Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4825-2021
https://doi.org/10.5194/hess-25-4825-2021
Research article
 | 
06 Sep 2021
Research article |  | 06 Sep 2021

A study on the drag coefficient in wave attenuation by vegetation

Zhilin Zhang, Bensheng Huang, Chao Tan, and Xiangju Cheng

Related subject area

Subject: Coasts and Estuaries | Techniques and Approaches: Theory development
Saline groundwater evolution in the Luanhe River delta (China) during the Holocene: hydrochemical, isotopic, and sedimentary evidence
Xianzhang Dang, Maosheng Gao, Zhang Wen, Guohua Hou, Hamza Jakada, Daniel Ayejoto, and Qiming Sun
Hydrol. Earth Syst. Sci., 26, 1341–1356, https://doi.org/10.5194/hess-26-1341-2022,https://doi.org/10.5194/hess-26-1341-2022, 2022
Short summary
Assessing the characteristics and drivers of compound flooding events around the UK coast
Alistair Hendry, Ivan D. Haigh, Robert J. Nicholls, Hugo Winter, Robert Neal, Thomas Wahl, Amélie Joly-Laugel, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019,https://doi.org/10.5194/hess-23-3117-2019, 2019
Short summary
The physics behind Van der Burgh's empirical equation, providing a new predictive equation for salinity intrusion in estuaries
Zhilin Zhang and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 21, 3287–3305, https://doi.org/10.5194/hess-21-3287-2017,https://doi.org/10.5194/hess-21-3287-2017, 2017
Short summary
Analytical approach for determining the mean water level profile in an estuary with substantial fresh water discharge
Huayang Cai, Hubert H. G. Savenije, Chenjuan Jiang, Lili Zhao, and Qingshu Yang
Hydrol. Earth Syst. Sci., 20, 1177–1195, https://doi.org/10.5194/hess-20-1177-2016,https://doi.org/10.5194/hess-20-1177-2016, 2016
Short summary
Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations
H. Cai, H. H. G. Savenije, and C. Jiang
Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014,https://doi.org/10.5194/hess-18-4153-2014, 2014

Cited articles

Chen, H., Ni, Y., Li, Y., Feng, L., Ou, S., Su, M., Peng, Y., Hu, Z., Uijttewaal, W., and Suzuki, T.: Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods, Adv. Water Resour., 122, 217–227, https://doi.org/10.1016/j.advwatres.2018.10.008, 2018. 
Dalrymple, R. A., Kirby, J. T., and Hwang, P. A.: Wave diffraction due to areas of energy dissipation, J. Waterw. Port Coast., 110, 67–79, https://doi.org/10.1061/(ASCE)0733-950X(1984)110:1(67), 1984. 
Danielsen, F., Sørensen, M. K., Olwig, M. F, Selvam, V., Parish, F., Burgess, N. D., Hiraishi, T., Karunagaran, V. M., Rasmussen, M. S., Hansen, L. B., Quarto, A., and Suryadiputra, N.: The Asian tsunami: a protective role for coastal vegetation, Science, 310, 643, https://doi.org/10.1126/science.1118387, 2005. 
Dean, R. G.: Effects of vegetation on shoreline erosional processes, in: Wetland Functions and Values: The State of Our Understanding, MN: American Water Resources Association, Minneapolis, 415–426, 1979. 
He, F., Chen, J., and Jiang C.: Surface wave attenuation by vegetation with the stem, root and canopy, Coast. Eng., 152, 103509, https://doi.org/10.1016/j.coastaleng.2019.103509, 2019. 
Download
Short summary
This work studies the reduction of wave height and the drag effect by the vegetation in wetlands. Local wave height through the vegetated area is well described by the reciprocal function and exponential function. New relations have been derived by comparing these two methods and verified by 99 cases, building a bridge between different methods to better understand the drag effect.