual signal (black plot) for the first 11 months. The
sub-seasonal autoregression is significant only for 2 months
in the example location. The final hindcast is an integration
of a linear trend, climatology, sub-seasonal and inter-annual
autoregression.

The precipitation reconstruction skill is used for a simplis-
tic normal forecast. Furthermore, two additional precipitation
scenarios are simulated by adding, respectively, 1 and 2 stan-
dard deviations (SDs) of precipitation to the normal forecast,
which is used in probability recovery analysis.

3.4 Probabilistic recovery

Precipitation is the major control on drought dynamics.
Knowing the amount of precipitation required to overcome a
drought (at any instance and any location globally) presents
the opportunity for the estimation of a likely drought recov-
ery period. We can apply a probabilistic approach by using
the historical precipitation forecast model to simulate differ-
ent precipitation scenarios based on the historical distribution
of precipitation for each region. Here, we propose three pre-
cipitation scenarios, namely (1) normal precipitation (as de-
scribed in Sect. 3.3.2), (2) 1 standard deviation wetter than
normal precipitation (assumed as being a wet month) and
(3) 3 standard deviations wetter than normal precipitation
(assumed as being an exceptionally wet month). The latter
two scenarios are based on 1 standard deviation from the lo-
cal precipitation climatology to simulate average rainy and
extremely rainy months, respectively. Again, we assume that,
in order to overcome a deficit due to drought, the ecosystem
needs to receive a surplus of water that surpasses the climato-
logical average. It follows that if drier than normal conditions
were to persist indefinitely, then a drought could theoreti-
cally go on forever. The climatological average is integrated
with the estimated surplus required precipitation (Fig. 3b;
magenta plot) to obtain the absolute required precipitation
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Figure 4. Fractional variance in the decomposed signal to the full signal. (a) Annual signal, (b) long-term signal and (c) sub-seasonal
high-frequency signal.
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Figure 5. Reconstruction of precipitation signal for 2016–2017.
(a) The reconstructed signal compared with the GPCP observations
and climatology. (b) The reconstruction of a long-term secular sig-
nal from the linear trend and inter-annual and sub-seasonal autore-
gression compared to GPCP inter-annual signal.

(Fig. 3b; blue plot). Whenever precipitation is more than the
absolute required precipitation, the system advances in re-
covery to its predrought state. Based on this hypothesis, we
simulated the three scenarios for how long any instance of
drought will continue, given the expected three precipitation
cases. Note that the scenarios suggest the needed recovery
time for normal, wet and exceptionally wet years, hence pro-
viding a minimum baseline for the duration of drought re-
covery.

4 Results

4.1 Observed recovery time based on GRACE and
GPCP observation

In this study, drought is defined by the negative deviation of
TWSA from its record-length climatology. The observed re-
covery duration is measured directly from the storage deficit,
as described previously (Fig. 1,; Thomas et al., 2014). For
our approach, we need to know when the observed pre-
cipitation is more than the absolute required precipitation
(Sect. 3.2). Figure 6 shows the recovery estimation of all
the droughts that occurred during 2002–2017 at four ran-
dom example locations, namely northwestern tropical Aus-
tralia (123.25◦ E, 17.75◦ S), northeastern Argentina in the
La Plata basin (56.25◦W, 27.75◦ S), northern India in the
Ganges Basin (78.75◦ E, 27.75◦ N) and northern Brazil in the
Amazon basin (57.25◦W, 2.25◦ S). Whenever the observed
precipitation (Fig. 6; red plot; i.e., GPCP) is larger than the
required precipitation (blue plot) for its respective month, the
drought should end. Ideally, GRACE should also observe it
simultaneously.

Figure 6. Validation of the required precipitation estimate by
drought recovery estimates at example locations. The different in-
stances of drought show that drought ends (from the perspective of
TWSA) whenever the observed precipitation (red plot) exceeds the
required precipitation (blue plot).

The figure shows that the precipitation during a drought
typically stays below its monthly required precipitation until
the end of the drought. In most cases, precipitation crossed
the required precipitation limit in precisely the same month
when GRACE observed the end of the storage deficit. Even
for the case of recurring droughts with 2 or more months’
gap, both methods observed the end of the drought in ap-
proximately the same month. To examine our method in de-
tail, we randomly selected a drought month and validated our
approach and estimated the recovery time based on different
precipitation scenarios in the following section.

4.2 Example of storage deficit and required
precipitation

In this section, we discuss drought in an example month
of January 2016. During the study period (2002–2017), the
year 2015–2016 was the strongest El Niño on record, and
many regions experienced drought. Nevertheless, this is done
to demonstrate the recovery analysis and can be applied to
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any other time window. Figure 7 shows the regions under
drought in January 2016 (Fig. 7a) and the estimated required
precipitation to overcome the drought (Fig. 7b).

Here, the severity of a drought is defined by the amount
of water shortage in 1 month. All colors, other than white, in
the figure are the drought-affected regions in January 2016,
within the region of strong precipitation–storage relations
(discussed in Sect. 3.2). The color bar demonstrates the
severity of the drought, i.e., the amount of missing water
(Fig. 7a) and the respective amount of required precipitation
(Fig. 7b). Figure 7a shows that eastern Amazon, southern
Australia, southeastern Africa and northern India were un-
der severe drought in 2016 winter. For most of the region in
the Southern Hemisphere, the amount of required precipita-
tion is double the storage deficit because January is a summer
month and water demand is higher.

4.2.1 Validation

To validate our approach, we compared recovery periods in
Fig. 8. The figure shows the recovery period from the Jan-
uary 2016 drought state, observed by GRACE (Fig. 8a), and
estimated recovery based on absolute required precipitation
and GPCP observations (Fig. 8b). Figure 8c highlights the
consistency in the estimated recovery period, where 1 indi-
cates a 1–2 months’ difference, 2 indicates 3–4 months’ dif-
ference, 3 indicates 5–8 months’ difference and 4 indicates
9+ months’ difference. The black area in Fig. 8c is the re-
gion with extremely different recovery estimates. The dif-
ference between the estimated recovery periods can be par-
tially attributed to the spatial resolution of the two data sets
and uncertainties in the data sets. Though GRACE 3◦ mas-
con and GPCP 2.5◦ are considered comparable, areas of the
unit representations are, nevertheless, different at different
locations like at the Equator (≈ 10000 km2) and close to the
poles (80 000 km2). However, as drought is a smooth pro-
cess, the impact of neighboring pixels should not affect the
analysis significantly. For the January 2016 drought, approx-
imately 80 % of the masked global land area demonstrated
a similar recovery period (±1–2 months) to what was pre-
dicted (category 1 in Fig. 8c).

4.2.2 Precipitation scenarios

This section demonstrates the probability of the recovery du-
ration in different precipitation scenarios. In the first sec-
tion, we discussed the expected recovery percentage within
1 month in three different precipitation scenarios. And in the
second section, we projected the duration needed to over-
come the January 2016 drought within the study period (until
March 2017).

The expected 1-month recovery state

Spatiotemporal patterns of drought at the global scale are
largely uncharacterized. Often, 1 month of surplus precipi-

tation is not enough to fill the entire deficit. However, if rain
is significantly above average immediately after/during the
drought, the recovery time decreases dramatically. We sim-
ulated a 1-month (February 2016) recovery percentage for
the January 2016 drought, given the three different precip-
itation scenarios (discussed in Sect. 3.4). The surplus pre-
cipitation within 1 month (February) is divided by the re-
quired reconstructed precipitation to calculate the percent-
age recovery. In most of the drought-affected regions, the
recovery percentage of our forecasted normal precipitation
(Sect. 3.3.2) for February 2016 is more than the recovery
percentage of observed GPCP precipitation (Fig. 9d). This
indicates that February 2016 was drier than our estimated
normal. Most of the region recovered in an extremely wet
scenario (Fig. 9c) within 1 month, except for regions dom-
inated by summer monsoons (Fig. 9c; orange/yellow area),
which had less than 30 % recovery, as February is not a rainy
season for this region. This shows a case in which regions
with high-amplitude seasonal cycles in precipitation mostly
recover during their rainy season, which varies globally.

Best estimated time for recovery

Recovery time varies from immediate (i.e., 1 month) to sev-
eral years across different climate zones and depends on the
severity of the drought. Figure 10 shows the predicted recov-
ery duration of the January 2016 drought state, which ranges
from 1 month (yellow) to not recoverable within the study
period of 15 months (black). Figure 10d shows the recovery
duration observed by GRACE, which is considered as be-
ing the truth. Figure 10a and b show that most of the region
under severe drought in 2016 did not recover with even 1
standard deviation of wetter than normal precipitation, and
the drought in this region continued beyond a year. In the ex-
tremely wetter (3 standard deviations) than normal situation
(Fig. 10c), most of the regions recovered within 4–5 months,
except for regions of the most severe drought, such as the
southeastern Amazon and southern Africa. Even in the ex-
tremely wet scenario, the monsoon regions (Fig. 10c) recov-
ered only during their rainy season (6–7 months after Jan-
uary 2016). This demonstrates that information on the state
of precipitation, compared to its usual levels, can provide an
idea of the expected drought recovery duration, provided we
know the amount of precipitation required.

5 Discussion

Here we define drought intensity and duration using the
observed storage deficit from GRACE TWSA, which is a
3-month or greater negative deviation from the historical,
record-length climatology for each region, following Thomas
et al. (2014). Generally, we considered this to be a better
metric of integrated drought effects than a negative depar-
ture from climatology in precipitation or soil moisture be-
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Figure 7. (a) Storage deficit in an example month (January 2016). (b) The amount of required precipitation to fill the deficit.

cause the former includes all components of the water cycle
and represents the integrated state of the local water budget
closure, dS/dt . We observe that, occasionally, precipitation
anomalies are depressed a couple of months before GRACE
sees the beginning of the drought onset because the net water
mass balance can stay stable for some time by a compensat-
ing decrease in ET and runoff. Similarly, precipitation shows
a positive deviation from climatology (i.e., excess precipita-
tion) well before GRACE observes the end of the drought
because of the time lag in filling the root zone soil mois-
ture (Eltahir and Yeh, 1999). Dettinger (2013) and Maxwell
et al. (2013) also argued that drought onset is quicker than
drought termination. Sometimes very heavy rain can quickly
bring a region entirely out of a drought, but in many cases,
continuous surplus precipitation is needed to bring the entire

water column (i.e., from the surface to groundwater) to full
recovery.

The critical feature of the GRACE-based drought recov-
ery framework is the estimation of required precipitation to
fill a storage deficit. Figure 2 shows that TWSA is closely
associated with a cumulative precipitation anomaly for most
regions, except in deserts and high latitudes. In large arid re-
gions, monthly storage variability is significantly low due to
low rainfall. In high latitudes, seasonal water storage vari-
ability is mainly driven by temperature because of snow ac-
cumulation and melt. Typically, in cold regions, winter snow
accumulation and spring snowmelt drive increases and de-
clines in TWSA, decoupling the storage variability from pre-
cipitation variability, which leads to a phase shift in their
seasonality and a weak correlation between them (Reager
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Figure 8. Validation of the estimated required precipitation by the recovery duration from the January 2016 drought observed from
(a) GRACE and (b) estimated, by the discussed method, using GRACE and GPCP observations. (c) Consistency in the observed recovery
duration by GRACE and GPCP (1= 1–2 months’ difference, 2= 3–4 months’ difference, 3= 5–8 months’ difference and 4= 9+ months’
difference).
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Figure 9. Expected percent recovery in 1 month, given the three different precipitation scenarios and the observed GPCP precipitation.

and Famiglietti, 2013). For these reasons, a storage-based
drought recovery metric is not as capable in desert and high-
latitude areas and is masked out in the results section.

Variability in the historical precipitation data is analyzed
by signal decomposition to develop a simple precipitation
forecast model. Precipitation signals are hindcast by combin-
ing the climatology with the linear trend and an inter-annual
signal estimated from autoregression. Figure 4 shows that,
in most regions, seasonal variability is the strongest signal,
except in big deserts, Eurasia and northwest America. These
regions have high sub-seasonal variability in precipitation,
which is hard to reconstruct. Additionally, due to the contri-
bution of snowfall in higher latitudes and very low rainfall in
deserts, bias correction in precipitation data is relatively less
reliable. Consequently, we have less confidence in precipita-
tion simulations in those regions.

In addition to the normal precipitation forecast, two more
precipitation scenarios are simulated based on 1 and 3 stan-
dard deviations from the climatology, assuming that a sys-
tem recovers from drought only when the precipitation is
more than the usual (climatological) precipitation of the cor-
responding month. Figure 9 demonstrates the percentage re-
covery, given these three different precipitation scenarios.

The figure shows that most regions show significant recov-
ery within 1 month in 3 standard deviations wetter than the
normal scenario, except for regions which are not in their re-
spective rainy season. As precipitation can be scarce in non-
rainy-season months, even 3 standard deviations wetter than
the historical average precipitation would not be a substantial
amount of rain to replenish the water deficit in these periods.
We further investigate the recovery duration based on differ-
ent precipitation scenarios (Fig. 10) and find that, under nor-
mal precipitation, most regions will not recover significantly
within the study duration, but for 3 standard deviations, i.e.,
wetter than normal rain, they recover within 3–4 months.
However, for the regions with a strong seasonal intensity of
precipitation (monsoonal region), the figure showed recov-
ery only during its rainy season (after 6–7 months) even in
the extremely wet scenario.

We validated our required precipitation estimates by com-
paring the recovery period observed by GRACE and esti-
mated by our method on the GPCP observations (Fig. 7) at
different locations, which showed good concurrence. Also
in Fig. 10, the drought recovery duration for an example
month of January 2016 demonstrated a good agreement be-
tween the observed recovery by GRACE and estimated re-
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Figure 10. Duration of drought recovery from January 2016, given the three different precipitation scenarios, as observed by GRACE.

covery by GPCP for most of the masked regions (80 % within
±1 month).

Knowing the present state of precipitation, i.e., how much
surplus we have over the usual climatology of a region, can
give an idea of the expected recovery duration, provided we
know the amount of precipitation needed to fill the deficit.
With improved precipitation forecasting skills, more accurate
drought recovery estimates can be obtained. Nevertheless,
the study demonstrates a case of the application of GRACE
for the estimation of required precipitation for drought recov-
ery.

6 Conclusions

Increasing water demand and future uncertainties in climate
necessitate the assessment of the potential impact of drought
and its expected recovery duration. The consequences of
drought can be minimized through adaptation and risk man-
agement efforts, which are informed by the amount of miss-
ing water in a system and the required precipitation needed
to bring it back to normal (as shown in Fig. 7). Recurring
droughts due to insufficient recovery can be minimized, to a

large extent, by managing water resources wisely – particu-
larly during the deficit period – until all of the hydrological
components revert to the predrought state. The study demon-
strates the utility of GRACE terrestrial water storage anoma-
lies (TWSA) in obtaining statistics of hydrological drought,
i.e., its recovery period and the precipitation required to re-
cover, with a sensitivity test, to different precipitation sce-
narios. The benefits of the GRACE-based drought index for
drought analysis are (1) the independency from meteorolog-
ical variables, unlike other drought indices (PDSI, SPEI and
SPI), and (2) the spatial coverage of the GRACE data (much
of the globe). However, recovery analysis is limited to the
areas in which linear relationships between TWSA and cu-
mulative precipitation anomaly exhibit strong linkages. The
findings of this study are (1) the GRACE-based drought
index is valid for estimating the required precipitation for
drought recovery, and (2) the period of drought recovery de-
pends on the intensity of precipitation i.e., in the dry season
of the year drought continues even with above-normal pre-
cipitation. The recovery period estimated by our approach
matches well with the recovery observed by GRACE for
most of the masked regions (80 %) for the demonstrated
drought month. This approach can be extended with the
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availability of the new GRACE follow-on (GRACE-FO) data
sets launched in May 2018. The proposed method and anal-
yses in this study are applicable for the development of an
operational drought monitoring system that can provide ac-
tionable information for drought recovery, given that skillful
precipitation prediction is available.
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