Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5781-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5781-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The value of citizen science for flood risk reduction: cost–benefit analysis of a citizen observatory in the Brenta-Bacchiglione catchment
Michele Ferri
CORRESPONDING AUTHOR
Alto-Adriatico Water Authority/Autorità di bacino distrettuale
delle Alpi orientali (AAWA), Cannaregio 4314, 30121 Venice, Italy
Uta Wehn
IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, the Netherlands
Linda See
International Institute for Applied Systems Analysis (IIASA),
Schlossplatz 1, 2361 Laxenburg, Austria
Martina Monego
Alto-Adriatico Water Authority/Autorità di bacino distrettuale
delle Alpi orientali (AAWA), Cannaregio 4314, 30121 Venice, Italy
Steffen Fritz
International Institute for Applied Systems Analysis (IIASA),
Schlossplatz 1, 2361 Laxenburg, Austria
Related authors
No articles found.
Myroslava Lesiv, Steffen Fritz, Martina Duerauer, Ivelina Georgieva, Marcel Buchhorn, Luc Bertels, Nandika Tsendbazar, Ruben Van De Kerchove, Daniele Zanaga, Dmitry Schepaschenko, Linda See, Martin Herold, Bruno Smets, Michael Cherlet, and Ian Mccallum
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-468, https://doi.org/10.5194/essd-2025-468, 2025
Preprint under review for ESSD
Short summary
Short summary
This paper presents a unique global reference data set for land cover mapping at a 10 m resolution, aligned with Sentinel-2 imagery for the year 2015. It contains more than 16.5 million data records at a 10 m resolution (or 165 K data records at 100 m) and information on 12 different land cover classes. The data set was collected by a group of experts through visual interpretation of very high resolution imagery, along with other sources of information provided in the Geo-Wiki platform.
Nicolas Lampach, Jon Olav Skøien, Helena Ramos, Julien Gaffuri, Renate Koeble, Linda See, and Marijn van der Velde
Earth Syst. Sci. Data, 17, 3893–3919, https://doi.org/10.5194/essd-17-3893-2025, https://doi.org/10.5194/essd-17-3893-2025, 2025
Short summary
Short summary
Eurostat and the Joint Research Centre developed a new methodology to make geospatial data from agricultural census available to users while ensuring that no confidential information from individuals is disclosed. The geospatial data presented in the article correspond to the contextual indicators of the monitoring framework of the Common Agricultural Policy. Our exploratory analysis reveals several interesting patterns which contribute to the broader debate on the future of European agriculture.
Clément Bourgoin, Astrid Verhegghen, Silvia Carboni, Iban Ameztoy, Lucas Degreve, Steffen Fritz, Martin Herold, Nandika Tsendbazar, Myroslava Lesiv, Fréderic Achard, and René Colditz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-351, https://doi.org/10.5194/essd-2025-351, 2025
Preprint under review for ESSD
Short summary
Short summary
In the context of the EU Deforestation Regulation (EUDR), forest maps can support operators in the assessment of the risk of deforestation after year 2020. Here we present the Global Forest Cover map of year 2020, derived from the combination of most recent publicly available land cover and land use datasets. The map is a globally-consistent representation of the presence/absence of forests based on EUDR definitions, but its use is not mandatory, not exclusive and not legally binding.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Kristof Van Tricht, Jeroen Degerickx, Sven Gilliams, Daniele Zanaga, Marjorie Battude, Alex Grosu, Joost Brombacher, Myroslava Lesiv, Juan Carlos Laso Bayas, Santosh Karanam, Steffen Fritz, Inbal Becker-Reshef, Belén Franch, Bertran Mollà-Bononad, Hendrik Boogaard, Arun Kumar Pratihast, Benjamin Koetz, and Zoltan Szantoi
Earth Syst. Sci. Data, 15, 5491–5515, https://doi.org/10.5194/essd-15-5491-2023, https://doi.org/10.5194/essd-15-5491-2023, 2023
Short summary
Short summary
WorldCereal is a global mapping system that addresses food security challenges. It provides seasonal updates on crop areas and irrigation practices, enabling informed decision-making for sustainable agriculture. Our global products offer insights into temporary crop extent, seasonal crop type maps, and seasonal irrigation patterns. WorldCereal is an open-source tool that utilizes space-based technologies, revolutionizing global agricultural mapping.
Qiangyi Yu, Liangzhi You, Ulrike Wood-Sichra, Yating Ru, Alison K. B. Joglekar, Steffen Fritz, Wei Xiong, Miao Lu, Wenbin Wu, and Peng Yang
Earth Syst. Sci. Data, 12, 3545–3572, https://doi.org/10.5194/essd-12-3545-2020, https://doi.org/10.5194/essd-12-3545-2020, 2020
Short summary
Short summary
SPAM makes plausible estimates of crop distribution within disaggregated units. It moves the data from coarser units such as countries and provinces to finer units such as grid cells and creates a global gridscape at the confluence between earth and agricultural-production systems. It improves spatial understanding of crop production systems and allows policymakers to better target agricultural- and rural-development policies for increasing food security with minimal environmental impacts.
Miao Lu, Wenbin Wu, Liangzhi You, Linda See, Steffen Fritz, Qiangyi Yu, Yanbing Wei, Di Chen, Peng Yang, and Bing Xue
Earth Syst. Sci. Data, 12, 1913–1928, https://doi.org/10.5194/essd-12-1913-2020, https://doi.org/10.5194/essd-12-1913-2020, 2020
Short summary
Short summary
Global cropland distribution is critical for agricultural monitoring and food security. We propose a new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and multilevel statistics of cropland area, which is independent of training samples. The synergy map has higher accuracy than the input datasets and better consistency with the cropland statistics.
Cited articles
Alfonso, L., Gharesifard, M., and Wehn, U.: Complementarity and cost per observation to value the potential of citizen science, Environ. Sci. Policy, in review, 2020.
Assumpção, T. H., Popescu, I., Jonoski, A., and Solomatine, D. P.:
Citizen observations contributing to flood modelling: Opportunities and
challenges, Hydrol. Earth Syst. Sci., 22, 1473–1489,
https://doi.org/10.5194/hess-22-1473-2018, 2018.
Balbi, S., Giupponi, C., Gain, A., Mojtahed, V., Gallina, V., Torresan, S.,
and Marcomini, A.: The KULTURisk Framework (KR-FWK): A conceptual framework
for comprehensive assessment of risk prevention measures, Deliverable 1.6,
KULTURisk Project 265280, available at: http://www.kulturisk.eu/results/wp1 (last access: 2 December 2020), 2012.
Beinat, E.: Value Functions for Environmental Management, Kluwer Academic
Publishers, the Netherlands, 1997.
Biausque, V.: The Value of Statistical Life: A Meta-Analysis, ENV/EPOC/WPNEP(2010)9/FINAL. Working Party on National Environmental Policies, OECD, Paris, 2012.
Blaney, R. J. P., Philippe, A. C. V., Pocock, M. J. O., and Jones, G. D.:
Citizen Science and Environmental Monitoring: Towards a Methodology for
Evaluating Opportunities, Costs and Benefits, UK Environmental Observation
Framework, available at:
http://www.ukeof.org.uk/resources/citizen-science-resources/Costbenefitcitizenscience.pdf
(last access: 2 December 2020), 2016.
Bremer, S., Haque, M. M., Aziz, S. B., and Kvamme, S.: `My new routine':
Assessing the impact of citizen science on climate adaptation in Bangladesh,
Environ. Sci. Policy, 94, 245–257, https://doi.org/10.1016/j.envsci.2018.12.029, 2019.
Chanson, H. and Brown, R.: Stability of individuals during urban inundations: What should we learn from field observations?, Geosciences, 8, 341, https://doi.org/10.3390/geosciences8090341, 2018.
Citeau, J.-M.: A New Control Concept in the Oise Catchment Area. Definition
and Assessment of Flood Compatible Agricultural Activities, FIG working week, Paris, France, 2003.
Clausen, L. and Clark, P. B.: The development of criteria for predicting dambreak flood damages using modelling of historical dam failures, in:
Proceedings of the International Conference on River Flood Hydraulics, 17–20 September 1990, edited by: White, W. R., John Wiley & Sons Ltd. and Hydraulics Research Limited, Chichester, UK, New York, NY, USA, 369–380, 1990.
CRED: Natural Disasters 2018, available at:
https://reliefweb.int/report/world/natural-disasters-2018 (last access: 2 December 2020), 2019.
Davids, J. C., Devkota, N., Pandey, A., Prajapati, R., Ertis, B. A., Rutten,
M. M., Lyon, S. W., Bogaard, T. A., and van de Giesen, N.: Soda Bottle Science – Citizen Science Monsoon Precipitation Monitoring in Nepal, Front.
Earth Sci., 7, 46, https://doi.org/10.3389/feart.2019.00046, 2019.
DEFRA and UK Environment Agency: Flood and Coastal Defence R&D Program:
Flood Risk to People, Phase 2, FD2321/TR2 Guidance Document, DEFRA and UK Environment Agency, London, UK, 2006.
EU: Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060
(last access: 2 December 2020), 2007.
Ferri, M., Norbiato, D., Monego, M., Galli, A., Gualdi, S., Bucchignani, E.,
and Baruffi, F.: Impact of climate change on hydrological regimes and water
resources in TRUST (Life+ 2007) project, in: Proceedings of Hydropredict 2010, Prague, Czech Republic, 2010.
Goldstein, E. A., Lawton, C., Sheehy, E., and Butler, F.: Locating species
range frontiers: a cost and efficiency comparison of citizen science and
hair-tube survey methods for use in tracking an invasive squirrel, Wildl.
Res., 41, 64–75, https://doi.org/10.1071/WR13197, 2014.
Hadj-Hammou, J., Loiselle, S., Ophof, D., and Thornhill, I.: Getting the full
picture: Assessing the complementarity of citizen science and agency monitoring data, edited by: Humbert, J.-F., PLoS ONE, 12, e0188507,
https://doi.org/10.1371/journal.pone.0188507, 2017.
Howe, J.: The rise of crowdsourcing, Wired Mag., 14, 1–4, 2006.
Hsu, W.-K., Huang, P.-C., Chang, C.-C., Chen, C.-W., Hung, D.-M., and Chiang,
W.-L.: An integrated flood risk assessment model for property insurance industry in Taiwan, Nat. Hazards, 58, 1295–1309, https://doi.org/10.1007/s11069-011-9732-9, 2011.
Huizinga, H. J.: Flood damage functions for EU member states, Technical
Report, HKV Consultants, Implemented in the framework of the contract #382441-F1SC awarded by the European Commission, Joint Research Centre, Publications Office of the European Union, Luxembourg, 2007.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, 2012.
ISPRA: Proposta metodologica per l'aggiornamento delle mappe di pericolosità e di rischio, Attuazione della Direttiva 2007/60/CE/
relative alla valutazione e alla gestione dei rischi da alluvioni (Decreto
Legislativo n. 49/2010), Istituto Superiore per la Protezione e la Ricerca
Ambientale (ISPRA), Roma, 2012.
Lanfranchi, V., Wrigley, S., Ireson, N., Ciravegna, F., and Wehn, U.: Citizens' observatories for situation awareness in flooding, in: Proceedings
of the 11th International ISCRAM Conference (Information Systems for Crisis
and Response Management), edited by: Hiltz, S. R., Pfaff, M. S., Plotnick, L., and Shih, P. C., 18–21 May 2014, University Park, Pennsylvania, USA,
145–154, 2014.
Lechowska, E.: What determines flood risk perception? A review of factors of
flood risk perception and relations between its basic elements, Nat. Hazards,
94, 1341–1366, https://doi.org/10.1007/s11069-018-3480-z, 2018.
Lenzi, A. and Millo, G.: Regional Heterogeneity and Spatial Spillovers in the Italian Insurance Market, WP1/05, Assicurazaioni Generali, Trieste, Italy, 2005.
Levy, J. K. and Hall, J.: Advances in flood risk management under uncertainty, Stoch. Environ. Res. Risk A., 19, 375–377,
https://doi.org/10.1007/s00477-005-0005-6, 2005.
Liu, H.-Y., Kobernus, M., Broday, D., and Bartonova, A.: A conceptual approach to a citizens' observatory – supporting community-based environmental governance, Environ. Health, 13, 107, https://doi.org/10.1186/1476-069X-13-107, 2014.
Maijala, T.: Rescdam: Development of rescue actions based on dam-break flood
analysis, Final Report, Grant agreement no. Subv 99/52623 Community Action
Programme in the field of civil protection, Finnish Environment Institute, Helsinki, 2001.
Mazumdar, S., Lanfranchi, V., Ireson, N., Wrigley, S., Bagnasco, C., Wehn,
U., McDonagh, R., Ferri, M., McCarthy, S., Huwald, H., and Ciravegna, F.:
Citizens observatories for effective Earth observations: the WeSenseIt approach, Environ. Scient., 25, 56–61, 2016.
Mazzoleni, M., Verlaan, M., Alfonso, L., Monego, M., Norbiato, D., Ferri, M.,
and Solomatine, D. P.: Can assimilation of crowdsourced data in hydrological
modelling improve flood prediction?, Hydrol. Earth Syst. Sci., 21, 839–861, https://doi.org/10.5194/hess-21-839-2017, 2017.
Mazzoleni, M., Cortes Arevalo, V. J., Wehn, U., Alfonso, L., Norbiato, D.,
Monego, M., Ferri, M., and Solomatine, D. P.: Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a
modelling study based on the 2013 flood event in the Bacchiglione catchment
(Italy), Hydrol. Earth Syst. Sci., 22, 391–416, https://doi.org/10.5194/hess-22-391-2018, 2018.
Merz, B., Hall, J., Disse, M., and Schumann, A.: Fluvial flood risk management in a changing world, Nat. Hazards Earth Syst. Sci., 10, 509–527, https://doi.org/10.5194/nhess-10-509-2010, 2010.
Meyer, V., Haase, D., and Scheuer, S.: GIS-based multicriteria analysis as
decision support in flood risk management, UFZ Discussion Paper, No. 6/2007,
Helmholtz-Zentrum für Umweltforschung (UFZ), Leipzig, available at:
https://www.econstor.eu/bitstream/10419/45237/1/548359628.pdf (last access: 2 December 2020), 2007.
Mojtahed, V., Giupponi, C., Biscaro, C., Gain, A. K., and Balbi, S.: Integrated Assesment of natural Hazards and Climate Change Adaptation: The
SERRA Methodology, Dept. of Economics Research Paper Series No. 07/WP/2013, Università Cà Foscari of Venice, Venice, 2013.
Müller, U.: Implementation of the flood risk management directive in
selected European countries, Int. J. Disast. Risk Sci., 4, 115–125,
https://doi.org/10.1007/s13753-013-0013-y, 2013.
National Research Council: Tying Flood Insurance to Flood Risk for Low-Lying
Structures in the Floodplain, National Academies Press, Washington, D.C., 2015.
Njue, N., Stenfert Kroese, J., Gräf, J., Jacobs, S. R., Weeser, B., Breuer, L., and Rufino, M. C.: Citizen science in hydrological monitoring and
ecosystem services management: State of the art and future prospects, Sci. Total Environ., 693, 133531, https://doi.org/10.1016/j.scitotenv.2019.07.337, 2019.
Penning-Rowsell, E., Floyd, P., Ramsbottom, D., and Surendran, S.: Estimating
Injury and Loss of Life in Floods: A Deterministic Framework, Nat. Hazards, 36, 43–64, https://doi.org/10.1007/s11069-004-4538-7, 2005.
Provincia Autonoma di Trento: Piano Generale di Utilizzazione delle Acque
Pubbliche, Parte IV, DPR 5/02/2006, Provincia Autonoma di Trento, Trento, Italy, 2006.
Ramsbottom, D. S., Wade, S., Bain, V., Hassan, M., Penning-Rowsell, E., Wilson, T., Fernandez, A., House, M., and Floyd, P.: R&D Outputs: Flood
Risks to People, Phase 2, FD2321/IR2, Department for the Environment, Food and Rural Affairs/Environment Agency, London, UK, 2004.
Reiter, P.: International methods of Risk Analysis, Damage evaluation and
social impact studies concerning Dam-Break accidents, EU-Project RESCDAM,
Helsinki PR Water Consulting, Helsinki, 2000.
Schiermeier, Q.: Increased flood risk linked to global warming, Nature, 470, 316, https://doi.org/10.1038/470316a, 2011.
Schroter, K., Velasco, C., Nachtnebel, H. P., Kahl, B., Beyene, M., Rubin, C., and Gocht, M.: Effectiveness and Efficiency of Early Warning System for
flash floods, CRUE Research Report No. I-5, Defra, London, UK, 2008.
Shand, T. D., Cox, R. J., Blacka, M. J., and Smith, G. P.: Australian Rainfall and Runoff Project 10: Appropriate Safety Criteria for Vehicles –
Literature Review, Stage 2 Report, University of New South Wales, Manly Vale, Australia, 2011.
Sheldon, D. and Ashcroft, R.: Citizen Science – where has it come from?, Environ. Scient., 25, 4–11, 2016.
Shirk, J. L., Ballard, H. L., Wilderman, C. C., Phillips, T., Wiggins, A.,
Jordan, R., McCallie, E., Minarchek, M., Lewenstein, B. V., Krasny, M. E., and Bonney, R.: Public participation in scientific research: A framework for
deliberate design, Ecol. Soc., 17, 29, https://doi.org/10.5751/ES-04705-170229, 2012.
Smith, P. J., Brown, S., and Dugar, S.: Community-based early warning systems
for flood risk mitigation in Nepal, Nat. Hazards Earth Syst. Sci., 17, 423–437, https://doi.org/10.5194/nhess-17-423-2017, 2017.
Steemans, C.: Coordination of Information on the Environment (CORINE), in:
Encyclopedia of Geographic Information Science, edited by: Kemp, K., Sage Publications Inc., Thousand Oaks, CA, 49–50, 2008.
Tanoue, M., Hirabayashi, Y., and Ikeuchi, H.: Global-scale river flood
vulnerability in the last 50 years, Sci. Rep., 6, 36021,
https://doi.org/10.1038/srep36021, 2016.
Thistlethwaite, J., Henstra, D., Brown, C., and Scott, D.: How Flood Experience and Risk Perception Influences Protective Actions and Behaviours
among Canadian Homeowners, Environ. Manage., 61, 197–208,
https://doi.org/10.1007/s00267-017-0969-2, 2018.
Thornhill, I., Loiselle, S., Lind, K., and Ophof, D.: The Citizen Science
Opportunity for Researchers and Agencies, BioScience, 66, 720–721,
https://doi.org/10.1093/biosci/biw089, 2016.
Torresan, S., Gallina, V., Critto, A., Zabeo, A., Semenzin, E., and Marcomini, A.: D.1.7. Part A. Development of a risk assessment methodology
to estimate risk levels, KULTURisk Project 265280, available at: http://www.kulturisk.eu/results/wp1 (last access: 2 December 2020), 2012.
van der Veen, A., Steenge, A. E., Bockarjova, M., and Logtmeijer, C.: Structural economic effects of large scale inundation: A simulation of the
Krimpen dike breakage, in: The Role of Flood Impact Assessment in Flood Defence Policies, edited by: Vrouwenvelder, A., Delft Cluster, TUD, Delft, the Netherlands, 1–50, 2003.
Wehn, U. and Evers, J.: The social innovation potential of ICT-enabled
citizen observatories to increase eParticipation in local flood risk management, Technol. Soc., 42, 187–198, https://doi.org/10.1016/j.techsoc.2015.05.002, 2015.
Wehn, U., McCarthy, S., Lanfranchi, V., and Tapsell, S. M.: Citizen observatories as facilitators of change in water governance? Experiences from three European cases, Environ. Eng. Manage. J., 14, 2073–2086, 2015.
Wehn, U., Gharesifard, M., Anema, K., Alfonso, L., and Mazzoleni, M.: Initial
validation and socio-economic impacts report, Ground Truth 2.0 project deliverable D1.11, IHE Delft Institute for Water Education, Delft, the Netherlands, September 2019.
Wehn, U., Gharesifard, M., and Bilbao, A.: Report on IA methods adapted to CS, MICS project deliverable D2.2, IHE Delft Institute for Water Education, Delft, the Netherlands, 2020.
Werner, M., Reggiani, P., Roo, A. D., Bates, P., and Sprokkereef, E.: Flood
Forecasting and Warning at the River Basin and at the European Scale, Nat. Hazards, 36, 25–42, https://doi.org/10.1007/s11069-004-4537-8, 2005.
WP7 WSI Team: Case studies methodology and Design, Deliverable 7.10,
WeSenseit Project FP7/2007-2013-308429, University of Sheffield, Sheffield, UK, 2013.
Short summary
As part of the flood risk management strategy of the
Brenta-Bacchiglione catchment (Italy), a citizen observatory for flood risk management is currently being implemented. A cost–benefit analysis of the citizen observatory was undertaken to demonstrate the value of this approach in monetary terms. Results show a reduction in avoided damage of 45 % compared to a scenario without implementation of the citizen observatory. The idea is to promote this methodology for future flood risk management.
As part of the flood risk management strategy of the
Brenta-Bacchiglione catchment (Italy), a...