Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 24, issue 4
Hydrol. Earth Syst. Sci., 24, 1927–1938, 2020
https://doi.org/10.5194/hess-24-1927-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 24, 1927–1938, 2020
https://doi.org/10.5194/hess-24-1927-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 16 Apr 2020

Research article | 16 Apr 2020

Global assessment of how averaging over spatial heterogeneity in precipitation and potential evapotranspiration affects modeled evapotranspiration rates

Elham Rouholahnejad Freund et al.

Viewed

Total article views: 1,816 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,398 401 17 1,816 26 11 22
  • HTML: 1,398
  • PDF: 401
  • XML: 17
  • Total: 1,816
  • Supplement: 26
  • BibTeX: 11
  • EndNote: 22
Views and downloads (calculated since 15 Mar 2019)
Cumulative views and downloads (calculated since 15 Mar 2019)

Viewed (geographical distribution)

Total article views: 1,265 (including HTML, PDF, and XML) Thereof 1,248 with geography defined and 17 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 21 Oct 2020
Publications Copernicus
Download
Short summary
Evapotranspiration (ET) rates and properties that regulate them are spatially heterogeneous. Averaging over spatial heterogeneity in precipitation (P) and potential evapotranspiration (PET) as the main drivers of ET may lead to biased estimates of energy and water fluxes from the land to the atmosphere. We show that this bias is largest in mountainous terrains, in regions with temperate climates and dry summers, and in landscapes where spatial variations in P and PET are inversely correlated.
Evapotranspiration (ET) rates and properties that regulate them are spatially heterogeneous....
Citation