Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1211-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1211-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Aix Marseille University, Centre National de la Recherche Scientifique
(CNRS), CEREGE, Aix-en-Provence, France
Daniel Herwartz
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Cristina Dorador
Centro de Biotecnología, Universidad de Antofagasta, Angamos 601,
1270300 Antofagasta, Chile
Michael Staubwasser
Institute of Geology and Mineralogy, University of Cologne,
Zülpicher Str. 49b, 50674 Cologne, Germany
Related authors
Claudia Voigt, Christine Vallet-Coulomb, Clément Piel, Joana Sauze, Ilja M. Reiter, Jean-Philippe Orts, Françoise Chalié, Christophe Cassou, Irène Xueref-Remy, and Anne Alexandre
EGUsphere, https://doi.org/10.5194/egusphere-2025-5879, https://doi.org/10.5194/egusphere-2025-5879, 2025
Short summary
Short summary
Triple oxygen isotopes (17O-excess) are an upcoming tool in hydrological studies. We present the first one-year high-resolution record of 17O-excess in atmospheric water vapor from a Mediterranean forest site. The dataset provides insights into the processes driving variability of 17O-excess in atmospheric water vapor and precipitation across seasonal, diurnal, and event scales. These findings support model validation efforts and enhance the interpretation of paleoclimate archives.
Claudia Voigt, Fernando Gázquez, Lucía Martegani, Ana Isabel Sánchez Villanueva, Antonio Medina, Rosario Jiménez-Espinosa, Juan Jiménez-Millán, and Miguel Rodríguez-Rodríguez
Hydrol. Earth Syst. Sci., 29, 1783–1806, https://doi.org/10.5194/hess-29-1783-2025, https://doi.org/10.5194/hess-29-1783-2025, 2025
Short summary
Short summary
This research explores the use of a new isotope tracer, 17O excess, to better understand how hydrological processes drive large seasonal water level changes in small lakes in semiarid regions. The study shows that triple oxygen isotopes offer a more detailed understanding of these changes compared to traditional methods. These findings are valuable for reconstructing past climates and predicting how climate change, influenced by human activity, will affect small lakes in these dry areas.
Claudia Voigt, Anne Alexandre, Ilja M. Reiter, Jean-Philippe Orts, Christine Vallet-Coulomb, Clément Piel, Jean-Charles Mazur, Julie C. Aleman, Corinne Sonzogni, Helene Miche, and Jérôme Ogée
Biogeosciences, 20, 2161–2187, https://doi.org/10.5194/bg-20-2161-2023, https://doi.org/10.5194/bg-20-2161-2023, 2023
Short summary
Short summary
Data on past relative humidity (RH) ARE needed to improve its representation in Earth system models. A novel isotope parameter (17O-excess) of plant silica has been developed to quantify past RH. Using comprehensive monitoring and novel methods, we show how environmental and plant physiological parameters influence the 17O-excess of plant silica and leaf water, i.e. its source water. The insights gained from this study will help to improve estimates of RH from fossil plant silica deposits.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Claudia Voigt, Christine Vallet-Coulomb, Clément Piel, Joana Sauze, Ilja M. Reiter, Jean-Philippe Orts, Françoise Chalié, Christophe Cassou, Irène Xueref-Remy, and Anne Alexandre
EGUsphere, https://doi.org/10.5194/egusphere-2025-5879, https://doi.org/10.5194/egusphere-2025-5879, 2025
Short summary
Short summary
Triple oxygen isotopes (17O-excess) are an upcoming tool in hydrological studies. We present the first one-year high-resolution record of 17O-excess in atmospheric water vapor from a Mediterranean forest site. The dataset provides insights into the processes driving variability of 17O-excess in atmospheric water vapor and precipitation across seasonal, diurnal, and event scales. These findings support model validation efforts and enhance the interpretation of paleoclimate archives.
Claudia Voigt, Fernando Gázquez, Lucía Martegani, Ana Isabel Sánchez Villanueva, Antonio Medina, Rosario Jiménez-Espinosa, Juan Jiménez-Millán, and Miguel Rodríguez-Rodríguez
Hydrol. Earth Syst. Sci., 29, 1783–1806, https://doi.org/10.5194/hess-29-1783-2025, https://doi.org/10.5194/hess-29-1783-2025, 2025
Short summary
Short summary
This research explores the use of a new isotope tracer, 17O excess, to better understand how hydrological processes drive large seasonal water level changes in small lakes in semiarid regions. The study shows that triple oxygen isotopes offer a more detailed understanding of these changes compared to traditional methods. These findings are valuable for reconstructing past climates and predicting how climate change, influenced by human activity, will affect small lakes in these dry areas.
Susann Henkel, Bo Liu, Michael Staubwasser, Simone A. Kasemann, Anette Meixner, David A. Aromokeye, Michael W. Friedrich, and Sabine Kasten
Biogeosciences, 22, 1673–1696, https://doi.org/10.5194/bg-22-1673-2025, https://doi.org/10.5194/bg-22-1673-2025, 2025
Short summary
Short summary
We intend to unravel iron (Fe) reduction pathways in high-deposition methanic sediments because pools of Fe minerals could stimulate methane oxidation and also generation. Our data from the North Sea show that Fe release takes place mechanistically differently to Fe reduction in shallow sediments, which typically fractionates Fe isotopes. We conclude that fermentation of organic matter involving interspecies electron transfer, partly through conductive Fe oxides, could play an important role.
Claudia Voigt, Anne Alexandre, Ilja M. Reiter, Jean-Philippe Orts, Christine Vallet-Coulomb, Clément Piel, Jean-Charles Mazur, Julie C. Aleman, Corinne Sonzogni, Helene Miche, and Jérôme Ogée
Biogeosciences, 20, 2161–2187, https://doi.org/10.5194/bg-20-2161-2023, https://doi.org/10.5194/bg-20-2161-2023, 2023
Short summary
Short summary
Data on past relative humidity (RH) ARE needed to improve its representation in Earth system models. A novel isotope parameter (17O-excess) of plant silica has been developed to quantify past RH. Using comprehensive monitoring and novel methods, we show how environmental and plant physiological parameters influence the 17O-excess of plant silica and leaf water, i.e. its source water. The insights gained from this study will help to improve estimates of RH from fossil plant silica deposits.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Cited articles
Acosta, O. and Custodio, E.: Impactos ambientales de las extracciones de agua
subterránea en el Salar del Huasco (norte de Chile), Bol. Geol. Min.,
119, 33–50, 2008.
Alexandre, A., Landais, A., Vallet-Coulomb, C., Piel, C., Devidal, S., Pauchet, S., Sonzogni, C., Couapel, M., Pasturel, M., Cornuault, P., Xin, J., Mazur, J.-C., Prié, F., Bentaleb, I., Webb, E., Chalié, F., and Roy, J.: The triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: insights from climate chamber and climate transect calibrations, Biogeosciences, 15, 3223–3241, https://doi.org/10.5194/bg-15-3223-2018, 2018.
Alexandre, A., Webb, E., Landais, A., Piel, C., Devidal, S., Sonzogni, C., Couapel, M., Mazur, J.-C., Pierre, M., Prié, F., Vallet-Coulomb, C., Outrequin, C., and Roy, J.: Effects of leaf length and development stage on the triple oxygen isotope signature of grass leaf water and phytoliths: insights for a proxy of continental atmospheric humidity, Biogeosciences, 16, 4613–4625, https://doi.org/10.5194/bg-16-4613-2019, 2019.
Angert, A., Cappa, C. D., and DePaolo, D. J.: Kinetic 17O effects in the
hydrologic cycle: Indirect evidence and implications, Geochim. Cosmochim.
Ac., 68, 3487–3495, https://doi.org/10.1016/j.gca.2004.02.010, 2004.
Aravena, R.: Isotope hydrology and geochemistry of northern Chile
groundwaters, Bull. Ins. Fr. Etudes Andin., 24, 495–503, 1995.
Aravena, R., Suzuki, O., Peña, H., Pollastri, A., Fuenzalida, H., and
Grilli, A.: Isotopic composition and origin of the precipitation in Northern
Chile, Appl. Geochem., 14, 411–422,
https://doi.org/10.1016/S0883-2927(98)00067-5, 1999.
Barkan, E. and Luz, B.: High precision measurements of 17O 16O and
18O 16O ratios in H2O, Rapid Commun. Mass Sp., 19,
3737–3742, https://doi.org/10.1002/rcm.2250, 2005.
Barkan, E. and Luz, B.: Diffusivity fractionations of
H O H O and H O H O in air
and their implications for isotope hydrology, Rapid Commun. Mass Sp., 21,
2999–3005, https://doi.org/10.1002/rcm.3180, 2007.
Boschetti, T., Cifuentes, J., Iacumin, P., and Selmo, E.: Local meteoric water
line of northern Chile (18∘S–30∘S): An application of
error-in-variables regression to the oxygen and hydrogen stable isotope
ratio of precipitation, Water, 11, 1–16, https://doi.org/10.3390/w11040791,
2019.
Bowen, G. J.: The Online Isotopes in Precipitation Calculator, available at:
http://www.waterisotopes.org, last access: 23 September 2020.
Bowen, G. J., Wassenaar, L. I., and Hobson, K. A.: Global application of stable
hydrogen and oxygen isotopes to wildlife forensics, Oecologia, 143,
337–348, https://doi.org/10.1007/s00442-004-1813-y, 2005.
Cao, X. and Liu, Y.: Equilibrium mass-dependent fractionation relationships for
triple oxygen isotopes, Geochim. Cosmochim. Ac., 75, 7435–7445,
https://doi.org/10.1016/j.gca.2011.09.048, 2011.
CEAZA, (Centro de Estudios Avanzados en Zonas Áridas): Estación
Salar de Huasco, available at: http://www.ceazamet.cl, last access: 23 September 2020.
Clark, I. and Fritz, P.: Environmental Isotopes in Hydrogeology, Lewis
Publishers, New York, USA, 1997.
Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and
the marine atmosphere, in: Stable Isotopes in Oceanographic Studies and
Paleotemperatures, edited by: Tongiorgi, E., Laboratorio di Geologia Nucleare, Pisa, Italy, 9–130, 1965.
Criss, R. E.: Principles of Stable Isotope Distribution, Oxford University
Press, Oxford, UK, 1999.
DGA: Balance Hídrico de Chile, MINISTERIO DE OBRAS PÚBLICAS, Santiago, Chile, 1987.
Dongmann, G., Nürnberg, H. W., Förstel, H., and Wagener, K.: On the
enrichment of H O in the leaves of transpiring plants, Radiat.
Environ. Bioph., 11, 41–52, https://doi.org/10.1007/BF01323099, 1974.
Evans, N. P., Bauska, T. K., Gázquez, F., Brenner, M., Curtis, J. H., and
Hodell, D. A.: Quantification of drought during the collapse of the classic
Maya civilization, Science, 361, 498–501,
https://doi.org/10.1126/science.aas9871, 2018.
Fritz, P., Suzuki, O., Silva, C., and Salati, E.: Isotope hydrology of
groundwaters in the Pampa del Tamarugal, Chile, J. Hydrol., 53, 161–184,
https://doi.org/10.1016/0022-1694(81)90043-3, 1981.
Garreaud, R. D. and Aceituno, P.: Interannual Rainfall Variability over the
South American Altiplano, J. Climate, 14, 2779–2789,
https://doi.org/10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2, 2001.
Garreaud, R. D., Vuille, M., and Clement, A. C.: The climate of the Altiplano:
Observed current conditions and mechanisms of past changes, Palaeogeogr.
Palaeocl., 194, 5–22,
https://doi.org/10.1016/S0031-0182(03)00269-4, 2003.
Gat, J. R. and Bowser, C.: The heavy isotope enrichment of water in coupled
evaporative systems, in: Stable Isotope Geochemistry: A Tribute to Samuel
Epstein, edited by: Taylor, H. P., O'Neil, J. R., and Kaplan, I. R., The
Geochemical Society, St Louis, MO, USA, 159–168, 1991.
Gázquez, F., Morellón, M., Bauska, T., Herwartz, D., Surma, J.,
Moreno, A., Staubwasser, M., Valero-Garcés, B., Delgado-Huertas, A., and
Hodell, D. A.: Triple oxygen and hydrogen isotopes of gypsum hydration water
for quantitative paleo-humidity reconstruction, Earth Planet. Sci. Lett.,
481, 177–188, https://doi.org/10.1016/j.epsl.2017.10.020, 2018.
Gonfiantini, R.: Environmental isotopes in lake studies, in: Handbook of
Environmental Isotope Geochemistry, edited by: Fontes, D. and Fritz, P.,
Elsevier Science, New York, NY, USA, 119–168, 1986.
Gonfiantini, R., Wassenaar, L. I., Araguas-Araguas, L. J., and Aggarwal, P. K.: A
unified Craig-Gordon isotope model of stable hydrogen and oxygen isotope
fractionation during fresh or saltwater evaporation, Geochim. Cosmochim.
Ac., 235, 224–236, https://doi.org/10.1016/j.gca.2018.05.020, 2018.
Gonfiantini, R., Wassenaar, L. I., and Araguas-Araguas, L. J.: Stable isotope
fractionations in the evaporation of water: The wind effect, Hydrol.
Process., 34, 3596–3607, https://doi.org/10.1002/hyp.13804, 2020.
Herwartz, D., Surma, J., Voigt, C., Assonov, S., and Staubwasser, M.: Triple
oxygen isotope systematics of structurally bonded water in gypsum, Geochim.
Cosmochim. Ac., 209, 254–266, https://doi.org/10.1016/j.gca.2017.04.026,
2017.
Horita, J.: Stable isotope fractionation factors of water in hydrated saline
mineral-brine systems, Earth Planet. Sci. Lett., 95, 173–179,
https://doi.org/10.1016/0012-821X(89)90175-1, 1989.
Horita, J.: Saline waters, in: Isotopes in the Water Cycle: Present and Past
Future of a Developing Science, edited by: Aggarwal, P. K., Gat, J. R.,
and Froehlich, K. F. O., Springer, Dordrecht, the Netherlands , 271–287, 2005.
Horita, J., Cole, D. R., and Wesolowski, D. J.: The activity-composition
relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II.
Vapor-liquid water equilibration of mixed salt solutions from 50 to
100∘C and geochemical implications, Geochim. Cosmochim. Ac., 57,
4703–4711, 1993.
Horita, J., Rozanski, K., Cohen, S.: Isotope effects in the evaporation of
water: a status report of the Craig-Gordon model, Isot. Environ. Healt. S.,
44, 23–49, https://doi.org/10.1080/10256010801887174, 2008.
Houston, J.: Variability of precipitation in the Atacama Desert: Its causes
and hydrological impact, Int. J. Climatol., 26, 2181–2198,
https://doi.org/10.1002/joc.1359, 2006.
Jayne, R. S., Pollyea, R. M., Dodd, J. P., Olson, E. J., and Swanson, S. K.: Spatial
and temporal constraints on regional-scale groundwater flow in the Pampa del
Tamarugal Basin, Atacama Desert, Chile, Hydrogeol. J., 24, 1921–1937,
https://doi.org/10.1007/s10040-016-1454-3, 2016.
Landais, A., Barkan, E., Yakir, D., and Luz, B.: The triple isotopic composition
of oxygen in leaf water, Geochim. Cosmochim. Ac., 70, 4105–4115,
https://doi.org/10.1016/j.gca.2006.06.1545, 2006.
Landais, A., Barkan, E., and Luz, B.: Record of δ18O and
17O-excess in ice from Vostok Antarctica during the last 150 000 years,
Geophys. Res. Lett., 35, L02709, 2008.
Landais, A., Risi, C., Bony, S., Vimeux, F., Descroix, L., Falourd, S., and
Bouygues, A.: Combined measurements of 17Oexcess and d-excess in
African monsoon precipitation: Implications for evaluating convective
parameterizations, Earth Planet. Sci. Lett., 298, 104–112,
https://doi.org/10.1016/j.epsl.2010.07.033, 2010.
Luz, B. and Barkan, E.: Variations of 17O 16O and 18O 16O
in meteoric waters, Geochim. Cosmochim. Ac., 74, 6276–6286,
https://doi.org/10.1016/j.gca.2010.08.016, 2010.
Mathieu, R. and Bariac, T.: A numerical model for the simulation of stable
isotope profiles in drying soils, J. Geophys. Res.-Atmos., 101,
12685–12696, https://doi.org/10.1029/96JD00223, 1996.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the
deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res., 84,
5029–5033, https://doi.org/10.1029/JC084iC08p05029, 1979.
Peters, L. I. and Yakir, D.: A rapid method for the sampling of atmospheric
water vapour for isotopic analysis, Rapid Commun. Mass Sp., 24, 103–108,
https://doi.org/10.1002/rcm.4359, 2010.
Risacher, F., Alonso, H., and Salazar, C.: The origin of brines and salts in
Chilean salars: A hydrochemical review, Earth-Sci. Rev., 63, 249–293,
https://doi.org/10.1016/S0012-8252(03)00037-0, 2003.
Scheihing, K., Moya, C., Struck, U., Lictevout, E., and Tröger, U.:
Reassessing Hydrological Processes That Control Stable Isotope Tracers in
Groundwater of the Atacama Desert (Northern Chile), Hydrology, 5, 3,
https://doi.org/10.3390/hydrology5010003, 2018.
Schoenemann, S. W., Schauer, A. J., and Steig, E. J.: Measurement of SLAP2 and GISP
δ17O and proposed VSMOW-SLAP normalization for δ17O and 17Oexcess, Rapid Commun. Mass Sp., 27, 582–590,
https://doi.org/10.1002/rcm.6486, 2013.
Sofer, Z. and Gat, J. R.: Activities and concentrations of oxygen-18 in
concentrated aqueous salt solutions: Analytical and geophysical
implications, Earth Planet. Sci. Lett., 15, 232–238,
https://doi.org/10.1016/0012-821X(72)90168-9, 1972.
Sofer, Z. and Gat, J. R.: The isotope composition of evaporating brines: Effect
of the isotopic activity ratio in saline solutions, Earth Planet. Sci. Lett.,
26, 179–186, https://doi.org/10.1016/0012-821X(75)90085-0, 1975.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan,
F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling system,
B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Surma, J., Assonov, S., Bolourchi, M. J., and Staubwasser, M.: Triple oxygen
isotope signatures in evaporated water bodies from the Sistan Oasis, Iran,
Geophys. Res. Lett., 42, 8456–8462, https://doi.org/10.1002/2015GL066475,
2015.
Surma, J., Assonov, S., Herwartz, D., Voigt, C., and Staubwasser, M.: The
evolution of 17O-excess in surface water of the arid environment during
recharge and evaporation, Sci. Rep.-UK, 8, 4972,
https://doi.org/10.1038/s41598-018-23151-6, 2018.
Voigt, C., Herwartz, D., Dorador, C., and Staubwasser, M.: Isotopic and ion concentration data of ponds and pan evaporation experiments conducted at the Salar del Huasco, CRC1211 Database (CRC1211DB), https://doi.org/10.5880/CRC1211DB.36, 2021.
Uribe, J., Muñoz, J. F., Gironás, J., Oyarzún, R., Aguirre, E., and
Aravena, R.: Assessing groundwater recharge in an Andean closed basin using
isotopic characterization and a rainfall-runoff model: Salar del Huasco
basin, Chile, Hydrogeol. J., 23, 1535–1551,
https://doi.org/10.1007/s10040-015-1300-z, 2015.
Short summary
Evaporation trends in the stable isotope composition (18O/16O, 17O/16O, 2H/1H) of throughflow ponds in a hydrologically complex and seasonally dynamic lake system can be reliably predicted by the classic Craig–Gordon isotope evaporation model. We demonstrate that the novel 17O-excess parameter is capable of resolving different types of evaporation with and without recharge and of identifying mixing processes that cannot be resolved using the classic δ2H–δ18O system alone.
Evaporation trends in the stable isotope composition (18O/16O, 17O/16O, 2H/1H) of throughflow...