Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-217-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-217-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrological signals in tilt and gravity residuals at Conrad Observatory (Austria)
Department of Meteorology and Geophysics, University of Vienna,
1090 Vienna, Austria
Gábor Papp
Geodetic and Geophysical Institute, Research Centre for Astronomy
and Earth Sciences, Loránd Eötvös Research Network, 9400 Sopron, Hungary
Hannu Ruotsalainen
Finnish Geospatial Research Institute (FGI), National Land Survey of Finland, 02430 Masala, Finland
Judit Benedek
Geodetic and Geophysical Institute, Research Centre for Astronomy
and Earth Sciences, Loránd Eötvös Research Network, 9400 Sopron, Hungary
Roman Leonhardt
Zentralanstalt für Meteorologie und Geodynamik (ZAMG), 1190
Vienna, Austria
Related authors
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Roman Leonhardt, Benoit Heumez, Tero Raita, and Jan Reda
EGUsphere, https://doi.org/10.5194/egusphere-2025-2553, https://doi.org/10.5194/egusphere-2025-2553, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
IMBOT , the INTERMAGNET ROBOT, has been developed to perform automated routines to convert and evaluate data submission to INTERMAGNET, a global network of geomagnetic observatories. IMBOT makes data review faster and more reliable, providing high-quality data for the geomagnetic community.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Cited articles
Agnew, D. C.: Strainmeters and tiltmeters, Rev. Geophys., 24, 579–624,
https://doi.org/10.1029/RG024i003p00579, 1986.
Baker, T. F.: Tidal tilt at L1anrwst, north Wales: Tidal loading and earth
structure, Geophys. J. R. Astron. Soc., 62, 269–290, https://doi.org/10.1111/j.1365-246X.1980.tb04855.x, 1980.
Baker, T. F. and Lennon, G. W.: Tidal tilt anomalies, Nature, 243, 75–76,
https://doi.org/10.1038/243075a0, 1973.
Bendat, J. S. and Piersol, A. G.: Random Data: Analysis and Measurement
Procedures, John Wiley and Sons, New York, 602 pp., 2010.
Blaumoser, N.: Hydrological and geological investigations at Trafelberg
mountain, Cobs J., 2, 12, 2011.
Bonaccorso, A., Falzone, G., and Gambino, S.: An investigation into shallow
borehole tiltmeters, Geophys. Res. Lett., 26, 1637–1640, https://doi.org/10.1029/1999GL900310, 1999.
Bos, M. S. and Scherneck, H. G.: Free ocean tide loading provider, available
at: http://holt.oso.chalmers.se/loading/, last access: 21 December 2017.
Boy, J. P., Longuevergne, L., Boudin, F., Jacob, T., Lyard, F., Llubes, M.,
Florsch, N., and Esnoult, M. F.: Modelling atmospheric and induced non-tidal
oceanic loading contributions to surface gravity and tilt measurements, J.
Geodyn., 48, 182–188, https://doi.org/10.1016/j.jog.2009.09.022, 2009.
Bryda, G. and Posch-Trözmüller, G.: Geological investigation of the
drill core from borehole TB2A: First results, Cobs J., 4, 9, 2016.
Champollion, C., Deville, S., Chéry, J., Doerflinger, E., Le Moigne, N.,
Bayer, R., Vernant, P., and Mazzilli, N.: Estimating epikarst water storage
by time-lapse surface-to-depth gravity measurements, Hydrol. Earth Syst. Sci., 22, 3825–3839, https://doi.org/10.5194/hess-22-3825-2018, 2018.
Cheng, Y. and Andersen, O. B.: Improvement in global ocean tide model in shallow water regions, in: Proceedings of the OSTST Meeting, 18–22 October 2010, Lisbon, Portugal, 2010.
Creutzfeldt, B., Güntner, A., Vorogushyn, S., and Merz, B.: The benefits
of gravimeter observations for modeling water storage changes at the field
scale, Hydrol. Earth Syst. Sci., 14, 1715–1730, https://doi.org/10.5194/hess-14-1715-2010, 2010.
Crossley, D., Hinderer, J., Casula, G., Francis, O., Hsu, H. T., Imanishi,
Y., Jentzsch, G., Kääriänen, J., Merriam, J., Meurers, B., Neumeyer, J., Richter, B., Shibuya, K., Sato, T., and van Dam, T.: Network
of Superconducting Gravimeters Benefits a Number of Disciplines, EOS Trans.
Am. Geophys. Union, 80, 125–126, https://doi.org/10.1029/99EO00079, 1999.
Crossley, D., Calvo, M., Rosat, S., and Hinderer, J.: More Thoughts on AG–SG Comparisons and SG Scale Factor Determinations, Pure Appl. Geophys., 175, 1699–1725, https://doi.org/10.1007/s00024-018-1834-9, 2018.
Davis, K., Li, Y., and Batzle, M.: Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery,
Geophysics, 73, WA61–WA69, https://doi.org/10.1190/1.2987376, 2008.
Dehant, V., Defraigne, P., and Wahr, J. M.: Tides for a convective Earth, J.
Geophys. Res., 104, 1035–1058, https://doi.org/10.1029/1998JB900051, 1999.
Deisl, S., Blaumoser, N., and Leonhardt, R.: Hydrology and Geology at the
Trafelberg, Cobs Journal, 3, 20, 2014.
Eanes, R. J.: Diurnal and semidiurnal tides from TOPEX/POSEIDON altimetry,
EOS Trans. Am. Geophys. Union, 1994 Spring Meeting Supplement, 75, 108, 1994.
Egbert, G. D. and Erofeeva, L.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Farrell, W. E.: Deformation of the Earth by surface loads, Rev. Geophys., 10, 761–797, https://doi.org/10.1029/RG010i003p00761, 1972.
Fores, B., Champollion, C., Lemoigne, N., and Chéry, J.: Monitoring and
modeling of water storage in karstic area (Larzac, France) with a continuous
supraconducting gravimeter, in: Geophys. Res. Abstr., EGU2014-4215, EGU General Assembly 2014, 27 April–2 May 2014, Vienna, Austria, 2014.
Fores, B., Champollion, C., Mainsant, G., Albaric, J., and Fort, A.: Monitoring saturation changes with ambient seismic noise and gravimetry in a
karst environment, Vadose Zone J., 17, 170163, https://doi.org/10.2136/vzj2017.09.0163, 2018.
Fujimori, K., Ishii, H., Mukai, A., Nakao, S., Matsumoto, S., and Hirata, Y.: Strain and tilt changes measured during a water injection experiment at the Nojima Fault zone, Japan, Island Arc, 10, 228–234, https://doi.org/10.1111/j.1440-1738.2001.00320.x, 2001.
Goodkind, J. M.: The superconducting gravimeter, Rev. Sci. Inst., 70, 4131–4152, https://doi.org/10.1063/1.1150092, 1999.
Güntner, A., Reich, M., Mikolaj, M., Creutzfeldt, B., Schroeder, S., and
Wziontek, H.: Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure, Hydrol. Earth Syst. Sci., 21, 3167–3182, https://doi.org/10.5194/hess-21-3167-2017, 2017.
Harrison, J. C.: Cavity and topographic effects in tilt and strain measurements, J. Geophys. Res., 81, 319–328, https://doi.org/10.1029/JB081i002p00319, 1976.
Harrison, J. C.: Implications of cavity, topographic and geological influences on tilt and strain observations, in: Proceedings of the 9th GEOP Conference: An International Symposium on the Application of Geodesy to Geodynamics, Columbus, Ohio, USA, 2–5 October 1978, Dept. of Geodetic Science, Rept. No. 280, 283–287, available at: https://ntrs.nasa.gov/api/citations/19790013330/downloads/19790013330.pdf (last access: 23 November 2020), 1978.
Harrison, J. C. and Herbst, K.: Thermoelastic strains and tilts revised, Geophys. Res. Lett., 4, 535–537, https://doi.org/10.1029/GL004i011p00535, 1977.
Hartmann, H. and Hartmann, W.: Die Höhlen Niederösterreichs, Band 5, Wissenschaftliche Beihefte zur Zeitschrift “Die Höhle”, Landesverein für Höhlenkunde in Wien und Niederösterreich, Vienna, Austria, 54, 616 pp., 2000.
Hector, B., Séguis, L., Hinderer, J., Cohard, J. M., Wubda, M., Descloitres, M., Benarrosh, N., and Boy, J. P.: Water storage changes as a
marker for base flow generation processes in a tropical humid basement
catchment (Benin): Insights from hybrid gravimetry, Water Resour. Res., 51,
8331–8361, https://doi.org/10.1002/2014WR015773, 2015.
Herbst, K.: Interpretation of Tilt Measurements in the Period Range Above that of the Tides, Terrestrial Sciences Division, Project 7600, Air Force
Geophysics Laboratory, 89 pp., available at: https://books.google.at/books?id=vBkotgEACAAJ (last access: 23 November 2020), 1979.
Hinderer, J. and Legros, H.: Elasto-gravitational deformation, relative gravity changes and earth dynamics, Geophys. J. Int., 97, 481–495,
https://doi.org/10.1111/j.1365-246X.1989.tb00518.x, 1989.
Hinderer, J., Crossley, D., and Warburton, R.: Superconducting gravimetry,
in: Treatise on Geophysics, Volume 3: Geodesy, edited by: Herring, T. and
Schubert, G., Elsevier, Amsterdam, the Netherlands, 65–122, 2007.
Jacob, T., Chery, J., Bayer, R., Le Moigne, N., Boy, J. P., Vernant, P., and
Boudin, F.: Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity,
Geophys. J. Int., 177, 347–360, https://doi.org/10.1111/j.1365-246X.2009.04118.x, 2009.
Jacob, T., Chéry, J., Boudin, F., and Bayer, R.: Monitoring deformation
from hydrologic processes in a karst aquifer using long-baseline tiltmeters,
Water Resour. Res., 46, W09542, https://doi.org/10.1029/2009WR008082, 2010.
Jahr, T.: Non-tidal tilt and strain signals recorded at the Geodynamic Observatory Moxa, Thuringia/Germany, Geod. Geodyn., 9, 229–236,
https://doi.org/10.1016/j.geog.2017.03.015, 2018.
Jahr, T., Letz, H., and Jentzsch, G.: Monitoring fluid induced deformation
of the earth's crust: A large scale experiment at the KTB location/Germany,
J. Geodyn., 41, 190–197, https://doi.org/10.1016/j.jog.2005.08.003, 2006a.
Jahr, T., Jentzsch, G., and Gebauer, A.: Observations of fluid induced deformation of the upper crust of the Earth: Investigations about the large
scale injection experiment at the KTB site/Germany, Bull. d'Inf. Mar. Terr.,
141, 11271–11275, 2006b.
Jahr, T., Jentzsch, G., Gebauer, A., and Lau, T.: Deformation, seismicity, and fluids: Results of the 2004/2005 water injection experiment at the
KTB/Germany, J. Geophys. Res., 113, B11410, https://doi.org/10.1029/2008JB005610, 2008.
Jahr, T., Jentzsch, G., and Weise, A.: Natural and man-made induced hydrological signals, detected by high resolution tilt observations at the
Geodynamic Observatory Moxa/Germany, J. Geodyn., 48, 126–131, https://doi.org/10.1016/j.jog.2009.09.011, 2009.
Kalmár, J. and Benedek, J.: Determination of water load and catchment lines by the modeling of infiltration and run-off of rain water, Dimenziók: Matematikai Közlemények, 5, 25–29, 2018.
King, G. C. P. and Bilham, R.: Tidal tilt measurement in Europe, Nature, 243, 74–75, https://doi.org/10.1038/243074a0, 1973.
Klügel, T.: Bestimmung lokaler Einflüsse in den Zeitreihen inertialer Rotationssensoren (LOK – ROT), Schlussbericht, DFG-Forschungsprojekt LOK-ROT (SCHR 645/1), Wettzell, available at:
https://www.yumpu.com/de/document/view/12632682/lok-rot-geodatisches-observatorium-wettzell
(last access: 23 November 2020), 2003.
Kohl, M. L. and Levine, J.: Measurement and interpretation of tidal tilts in
a small array, J. Geophys. Res., 100, 3929–3941, https://doi.org/10.1029/94JB02773, 1995.
Krause, P., Naujoks, M., Fink, M., and Kroner, C.: The impact of soil moisture changes on gravity residuals obtained with a superconducting gravimeter, J. Hydrol., 373, 151–163, https://doi.org/10.1016/j.jhydrol.2009.04.019, 2009.
Kümpel, H. J., Varga, P., Lehmann, K., and Mentes, G.: Ground tilt induced by pumping – preliminary results from the Nagycenk test site, Hungary, Acta Geod. Geophys. Hu, 91, 67–78, 1996.
Lampitelli, C. and Francis, O.: Hydrological effects on gravity and correlations between gravitational variations and level of the Alzette River
at the station of Walferdange, Luxembourg, J. Geod., 49, 31–38,
https://doi.org/10.1016/j.jog.2009.08.003, 2010.
Lesparre, N., Boudin, F., Champollion, C., Chéry, J., Danquigny, C., Seat, H. C., Cattoen, M., Lizion, F., and Longuevergne, L.: New insights on
fractures deformation from tiltmeter data measured inside the fontaine de
vaucluse karst system, Geophys. J. Int., 208, 1389, https://doi.org/10.1093/gji/ggw446, 2017.
Llubes, M., Florsch, N., Hinderer, J., Longuevergne, L., and Amalvict, M.:
Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective:
some case studies, J. Geodyn., 38, 355–374, https://doi.org/10.1016/j.jog.2004.07.015, 2004.
Longuevergne, L., Boy, J. P., Florsch, N., Viville, D., Ferhat, G., Ulrich,
P., Luck, B., and Hinderer, J.: Local and global hydrological contributions
to gravity variations observed in Strasbourg, J. Geodyn., 48, 189–194,
https://doi.org/10.1016/j.jog.2009.09.008, 2009.
Lyard, F., Lèfevre, F., Letellier, T., and Francis, O.: Modelling the
global ocean tides: a modern insight from FES2004, Ocean Dynam., 56, 394–415, https://doi.org/10.1007/s10236-006-0086-x, 2006.
Mangou, S.: Response of tilt and gravity on environmental processes at
Conrad observatory, Austria, MSc thesis, University of Vienna, Vienna, 89 pp., 2019.
Mathews, P. M.: Love numbers and gravimetric factor for diurnal tides, in:
Proceedings of the 14th International Symposium on Earth Tides, J. Geod. Soc. Jpn., 47, 231–236, https://doi.org/10.11366/sokuchi1954.47.231, 2001.
Matsumoto, K., Takanezawa, T., and Ooe, M.: Ocean tide models developed by
assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan, J. Oceanogr., 56, 567–581,
https://doi.org/10.1023/A:1011157212596, 2000.
Meurers, B.: Superconducting Gravimeter Calibration by CoLocated Gravity
Observations: Results from GWR C025, Int. J. Geophys., 2012, 954271, https://doi.org/10.1155/2012/954271, 2012.
Meurers, B.: Scintrex CG5 used for superconducting gravimeter calibration,
Geod. Geodyn., 9, 197–203, https://doi.org/10.1016/j.geog.2017.02.009, 2018a.
Meurers, B.: 10 years SG gravity time series at Conrad Observatory (Austria)
– Station report, in: 1st Workshop on the International Geodynamics and Earth Tide Service (IGETS), 18–20 June 2018, Potsdam, Germany, available at:
http://igets.u-strasbg.fr/2018workshop/1.2_03_CO.pdf (last access: 23 November 2020), 2018b.
Meurers, B., Van Camp, M., and Petermans, T.: Correcting superconducting
gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis, J. Geod., 81, 703–712,
https://doi.org/10.1007/s00190-007-0137-1, 2007.
Meurers, B., Van Camp, M., Francis, O., and Pálinkáš, V.: Temporal variation of tidal parameters in superconducting gravimeter time-series, Geophys. J. Int., 205, 284–300, https://doi.org/10.1093/gji/ggw017, 2016.
Mikolaj, M. and Meurers, B.: Hydrology Induced Gravity Variation Observed at
Vienna and Conrad Observatory, Geophys. Res. Abstr. 15, EGU2013-6003, in: EGU
General Assembly 2013, 7–12 April 2013, Vienna, Austria, available at:
https://meetingorganizer.copernicus.org/EGU2013/EGU2013-6003.pdf (last access: 23 November 2020), 2013.
Mouyen, M., Longuevergne, L., Chalikakis, K., Mazzilli, N., Ollivier, C., Rosat, S., Hinderer, J., and Champollion, C.: Monitoring of groundwater
redistribution in a karst aquifer using a superconducting gravimeter, E3S Web Conf., 88, 2–4, https://doi.org/10.1051/e3sconf/20198803001, 2019.
Papp, G. and Benedek, J.: Numerical modeling of gravitational field lines –
the effect of mass attraction on horizontal coordinates, J. Geod., 73, 648–659, https://doi.org/10.1007/s001900050003, 2000.
Papp, G., Ruotsalainen, H., Meurers, B., Leonhardt, R., Benedek, J., Hutchinson, P., and Szántó, M.: Analysis of Environmental and
Loading Effects in Tilt and SG Gravity Observations at Conrad (Austria) and
Peters Seismological (Australia) Observatories, IUGG-G06l, in: 27th IUGG General Assembly, 8–18 July 2019, Montréal, Québec, Canada, 2019.
Rabbel, W. and Zschau, J.: Static deformations and gravity changes at the
earth's surface due to atmospheric loading, J. Geophys., 56, 81–99, 1995.
Ray, R. D.: A global ocean tide Model from TOPEX/POSEIDON Altimetry: GOT99.2, NASA Technical Memorandum 209478, available at:
https://ntrs.nasa.gov/api/citations/19990089548/downloads/19990089548.pdf
(last access: 23 November 2020), 1999.
Ruotsalainen, H.: Interferometric Water Level Tilt Meter Development in Finland and Comparison with Combined Earth Tide and Ocean Loading Models, Pure Appl. Geophys., 175, 1659–1667, https://doi.org/10.1007/s00024-017-1562-6, 2018.
Ruotsalainen, H., Bán, D., Papp, G., Leonhardt, R., and Benedek, J.:
Interferometric Water Level Tilt Meter at the Conrad Observatory, Cobs J., 4, 11, 2016a.
Ruotsalainen, H., Papp, G., Leonhardt, R., Bán, D., Szűcs, E., and
Benedek, J.: Comparison of broad band time series recorded by FGI type interferometric water level- and Lippmann's pendulum type tilt meters
recording parallel at Conrad observatory, Austria, Geophys. Res. Abstr., 18,
EGU2016-6932, in: EGU General Assembly 2016, 17–22 April 2016, Vienna, Austria, 2016b.
Savcenko, R. and Bosch, W.: EOT11a – a new tide model from multimission
altimetry, in: Proceedings of the OSTST Meeting, 19–21 October 2011, San
Diego, USA, available at: ftp://ftp.sirgas.org/pub/EOT11a/doc/savcenko_eot11a_sandiego.pdf (last access: 23 November 2020), 2011.
Schüller, K.: Program System ETERNA-x et34-x-v80-* for Earth and Ocean
Tides Analysis and Prediction, Documentation Manual 01: Theory, January 2020, Surin, Thailand, 209 pp., 2020.
Taguchi, E., Stammer, D., and Zahel, W.: Inferring deep ocean tidal energy
dissipation from the global high-resolution data-assimilative HAMTIDE model, J. Geophys. Res.-Oceans, 119, 4573–4592, https://doi.org/10.1002/2013JC009766, 2014.
Tenze, D., Braitenberg, C., and Nagy, I.: Karst deformations due to environmental factors: evidences from the horizontal pendulums of Grotta Gigante, Italy, Boll. Geofis. Teor. Appl., 53, 331–345, https://doi.org/10.4430/bgta0049, 2012.
Van Camp, M. and Francis, O.: Is the instrumental drift of superconducting
gravimeters a linear or exponential function of time?, J. Geod., 81, 337–344, https://doi.org/10.1007/s00190-006-0110-4, 2007.
Van Camp, M. and Vauterin, P.: Tsoft: graphical and interactive software for
the analysis of time series and Earth tides, Comp. Geosci., 31, 631–640,
https://doi.org/10.1016/j.cageo.2004.11.015, 2005.
Van Camp, M., Vanclooster, M., Crommen, O., Petermans, T., Verbeek, K., Meurers, B., van Dam, T., and Dassargues, A.: Hydrological investigations at
the Membach station, Belgium, and applications to correct long periodic gravity variations, J. Geophys. Res., 111, BI0403, https://doi.org/10.1029/2006JB004405, 2006.
Van Camp, M., Meurers, B., de Viron, O., and Forbriger, T.: Optimized strategy for the calibration of superconducting gravimeters at the one per
mille level, J. Geod., 90, 91–99, https://doi.org/10.1007/s00190-015-0856-7, 2016.
Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O., and Caudron, C.: Geophysics from terrestrial time-variable gravity measurements,
Rev. Geophys., 55, 938–992, https://doi.org/10.1002/2017RG000566, 2017.
Voigt, C., Förste, C., Wziontek, H., Crossley, D., Meurers, B., Pálinkáš, V., Hinderer, J., Boy, J. P., Barriot, J. P., and Sun,
H.: Report on the Data Base of the International Geodynamics and Earth Tide
Service (IGETS), Scientific Technical Report STR – Data 16/08, GFZ German Research Centre for Geosciences, Potsdam, https://doi.org/10.2312/GFZ.b103-16087, 2016.
Watlet, A., Kaufmann, O., Triantafyllou, A., Poulain, A., Chambers, J. E.,
Meldrum, P. I., Wilkinson, P. B., Hallet, V., Quinif, Y., Van Ruymbeke, M.,
and Van Camp, M.: Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring, Hydrol. Earth Syst. Sci., 22,
1563–1592, https://doi.org/10.5194/hess-22-1563-2018, 2018.
Watlet, A., Van Camp, M., Francis, O., Poulain, A., Rochez, G., Hallet, V.,
Quinif, Y., and Kaufmann, O.: Gravity monitoring of underground flash flood
events to study their impact on groundwater recharge and the distribution of
karst voids, Water Resour. Res., 56, e2019WR026673, https://doi.org/10.1029/2019WR026673, 2020.
Weise, A.: Neigungsmessungen in der Geodynamik – Ergebnisse von der 3-Komponentenstation Metsahovi, PhD Thesis, Technical University of Clausthal, Clausthal, Germany, 180 pp., 1992.
Weise, A., Jentzsch, G., Kiviniemi, A., and Kääriäinen, J.: Comparison of long period tilt measurements: Results from two clinometric
stations Metsähovi and Lohja, Finland, J. Geodyn., 27, 237–257,
https://doi.org/10.1016/S0264-3707(97)00067-7, 1999.
Wenzel, H. G.: The Nanogal Software: Earth Tide Data Processing Package
ETERNA 3.30, Bull. d'Inf. Mar. Terr., 124, 9425–9439, 1996.
Zürn, W.: Simplistic models of vertical seismic noise above 0.1 mHz
derived from local atmospheric pressure, Bull. d'Inf. Mar. Terr., 137,
10867–10874, 2002.
Short summary
Gravity and tilt time series acquired at Conrad Observatory (Austria) reflect gravity and deformation associated with short- and long-term environmental processes, revealing a complex water transport process after heavy rain and rapid snowmelt. Gravity residuals are sensitive to the Newtonian effect of water mass transport. Tilt residual anomalies capture strain–tilt coupling effects due to surface or subsurface deformation from precipitation or pressure changes in the adjacent fracture system.
Gravity and tilt time series acquired at Conrad Observatory (Austria) reflect gravity and...