Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-2223-2021
https://doi.org/10.5194/hess-25-2223-2021
Research article
 | 
23 Apr 2021
Research article |  | 23 Apr 2021

Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow

William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman

Related authors

The importance of non-stationary multiannual periodicities in the North Atlantic Oscillation index for forecasting water resource drought
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022,https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary
Understanding the potential of climate teleconnections to project future groundwater drought
William Rust, Ian Holman, John Bloomfield, Mark Cuthbert, and Ron Corstanje
Hydrol. Earth Syst. Sci., 23, 3233–3245, https://doi.org/10.5194/hess-23-3233-2019,https://doi.org/10.5194/hess-23-3233-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023,https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
HESS Opinions: Are soils overrated in hydrology?
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023,https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023,https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-427,https://doi.org/10.5194/hess-2022-427, 2023
Revised manuscript accepted for HESS
Short summary
A hydrological framework for persistent pools along non-perennial rivers
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023,https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary

Cited articles

Acreman, M. C. and Dunbar, M. J.: Defining environmental river flow requirements – a review, Hydrol. Earth Syst. Sci., 8, 861–876, https://doi.org/10.5194/hess-8-861-2004, 2004. 
Alexander, L. V., Tett, S. F. B., and Jonsson, T.: Recent observed changes in severe storms over the United Kingdom and Iceland, Geophys. Res. Lett., 32, L13704, https://doi.org/10.1029/2005GL022371, 2005. 
Allen, M. R. and Smith, L. A.: Monte Carlo SSA: Detecting Irregular Oscillations in the Presence of Colored Noise, J. Climate, 9, 3373–3404, https://doi.org/10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2, 1996. 
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016. 
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013. 
Download
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.