Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5985-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5985-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the capabilities of the Surface Water and Ocean Topography (SWOT) mission for large lake water surface elevation monitoring under different wind conditions
Jean Bergeron
CORRESPONDING AUTHOR
Département de génie civil et de génie du bâtiment, Faculté de génie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
Gabriela Siles
Département de génie civil et de génie du bâtiment, Faculté de génie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
Robert Leconte
Département de génie civil et de génie du bâtiment, Faculté de génie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
Mélanie Trudel
Département de génie civil et de génie du bâtiment, Faculté de génie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
Damien Desroches
Centre National d'Études Spatiales (CNES), 31400 Toulouse, France
Daniel L. Peters
Watershed Hydrology and Ecology Research Division, Environment and
Climate Change Canada, University of Victoria, Victoria, BC, V8W 3R4, Canada
Related authors
No articles found.
Basem M. M. Mahmoud, Emily Dickson, André Renault, Mélanie Trudel, Pascale M. Biron, Leonard S. Sklar, and Jay Lacey
EGUsphere, https://doi.org/10.5194/egusphere-2025-4352, https://doi.org/10.5194/egusphere-2025-4352, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Herein, we introduce a new large outdoor river research facility to study how rivers change shape at near-real scales. Initial experiments on a straight channel resulted in little bank erosion even when the flow was perturbed by the placement of an in-channel artificial bar/pool. The results point to a narrow operational window for bar growth and bank mobility which informs on the initial conditions of future bank erosion experiments.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Cited articles
Baup, F., Frappart, F., and Maubant, J.: Combining high-resolution satellite images and altimetry to estimate the volume of small lakes, Hydrol. Earth Syst. Sci., 18, 2007–2020, https://doi.org/10.5194/hess-18-2007-2014, 2014.
Beltaos, S.: Comparing the impacts of regulation and climate on ice-jam
flooding of the Peace-Athabasca Delta, Cold Reg. Sci. Technol., 108, 49–58,
https://doi.org/10.1016/j.coldregions.2014.08.006, 2014.
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT Mission
and Its Capabilities for Land Hydrology, Surv. Geophys., 37, 307–337,
https://doi.org/10.1007/s10712-015-9346-y, 2016.
Bioresita, F., Puissant, A., Stumpf, A., and Malet, J.-P.: Fusion of
Sentinel-1 and Sentinel-2 image time series for permanent and temporary
surface water mapping, Int. J. Remote Sens., 40, 1–24, https://doi.org/10.1080/01431161.2019.1624869, 2019.
Bonsal, B. R., Peters, D. L., Seglenieks, F., Rivera, A., and Berg, A.:
Changes in freshwater availability across Canada, in: Canada's changing
climate report, edited by: Bush, E. and Lemmen, D. S., Government
of Canada, Ottawa, Ontario, Canada,
261–342, 2019.
Brenner, A. C., DiMarzio, J. P., and Zwally, H. J.: Precision and accuracy of
satellite radar and laser altimeter data over the continental ice sheets,
IEEE Trans. Geosci. Remote Sens., 45, 321–331, https://doi.org/10.1109/TGRS.2006.887172, 2007.
Bush, A., Monk, W. A., Compson, Z. G., Peters, D. L., Porter, T. M.,
Shokralla, S., Wright, M. T. G., Hajibabaei, M., and Baird, D. J.: DNA
metabarcoding reveals metacommunity dynamics in a threatened boreal wetland
wilderness, Proc. Natl. Acad. Sci., 117, 201918741, https://doi.org/10.1073/pnas.1918741117, 2020.
Bwangoy, J. R. B., Hansen, M. C., Roy, D. P., Grandi, G. D., and Justice, C.
O.: Wetland mapping in the Congo Basin using optical and radar remotely
sensed data and derived topographical indices, Remote Sens. Environ.,
114, 73–86, https://doi.org/10.1016/j.rse.2009.08.004, 2010.
Copernicus: Sentinel data 2017, available at: https://scihub.copernicus.eu/, last access: 7 December 2020.
Crétaux, J. F. and Birkett, C.: Lake studies from satellite radar
altimetry, Comptes Rendus-Geosci., 338, 1098–1112, https://doi.org/10.1016/j.crte.2006.08.002, 2006.
Crétaux, J. F., Abarca-del-Río, R., Bergé-Nguyen, M., Arsen,
A., Drolon, V., Clos, G., and Maisongrande, P.: Lake Volume Monitoring from
Space, Surv. Geophys., 37, 269–305, https://doi.org/10.1007/s10712-016-9362-6, 2016.
da Silva, J. S., Calmant, S., Seyler, F., Moreira, D. M., Oliveira, D., and
Monteiro, A.: Radar altimetry aids managing gauge networks, Water Resour.
Manag., 28, 587–603, https://doi.org/10.1007/s11269-013-0484-z, 2014.
Ding, X. W. and Li, X. F.: Monitoring of the water-area variations of Lake
Dongting in China with ENVISAT ASAR images, Int. J. Appl. Earth Obs.
Geoinf., 13, 894–901, https://doi.org/10.1016/j.jag.2011.06.009, 2011.
Domeneghetti, A., Schumann, G. J. P., Frasson, R. P. M., Wei, R., Pavelsky,
T. M., Castellarin, A., Brath, A., and Durand, M. T.: Characterizing water
surface elevation under different flow conditions for the upcoming SWOT
mission, J. Hydrol., 561, 848–861, https://doi.org/10.1016/j.jhydrol.2018.04.046, 2018.
Duan, Z. and Bastiaanssen, W. G. M.: Estimating water volume variations in
lakes and reservoirs from four operational satellite altimetry databases and
satellite imagery data, Remote Sens. Environ., 134, 403–416, https://doi.org/10.1016/j.rse.2013.03.010, 2013.
Farhadzadeh, A., Hashemi, M. R., and Neill, S.: Characterizing the Great
Lakes hydrokinetic renewable energy resource: Lake Erie wave, surge and
seiche characteristics, Energy, 128, 661–675, https://doi.org/10.1016/j.energy.2017.04.064, 2017.
Fjørtoft, R., Gaudin, J. M., Pourthié, N., Lalaurie, J. C., Mallet,
A., Nouvel, J. F., Martinot-Lagarde, J., Oriot, H., Borderies, P., Ruiz, C.,
and Daniel, S.: KaRIn on SWOT: Characteristics of near-nadir Ka-band
interferometric SAR imagery, IEEE Trans. Geosci. Remote Sens., 52,
2172–2185, https://doi.org/10.1109/TGRS.2013.2258402, 2014.
Frappart, F., Fatras, C., Mougin, E., Marieu, V., Diepkilé, A. T.,
Blarel, F., and Borderies, P.: Radar altimetry backscattering signatures at
Ka, Ku, C, and S bands over West Africa, Phys. Chem. Earth, 83/84, 96–110,
https://doi.org/10.1016/j.pce.2015.05.001, 2015.
Frasson, R. P. D. M., Wei, R., Durand, M., Minear, J. T., Domeneghetti, A.,
Schumann, G., Williams, B. A., Rodriguez, E., Picamilh, C., Lion, C.,
Pavelsky, T., and Garambois, P.-A.: Automated River Reach Definition
Strategies: Applications for the Surface Water and Ocean Topography Mission,
Water Resour. Res., 53, 8164–8186, https://doi.org/10.1002/2017WR020887, 2017.
Garambois, P. A. and Monnier, J.: Inference of effective river properties
from remotely sensed observations of water surface, Adv. Water Resour., 79,
103–120, https://doi.org/10.1016/j.advwatres.2015.02.007, 2015.
Gardelle, J., Hiernaux, P., Kergoat, L., and Grippa, M.: Less rain, more water in ponds: a remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali), Hydrol. Earth Syst. Sci., 14, 309–324, https://doi.org/10.5194/hess-14-309-2010, 2010.
Gleason, C. J. and Hamdan, A. N.: Crossing the (watershed) divide: satellite
data and the changing politics of international river basins, Geogr. J.,
183, 2–15, https://doi.org/10.1111/geoj.12155, 2017.
Gleason, C. J., Smith, L. C., and Lee, J.: Retrieval of river discharge
solely from satellite imagery and at-many-stations hydraulic geometry:
Sensitivity to river form and optimization parameters, Water Resour. Res.,
50, 9604–9619, https://doi.org/10.1002/2014WR016109, 2014.
Gleeson, R.: Caterpillars invade Great Slave Lake area, CBC News, available at: https://www.cbc.ca/news/canada/north/caterpillars-invade-great-slave-lake-1.4161384 (last access: 16 December 2020),
2017.
Grippa, M., Rouzies, C., Biancamaria, S., Blumstein, D., Cretaux, J. F.,
Gal, L., Robert, E., Gosset, M., and Kergoat, L.: Potential of SWOT for
Monitoring Water Volumes in Sahelian Ponds and Lakes, IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens., 12, 2541–2549, https://doi.org/10.1109/JSTARS.2019.2901434, 2019.
Häfliger, V., Martin, E., Boone, A., Ricci, S., and Biancamaria, S.:
Assimilation of Synthetic SWOT River Depths in a Regional
Hydrometeorological Model, Water, 11, 78, https://doi.org/10.3390/w11010078, 2019.
Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., and Xiao, T.: An Automated
Method for Extracting Rivers and Lakes from Landsat Imagery, Remote Sens.,
6, 5067–5089, https://doi.org/10.3390/rs6065067, 2014.
Kim, J. W., Lu, Z., Lee, H., Shum, C. K., Swarzenski, C. M., Doyle, T. W.,
and Baek, S. H.: Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT
altimeter data for mapping of absolute water level changes in Louisiana
wetlands, Remote Sens. Environ., 113, 2356–2365, https://doi.org/10.1016/j.rse.2009.06.014, 2009.
Leconte, R., Pietroniro, A., Peters, D. L., and Prowse, T. D.: Effects of
flow regulation on hydrologic patterns of a large, inland delta, Regul.
Rivers Res. Manag., 17, 51–65, https://doi.org/10.1002/1099-1646(200101/02)17:1<51::AID-RRR588>3.0.CO;2-V, 2001.
Maheu, C., Cazenave, A., and Mechoso, C. R.: Water level fluctuations in the Plata Basin (South America) from
Topex/Poseidon Satellite Altimetry, Geophys. Res. Lett., 30, 1143,
https://doi.org/10.1029/2002GL016033, 2003.
Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., and Motagh, M.:
Wetland Water Level Monitoring Using Interferometric Synthetic Aperture
Radar (InSAR): A Review, Can. J. Remote Sens., 44, 247–262,
https://doi.org/10.1080/07038992.2018.1477680, 2018.
Moller, D. and Esteban-Fernandez, D.: Near-Nadir Ka-band Field Observations
of Freshwater Bodies, in: Remote Sensing of the Terrestrial Water Cycle, edited by: Lakshmi, V., Alsdorf, D., Anderson, M., Biancamaria, S., Cosh, M., Entin, J., Huffman, G., Kustas, W., van Oevelen, P., Painter, T., Parajka, J., Rodell, M., and Rüdiger, C., American Geophysical Union (AGU), Washington, DC, USA, https://doi.org/10.1002/9781118872086.ch9, 2014.
Munier, S., Polebistki, A., Brown, C., Belaud, G., and Lettenmaier, D. P.:
SWOT data assimilation for operational reservoir management on the upper
Niger River Basin, Water Resour. Res., 51, 554–575, https://doi.org/10.1002/2014WR016157, 2015.
Musa, Z. N., Popescu, I., and Mynett, A.: A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation, Hydrol. Earth Syst. Sci., 19, 3755–3769, https://doi.org/10.5194/hess-19-3755-2015, 2015.
Oubanas, H., Gejadze, I., Malaterre, P.-O., Durand, M., Wei, R., Frasson,
R. P. M., and Domeneghetti, A.: Discharge Estimation in Ungauged Basins
Through Variational Data Assimilation: The Potential of the SWOT Mission,
Water Resour. Res., 54, 2405–2423, https://doi.org/10.1002/2017WR021735, 2018.
Palmer, S. C. J., Kutser, T., and Hunter, P. D.: Remote sensing of inland
waters: Challenges, progress and future directions, Remote Sens. Environ.,
157, 1–8, https://doi.org/10.1016/j.rse.2014.09.021, 2015.
Pavelsky, T. M., Durand, M. T., Andreadis, K. M., Beighley, R. E., Paiva, R.
C. D., Allen, G. H., and Miller, Z. F.: Assessing the potential global extent
of SWOT river discharge observations, J. Hydrol., 519, 1516–1525,
https://doi.org/10.1016/j.jhydrol.2014.08.044, 2014.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature,
540, 418–422, https://doi.org/10.1038/nature20584, 2016.
Peral, E., Rodriguez, E., Moller, D., McAdams, M., Johnson, M., Andreadis,
K., Arumugam, D., and Williams, B.: SWOT L1b Hydrology Simulator User Guide,
Version 2, Jet Propulsion Laboratory, Pasadena, California, USA, 32 pp., 2014.
Peters, D. L. and Buttle, J. M.: The effects of flow regulation and climatic
variability on obstructed drainage and reverse flow contribution in a
Northern river-lake-Delta complex, Mackenzie basin headwaters, River Res.
Appl., 26, 1065–1089, https://doi.org/10.1002/rra.1314, 2010.
Peters, D. L., Prowse, T. D., Marsh, P., Lafleur, P. M., and Buttle, J. M.:
Persistence of water within perched basins of the Peace-Athabasca Delta,
Northern Canada, Wetl. Ecol. Manag., 14, 221–243, https://doi.org/10.1007/s11273-005-1114-1, 2006a.
Peters, D. L., Prowse, T. D., Pietroniro, A., and Leconte, R.: Flood
hydrology of the Peace-Athabasca Delta, northern Canada, Hydrol. Process.,
20, 4073–4096, https://doi.org/10.1002/hyp.6420, 2006b.
Phillips, D.: The Climates of Canada, Ottawa, Ontario, Canada, Government of Canada Publications, 181 pp., ISBN 978-0-660-20296-9, 1990.
Pietroniro, A., Peters, D. L., Yang, D., Fiset, J.-M., Saint-Jean, R.,
Fortin, V., Leconte, R., Bergeron, J., Llanet Siles, G., Trudel, M.,
Garnaud, C., Matte, P., Smith, L. C., Gleason, C. J., and Pavelsky, T. M.:
Canada's Contributions to the SWOT Mission – Terrestrial Hydrology(SWOT-C
TH), Can. J. Remote Sens., 45, 116–138, https://doi.org/10.1080/07038992.2019.1581056, 2019.
Pottier, C. and Cazals, C.: Prior Lake Database, SWOT Science Team
Meeting 2019,
Bordeaux, France, available at: https://www.aviso.altimetry.fr/fileadmin/documents/user_corner/SWOTST/SWOTST2019/oral/Hydrology_Data_Products_Workshop/07_SWOT_ST_LakeDb_Pottier-v3.pdf
(last access: 16 December 2020), 2019.
Rahman, M. S. and Di, L.: The state of the art of spaceborne remote sensing
in flood management, Nat. Hazards, 85, 1223–1248, https://doi.org/10.1007/s11069-016-2601-9, 2017.
Secretan, Y.: H2D2 Software, available at: http://www.gre-ehn.ete.inrs.ca/H2D2 (last access: 10 April 2020), 2013.
Siles, G., Trudel, M., Peters, D. L., and Leconte, R.: Hydrological
monitoring of high-latitude shallow water bodies from high-resolution
space-borne D-InSAR, Remote Sens. Environ., 236, 111444, https://doi.org/10.1016/j.rse.2019.111444, 2020.
Solander, K. C., Reager, J. T., and Famiglietti, J. S.: How well will the
Surface Water and Ocean Topography (SWOT) mission observe global
reservoirs?, Water Resour. Res., 52, 2123–2140, https://doi.org/10.1002/2015WR017952, 2016.
Timoney, K. P.: Peace-Athabasca Delta?: Portrait of a Dynamic Ecosystem, The
University of Alberta Press, Edmonton, Alberta, Canada, 2013.
Töyrä, J., Pietroniro, A., Martz, L. W., and Prowse, T. D.: A
multi-sensor approach to wetland flood monitoring, Hydrol. Process., 16,
1569–1581, https://doi.org/10.1002/hyp.1021, 2002.
Ulaby, F. T. and Long, D. G.: Microwave radar and radiometric remote
sensing, The University of Michigan Press, Ann Arbor, Michigan, USA, 2014.
Wang, X., Cheng, X., Gong, P., Huang, H., Li, Z., and Li, X.: Earth science
applications of ICESat/GLAS, Int. J. Remote Sens., 32, 8837–8864,
https://doi.org/10.1080/01431161.2010.547533, 2011.
Ward, E. M. and Gorelick, S. M.: Drying drives decline in muskrat population
in the Peace-Athabasca Delta, Canada, Environ. Res. Lett., 13, 124026,
https://doi.org/10.1088/1748-9326/aaf0ec, 2018.
Yoon, Y., Durand, M., Merry, C. J., Clark, E. A., Andreadis, K. M., and
Alsdorf, D. E.: Estimating river bathymetry from data assimilation of
synthetic SWOT measurements, J. Hydrol., 464/465, 363–375, https://doi.org/10.1016/j.jhydrol.2012.07.028, 2012.
Zeng, L., Schmitt, M., Li, L., and Zhu, X. X.: Analysing changes of the
Poyang Lake water area using Sentinel-1 synthetic aperture radar imagery,
Int. J. Remote Sens., 38, 7041–7069, https://doi.org/10.1080/01431161.2017.1370151, 2017.
Short summary
We want to assess how well the Surface Water and Ocean Topography (SWOT) satellite mission will be able to provide information on lake surface water elevation and how much of an impact wind conditions (speed and direction) can have on these retrievals.
We want to assess how well the Surface Water and Ocean Topography (SWOT) satellite mission will...