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Abstract. Accurately estimating large-scale evapotranspira-
tion (ET) rates is essential to understanding and predicting
global change. Evapotranspiration models that are applied at
a continental scale typically operate on relatively large spa-
tial grids, with the result that the heterogeneity in land sur-
face properties and processes at smaller spatial scales can-
not be explicitly represented. Averaging over this spatial het-
erogeneity may lead to biased estimates of energy and wa-
ter fluxes. Here we estimate how averaging over spatial het-
erogeneity in precipitation (P ) and potential evapotranspira-
tion (PET) may affect grid-cell-averaged evapotranspiration
rates, as seen from the atmosphere over heterogeneous land-
scapes across the globe. Our goal is to identify where, un-
der what conditions, and at what scales this “heterogeneity
bias” could be most important but not to quantify its abso-
lute magnitude. We use Budyko curves as simple functions
that relate ET to precipitation and potential evapotranspira-
tion. Because the relationships driving ET are nonlinear, av-
eraging over subgrid heterogeneity in P and PET will lead
to biased estimates of average ET. We examine the global
distribution of this bias, its scale dependence, and its sensi-
tivity to variations in P vs. PET. Our analysis shows that this
heterogeneity bias is more pronounced in mountainous ter-
rain, in landscapes where spatial variations in P and PET are
inversely correlated, and in regions with temperate climates
and dry summers. We also show that this heterogeneity bias

increases on average, and expands over larger areas, as the
grid cell size increases.

1 Introduction

Estimates of evapotranspiration (ET) fluxes have significant
implications for future temperature predictions. Smaller ET
fluxes imply greater sensible heat fluxes and, therefore, drier
and warmer conditions in the context of climate change
(Seneviratne et al., 2010). Surface evaporative fluxes (and
thus energy partitioning over land surfaces) are nonlinear
functions of available water and energy and thus are cou-
pled to spatially heterogeneous surface characteristics (e.g.,
soil type, vegetation, and topography) and meteorological
inputs (e.g., radiative flux, wind, and precipitation; Kalma
et al., 2008; Shahraeeni and Or, 2010; Holland et al., 2013).
These characteristics are spatially variable on length scales
of < 1 m to many kilometers. Even the highest-resolution
continental-scale evapotranspiration models, such as those
that are embedded in Earth system models (ESMs), typically
cannot explicitly represent the spatial heterogeneity of land
surface hydrological properties at scales that are important
to atmospheric fluxes. Instead, these models usually calcu-
late grid-averaged evapotranspiration fluxes based on grid-
averaged properties of the land surface (Sato et al., 1989;
Koster et al., 2006; Santanello and Peters-Lidard, 2011).
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Thus, ET estimates that are derived from spatially aver-
aged land surface properties do not capture ET variations
driven by the underlying surface heterogeneity (McCabe and
Wood, 2006). These spatially averaged ET estimates may dif-
fer from the average of the actual spatially heterogeneous
ET flux because the relationships driving ET are nonlinear
(Rouholahnejad Freund and Kirchner, 2017).

Several studies have quantified the effects of land surface
heterogeneity on potential evapotranspiration (PET) and la-
tent heat (LH) fluxes and have found that averaging over
land surface heterogeneity can potentially bias ET estimates
either positively or negatively. For example, Boone and
Wetzel (1998) studied the effects of soil texture variability
within each pixel in the Land–Atmosphere–Cloud Exchange
(PLACE) model, which has a spatial resolution of approxi-
mately 100 km× 100 km. They reported that accounting for
subgrid variability in soil texture reduced global ET by 17 %,
increased total runoff by 48 %, and increased soil wetness
by 19 %, compared to using a homogenous soil texture to
describe the entire grid cell. Kollet (2009) found that het-
erogeneity in soil hydraulic conductivity had a strong in-
fluence on evapotranspiration during the dry months of the
year but not during months with sufficient moisture avail-
ability. Hong et al. (2009) reported that aggregating radiance
data from 30 to 60, 120, 250, 500, and 1000 m resolution
(input upscaling) and then calculating ET from these aggre-
gated inputs at these grid scales using the Surface Energy
Balance Algorithm for Land (SEBAL; Bastiaanssen et al.,
1998a) yields slightly larger ET estimates as compared to
ET calculated with finer-resolution inputs and then aggre-
gated at the desired grid scales (output upscaling). The dis-
crepancy between ET estimated with the output upscaling
method and the input upscaling method grows as the size
of the grid cell increases (the difference between ET calcu-
lated from the input and output upscaling methods is ∼ 20 %
more at a grid scale of 1 km× 1 km compared to a grid scale
of 120 m× 120 m). Aminzadeh et al. (2017) investigated the
effects of averaging surface heterogeneity and soil moisture
availability on potential evaporation from a heterogeneous
land surface including bare soil and vegetation patches. They
found that if the heterogeneity length scale is smaller than
the convective atmospheric boundary layer (ABL) thickness,
averaging over heterogeneous land surfaces has only a small
effect on average potential evaporation rates. Averaging over
larger-scale heterogeneities, however, led to overestimates of
potential evaporation.

Heterogeneity biases have also been identified in ET cal-
culation algorithms that use remote sensing data as inputs.
McCabe and Wood (2006) found that remote sensing re-
trievals of ET are larger than the corresponding in situ flux
estimates and characterized the roles of land surface hetero-
geneity and remote sensing resolution in the retrieval of evap-
orative flux. McCabe and Wood (2006) used Landsat (60 m),
Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER; 90 m), and Moderate Resolution Imaging

Spectroradiometer (MODIS; 1020 m) data independently to
estimate ET over the Walnut Creek watershed in Iowa. They
compared these remote sensing estimates to eddy covariance
flux measurements and reported that Landsat and ASTER
ET estimates had a higher degree of consistency with one
another and correlated better to the ground measurements
(r = 0.87 and r = 0.81, respectively) than MODIS-based ET
estimates did. All three remote sensing products overesti-
mated ET as compared to ground measurements (at 12 out
of 14 tower sites). Upon aggregation of Landsat and ASTER
retrievals to MODIS scale (1 km), the correlation with the
ground measurements decreased to r = 0.75 and r = 0.63 for
Landsat and ASTER, respectively.

Contrary to overestimation bias, many remotely sensed ET
estimates that include parameters related to aerodynamic re-
sistance are significantly affected by heterogeneity, and un-
derestimate ET as the scale increases (Ershadi et al., 2013).
Because aerodynamic resistance is significantly affected by
land surface properties (e.g., vegetation height, roughness
length, and displacement height), decreases in aerodynamic
resistance at coarser resolutions could lead to smaller esti-
mates of evapotranspiration. Ershadi et al. (2013) showed
that input aggregation from 120 to 960 m in the Surface En-
ergy Balance System (SEBS; Su, 2002) leads to up to 15 %
underestimation of ET at the larger grid resolution in a study
area in the southeast of Australia.

Rouholahnejad Freund and Kirchner (2017) quantified the
impact of subgrid heterogeneity on grid-average ET using
a simple Budyko curve (Turc, 1954; Mezentsev, 1955) in
which long-term average ET is a nonlinear function of long-
term averages of precipitation (P ) and potential evaporation
(PET). They showed mathematically that averaging over spa-
tially heterogeneous P and PET results in overestimation of
ET within the Budyko framework (Fig. 1). Their analysis im-
plies that large-scale ESMs that overlook land surface hetero-
geneity will also yield biased evapotranspiration estimates
due to the inherent nonlinearity in ET processes. They did
not, however, determine where around the globe and under
what conditions this heterogeneity bias is likely to be most
important.

The recognition that spatial averaging can potentially lead
to biased flux estimates has prompted methods for represent-
ing subgrid-scale heterogeneities and processes within large-
scale land surface models and ESMs. Accounting for land
surface heterogeneity in large-scale ESMs is not merely con-
strained by limitations in both computational power (Baker
et al. 2017) and the availability of high-resolution forcing
data but also by the fact that the atmospheric and land sur-
face components of some ESMs operate at different reso-
lutions. There have been several attempts to integrate sub-
grid heterogeneity in ESMs while keeping the computational
costs affordable. In “mosaic” approaches, the model is run
separately for each surface type in a grid cell and then the
surface-specific fluxes are area-weighted to calculate the grid
cell average fluxes (e.g., Avissar and Pielke, 1989; Koster
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Figure 1. Heterogeneity bias in a hypothetical two-column model in the Budyko framework. The true average ET of the columns (gray
circle) lies below the curve and is less than the average ET estimated from the average P/PET of the two columns (open circle). The
heterogeneity bias depends on the curvature of the function and the spread of its inputs. Both panels are adapted from Rouholahnejad Freund
and Kirchner (2017). Location: Loc.

and Suarez, 1992). The “effective parameter” approach (e.g.,
Wood and Mason, 1991; Mahrt et al., 1992), by contrast,
seeks to estimate effective parameter values at the grid cell
scale that subsume the effects of subgrid heterogeneity. Esti-
mating these effective parameters can be challenging because
the relevant land surface processes typically depend nonlin-
early on multiple interacting parameters, and land surface
signals at different scales are propagated and diffused dif-
ferently in the atmosphere. Alternatively, the “correction fac-
tor” approach (e.g., Maayar and Chen, 2006) uses subgrid in-
formation on spatially heterogeneous land surface processes
and properties to estimate multiplicative correction factors
for fluxes that are originally calculated from spatially aver-
aged inputs at the grid cell scale. All three approaches try
to reduce the heterogeneous problem to a homogeneous one
that has equivalent effects on the atmosphere at the grid cell
scale.

There is a growing need to understand how subgrid hetero-
geneity (and the atmosphere’s integration of it) affect grid-
scale water and energy fluxes and to develop effective meth-
ods to incorporate these effects in ESMs (Clark et al., 2015,
Fan et al., 2019). In a previous study, we proposed a general
framework for quantifying systematic biases in ET estimates
due to averaging over heterogeneities (Rouholahnejad Fre-
und and Kirchner, 2017). We used the Budyko framework
as a simple estimator of ET and demonstrated theoretically
how averaging over heterogeneous precipitation and poten-
tial evapotranspiration can lead to systematic overestimation
of long-term average ET fluxes from heterogeneous land-
scapes. In the present study, we apply this analysis across
the globe and highlight the locations where the resulting het-
erogeneity bias is largest. Our hypotheses, derived from the
Budyko framework as summarized in Eq. (4) below, are that
(1) strongly heterogeneous landscapes, such as mountainous
terrain, will exhibit greater heterogeneity bias; (2) this bias

will be larger in climates where P and PET are inversely
correlated in space; and (3) heterogeneity bias will decrease
as the spatial scales of averaging decrease.

2 Effects of subgrid heterogeneity on ET estimates in
the Budyko framework

Budyko (1974) showed that long-term annual average evapo-
transpiration is a function of both the supply of water (precip-
itation) and the evaporative demand (potential evapotranspi-
ration) under steady-state conditions and in catchments with
negligible changes in storage (Eq. 1; Turc, 1954; Mezentsev,
1955):

ET= f (P,PET)=
P((

P
PET

)n
+ 1

)1/n
, (1)

where ET is actual evapotranspiration, P is precipitation,
PET is potential evaporation, and n (dimensionless) is
a catchment-specific parameter that modifies the partitioning
of P between ET and discharge.

Evapotranspiration rates are inherently bounded by energy
and water limits. Under arid conditions ET is limited by the
available supply of water (the water limit line in Fig. 1b),
while under humid conditions ET is limited by atmospheric
demand (PET) and converges toward PET (the energy limit
line in Fig. 1b). Budyko showed that over a long period and
under steady-state conditions, hydrological systems function
close to their energy or water limits. These intrinsic water
and energy constraints make the Budyko curve downward-
curving.

In a heterogeneous landscape, like the simple example of
two model columns in Fig. 1a, P and PET vary spatially. The
two columns with heterogeneous P and PET are represented
by the two solid black circles on the Budyko curve in Fig. 1b.
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In this hypothetical two-column example, the true average of
ET values calculated from individual heterogeneous inputs
(the solid black circles) lies below the curve (the gray circle
labeled “true average”). However, if we aggregate the two
columns and consider the system as one column with aver-
age properties, the function of average inputs (averaged P

and PET over the two columns) lies on the Budyko curve
(the open circle) which is larger than the true average of the
two columns. In short, in any downward-curving function,
the function of the average inputs (the open circle) will al-
ways be larger than the average of the individual function
values (the true average; gray circle). The difference between
the two can be termed the “heterogeneity bias”.

In a previous study (Rouholahnejad Freund and Kirch-
ner, 2017) we showed that when nonlinear underlying re-
lationships are used to predict average behavior from aver-
aged properties; the magnitude of the resulting heterogene-
ity bias can be estimated from the degree of the curvature in
the underlying function and the range spanned by the indi-
vidual data being averaged. Here we summarize these find-
ings as building blocks of the current study. The second-
order, second-moment Taylor expansion of the ET function
f (P,PET) (Eq. 1) around its mean directly yields

f (P,PET)= ET≈ f (P ,PET)+
1
2

∂2f

∂P 2 var(P )

+
1
2

∂2f

∂PET2 var(PET)+
∂2f

∂P∂PET
cov(P,PET), (2)

where f (P,PET) is the true average of the spatially hetero-
geneous ET function, f (P ,PET) is the ET function evalu-
ated at its average inputs P and PET , and the derivatives
are calculated at P and PET. Evaluating the derivatives us-
ing Eq. (1) and reshuffling the terms, Rouholahnejad Freund
and Kirchner (2017) obtained the following expression for
the heterogeneity bias, the difference between the average
ET, f (P,PET), and the ET function evaluated at the mean
of its inputs, f (P ,PET):

f (P ,PET)− f (P,PET)≈ (n+ 1)
P

n+1
PETn+1(

P
n
+PETn

)2+1/n

·

[
1
2

var(P )

P
2 +

1
2

var(PET)

PET2 −
cov(P,PET)

P PET

]
. (3)

To more clearly show the effects of variations in P and PET,
Eq. (3) can be reformulated as follows:

f (P ,PET)− f (P,PET)≈ (n+ 1)
P

n+1
PETn+1

(P
n
+PETn

)2+1/n

·

[
1
2

(
SD(P )

P

)2

+
1
2

(
SD(PET)

PET

)2

−rP,PET

(
SD(P )

P

)(
SD(PET)

PET

)]
. (4)

Equation (4) shows that the heterogeneity bias depends on
only four quantities: the fractional variation (i.e., the coeffi-
cient of variation) in precipitation

(
SD(P )

P

)
and in potential

ET
(

SD(PET)

PET

)
, the correlation between precipitation and po-

tential ET (rP,PET), and the function (n+ 1) P
n+1PETn+1

(P
n
+PETn

)2+1/n
,

which quantifies the curvature in the ET function in Budyko
space. As shown by Fig. 1b and Eq. (2), the discrepancy be-
tween the average of the ET function and the ET function
of the average inputs (the heterogeneity bias) is proportional
to both the degree of nonlinearity in the function, as defined
by its second derivatives, and the variability of P and PET.
Equation (4) allows one to estimate how much the curvature
of the ET function and the fractional variability (SD divided
by mean) of P and PET will affect estimates of ET. How-
ever, to the best of our knowledge, the consequences of these
nonlinearities for global evaporative flux estimates have not
previously been quantified.

3 Effects of subgrid heterogeneity on ET estimates at a
1◦ × 1◦ grid scale across the globe

Across a landscape of similar size to a typical ESM grid cell
(1◦× 1◦ ), soil moisture, atmospheric demand (PET), and
precipitation (P ) will vary with topographic position; hill-
slopes will typically be drier, and riparian regions will be
wetter. To map the spatial pattern in the heterogeneity bias
that could result from averaging over this land surface het-
erogeneity, we applied the approach outlined in Sect. 2 to
the global land surface area at a 1◦× 1◦ grid scale. Within
each 1◦× 1◦ grid cell, we used 30 arcsec values of P (World-
Clim; Hijmans et al., 2005) and PET (WorldClim; Hijmans
et al., 2005) to examine the variations in small-scale climatic
drivers of ET. Because 30 arcsec is nearly 1 km, hereafter
we refer to the 30 arcsec data as 1 km values for simplicity.
The spatial distribution of long-term annual averages (1960–
1990) of P and PET values at 1 km resolution, along with
1 km values of the aridity index (AI= P/PET), are shown
in Fig. 2a–c. ET values calculated from these 1 km P and
PET values using Eq. (1) are then averaged at a 1◦× 1◦ scale
(true average, Fig. 2e). We also averaged the 1 km values of
P and PET within each grid cell and then modeled ET us-
ing the Budyko curve (Eq. 1) applied to these averaged input
values. The difference between these two ET estimates is the
heterogeneity bias.

We also calculated the heterogeneity bias using Eq. (4),
which describes how the nonlinearity in the governing equa-
tion and the heterogeneity in P and PET jointly contribute
to the heterogeneity bias. The heterogeneity bias estimates
obtained by Eq. (4) were functionally equivalent (R2

= 0.97;
root mean square error of 0.17 %) to those obtained by direct
calculation using Eq. (1) as described above.
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Figure 2. Global distribution of 1 km resolution annual mean precipitation (a: P ; WorldClim; Hijmans et al., 2005), potential evapotranspi-
ration (b: PET; WorldClim; Hijmans et al., 2005), the aridity index (c: AI= P/PET; WorldClim; Hijmans et al., 2005), and topography (d:
Shuttle Radar Topography Mission – SRTM; Jarvis et al., 2008), along with (e) evapotranspiration (ET) at a 1◦× 1◦ scale by averaging 1 km
values of ET calculated using the Budyko function (Eq. 1). WClim: WorldClim.

Figure 3a–d illustrates the variability (quantified by SD)
of 1 km values of P , PET, the aridity index, and altitude at
the 1◦× 1◦ grid scale. The heterogeneity bias in long-term
average ET fluxes at the 1◦× 1◦ grid scale (Fig. 3e) high-
lights regions around the globe where ET fluxes are likely
to be systematically overestimated. The spatial distribution
of the heterogeneity bias calculated using Eq. (4) (Fig. 3e)
closely coincides with locations where the aridity index is
highly variable (Fig. 3c), which is driven in turn by topo-
graphic variability (Fig. 3d). Strongly heterogeneous land-
scapes exhibit larger estimated heterogeneity biases in long-
term average ET fluxes. Although the global average of our
Budyko-based heterogeneity bias estimates is small (< 1 %),
physically based ET calculations may exhibit larger hetero-
geneity biases than the modest values we calculate here be-
cause the Budyko approach already subsumes spatial hetero-
geneity effects at the catchment scale (and also temporal het-
erogeneity effects due to its steady-state assumptions). The
heterogeneity biases in ET estimates shown in Fig. 3e corre-
spond to long-term average ET estimates. Given the fact that
P and PET can vary temporally (i.e., seasonality), the actual

bias could be much larger, particularly where P and PET are
inversely correlated (see the last term of Eq. 4).

Our results show that the topographic gradient and hence
the variability in the aridity index across a given grid scale
drives consistent, predictable patterns of heterogeneity bias
in evapotranspiration estimates at that scale. Equation (4)
shows that this bias is equally sensitive to fractional vari-
ability in P and PET (SD divided by mean). However, be-
cause P is typically more variable (in percentage terms) than
PET across landscapes, the variability in P will usually make
a larger contribution to the estimated heterogeneity bias.

4 Variation in heterogeneity bias across climate zones,
data sources, and grid scales

With an increased availability of spatial data, it is becom-
ing standard practice to assess input data uncertainties and
their propagated impacts on water and energy flux estimates
in land surface models. To quantify how choices among al-
ternative input data products could affect the heterogeneity
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Figure 3. Global spatial distribution of variability (SD) of 1 km values of (a) precipitation (P ), (b) potential evapotranspiration (PET), (c) the
aridity index (AI= P/PET), and (d) altitude at a 1◦× 1◦ grid cell. The heterogeneity bias in ET estimates (e) is calculated using Eq. (4).
Grid cells with larger SDs in altitude and aridity index have larger heterogeneity biases. WClim: WorldClim.

bias in ET estimates, we calculated the heterogeneity bias at
a 1◦× 1◦ grid cell resolution across the contiguous US us-
ing four different pairs of P and PET data products. Two
precipitation datasets, Prism (PRISM Climate Group, 2016)
and WorldClim (Hijmans et al., 2005), along with two PET
datasets, MODIS (Mu et al., 2007) and WorldClim (Hijmans
et al., 2005). As Prism precipitation data are available at a
4 km resolution, all other datasets were aggregated to 4 km.
Two P products and two PET products were combined in all
possible pairs. The WorldClim PET dataset (Hijmans et al.,
2005) is based on the Hargreaves method (Hargreaves and
Samani 1985), while the MODIS PET product (Mu et al.,
2007) is based on the Penman–Monteith equation (Monteith,
1965). The heterogeneity bias in ET estimates (Eq. 4), as out-
lined in Sect. 2, was evaluated from 4 km values of P , PET,
and the estimated average ET using the Budyko relationship
(Eq. 1) for each of the four input data pairs. Figure 4a–e com-
pares the spatial distributions of heterogeneity bias across the
contiguous US for the four pairs of P and PET data products.

The heterogeneity bias in ET estimates reached as high as
36 % in the western US using Prism P and WorldClim PET
as inputs to the ET model (Fig. 4b). A visual comparison
of Fig. 4b and d shows that the choice of the P data source
(Prism vs. WorldClim) had a bigger effect on the heterogene-
ity bias than the choice of the PET data source (MODIS vs.
WorldClim), meaning that the fractional variability in P is
the dominant variable. In all cases, data sources that were
more variable in relation to their means (Prism for P and
WorldClim for PET; Fig. 4b) led to larger estimates of het-
erogeneity bias, as expected from Eq. (4). Thus we infer that
we would have obtained larger heterogeneity biases if we had
conducted our global analysis (Fig. 3) with Prism P and ei-
ther WorldClim or MODIS PET, but we cannot show that
result explicitly at the global scale, because Prism P is not
freely available globally.

If we separate the heterogeneity biases shown in Fig. 4 ac-
cording to Köppen–Geiger climate zones (Peel et al., 2007;
Fig. 5a), we see that they are distinctly higher in partic-
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ular climate–terrain combinations. Estimated heterogeneity
biases are higher in regions with temperate climates and dry
summers (climate zone Cs) and in regions with cold, dry
summers (climate zone Ds), most likely due to the sharp
spatial gradient in their water and energy sources for evapo-
transpiration (Fig. 5b). These areas typically have high topo-
graphic relief, combined with seasonal climate. The hetero-
geneity effects on ET estimates in these regions are expected
to be even larger when a mechanistic model of ET is used.
We expect that averaging over temporal variations of drivers
of ET, especially in places with strong seasonality, could sub-
stantially bias the ET estimates, but this cannot be quantified
in the Budyko framework due to its underlying steady-state
assumptions. Figure 5b also illustrates the relative magni-
tudes of the heterogeneity biases obtained with the four pairs
of P and PET data sources. The estimated heterogeneity bias
is highest when the Prism P and WorldClim PET datasets are
used, followed by the combination of Prism P and MODIS
PET, which resulted in the second-highest heterogeneity bias
across different climate zones. Wilcoxon signed-rank tests
were performed to evaluate the statistical significance of the
differences between the heterogeneity bias in ET estimates
using all pairs of climate zones and data sources that are
shown in Fig. 5b (Table S1). These analyses show that while
the difference between heterogeneity biases estimated in Cs
and Ds climate zones are not statistically significant across
all four combinations of datasets, the difference between es-
timated heterogeneity bias in Cs vs. Cf, Ds vs. Cf, and Cs vs.
Bs climate zones are significant across all four data combi-
nations (highlighted in Table S1 of the Supplement).

Equation 4 shows that heterogeneity biases in Budyko es-
timates of ET are equally sensitive to the same percentage
variability in P and PET. Thus the degree of sensitivity, per
se, to P and PET variations expressed in percentage terms
is the same. Although Fig. 5c and d gives the visual impres-
sion that PET is more variable than P across climate zones
and between data sources, Fig. 5e shows that the fractional
variability in P is systematically higher than PET, and it also
varies more across the climate zones and between the two
datasets. Because P is typically more variable than PET (in
percentage terms) across landscapes, the variability in P will
make a larger contribution to the heterogeneity bias (Fig. 5e)
estimated using the Budyko approach. Whether this is true
for more physically based ET estimates remains to be seen.
Analysis of the percent variability of P and PET products
shows that percent variabilities of precipitation products are
in general larger than PET products and hence contribute
more to heterogeneity (Fig. 5e). While the percent variabili-
ties of the two PET products are in the same range, the per-
cent variability in Prism precipitation is slightly larger than
in WorldClim precipitation, in regions with dry summers (Cs
and Ds climate zones in Fig. 5a).

Because future increases in computing power will lead to
ESMs with smaller grid cells, it is useful to ask how changes
in grid resolution affect the heterogeneity biases that we have

estimated in this paper. To quantify the heterogeneity bias
in ET estimates as a function of grid scale, we repeated our
analysis at various grid resolutions using Switzerland as a test
case. We started with high-resolution (500 m) maps of long-
term average annual precipitation and PET (Rouholahnejad
Freund et al., 2020) across the Swiss landscape (Fig. 6) and
then used Eq. (4) to estimate the heterogeneity bias at grid
scales ranging from 1/32◦ to 2◦ (∼ 3 to∼ 200 km). As Fig. 6
shows, aggregating P and PET over larger scales leads to
larger and more widespread overestimates in ET. Conversely,
at finer grid resolutions, the average heterogeneity bias is
smaller, and the locations with large biases are more local-
ized. On average, the heterogeneity bias across Switzerland
as a whole grows exponentially as the inputs are averaged
over larger grids (as shown in the lower-right panel in Fig. 6).

5 Summary and discussion

Because evapotranspiration (ET) processes are inherently
bounded by water and energy constraints, over the long term,
ET is always a nonlinear function of available water and PET,
whether this function is expressed as a Budyko curve or an-
other ET model. These nonlinearities imply that spatial het-
erogeneity will not simply average out in predictions of land
surface water and energy fluxes. Overlooking subgrid spa-
tial heterogeneity in large-scale land surface models could
lead to biases in estimating these fluxes. Here we have shown
that, across several scales, averaging over spatially heteroge-
neous land surface properties and processes leads to biases
in evapotranspiration estimates. We examined the global dis-
tribution of this bias, its scale dependence, and its sensitivity
to variations in P vs. PET and showed under what condi-
tions this heterogeneity bias is likely to be most important.
Our analysis does not quantify the heterogeneity biases in
ESMs, owing to the many differences between these mech-
anistic models and the simple empirical Budyko curve. But
if the heterogeneity biases in ESMs can be quantified, they
can be used as correction factors to improve ESM estimates
of surface–atmosphere water and energy fluxes across land-
scapes. Our paper highlights a general methodology that can
be used to estimate heterogeneity biases and to map their spa-
tial patterns but not to calculate their absolute magnitudes,
because those will change significantly depending on the ET
formulation that is used.

In this study, we used Budyko curves as simple models
of ET, in which long-term average ET rates are function-
ally related to long-term averages of P and PET. We used
an approach outlined by Rouholahnejad Freund and Kirch-
ner (2017) to estimate the heterogeneity bias in modeled ET
at a 1◦ grid scale across the globe (Fig. 3) and also at multiple
grid scales across Switzerland (Fig. 6) using finer-resolution
P and PET values as drivers of ET. We showed how the het-
erogeneity effects on ET estimates vary with the nonlinearity
in the governing equations and with the variability in land
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Figure 4. The distribution of P and PET in the four datasets is shown in panel (a). Estimated heterogeneity bias (Eq. 4) across the contiguous
US using 4 km values of (b) Prism P and WorldClim PET, (c) Prism P and MODIS PET, (d) WorldClim P and WorldClim PET, and
(e) WorldClim P and MODIS PET as inputs. WClim: WorldClim.

surface properties. Our analysis shows that heterogeneity ef-
fects on ET fluxes matter the most in areas with sharp gra-
dients in the aridity index, which are in turn controlled by
topographic gradients, and not merely in areas that are either
arid or humid (e.g., compare Figs. 3e with 2c).

According to our analysis, regions within the US that have
temperate climates and dry summers exhibit greater hetero-
geneity bias in ET estimates (Fig. 5). We show that the es-
timated heterogeneity bias at each grid scale depends on the
variance in the drivers of ET at that scale (Fig. 4) and on the
choice of data sources used to estimate ET. Heterogeneity
bias estimates were significantly larger across the contigu-
ous United States when P and PET data sources with larger
variances were used (Fig. 4).

We also explored how heterogeneity biases and their spa-
tial distribution vary with the scale at which the climatic
drivers of ET are averaged. We found that as heterogeneous
climatic variables are aggregated to larger scales, the hetero-
geneity biases in ET estimates become greater on average
and extend over larger areas (Fig. 6). At smaller grid scales,
estimated heterogeneity biases do not completely disappear
but instead become more localized around areas with sharp
topographic gradients. Finding an effective scale at which
one can average over the heterogeneity of land surface prop-
erties and processes has been a long-standing problem in
Earth science. Our analysis shows that at smaller resolutions
the average heterogeneity bias as seen from the atmosphere
becomes smaller, but there is no characteristic scale at which
it vanishes entirely (Fig. 6). The magnitude and spatial dis-
tribution of this bias depend strongly on the scale of the av-

eraging and degree of the nonlinearity in the underlying pro-
cesses. The heterogeneity bias concept is general and extend-
able to any convex or concave function (Rouholahnejad Fre-
und and Kirchner 2017), meaning that in any nonlinear pro-
cess, averaging over spatial and temporal heterogeneity can
potentially lead to bias.

In the analysis presented here, we have assumed a value
of 2 for the Budyko parameter n, which approximates the
variation of ET / PET with respect to P/PET in MODIS and
WorldClim data across continental Europe (Mu et al. 2007;
Hijmans et al. 2005; Rouholahnejad Freund and Kirchner,
2017). Although there are suggestions in the literature that n

can vary with land use and other landscape properties (e.g.,
Teuling et al., 2019), here we have assumed that n is spa-
tially and temporally constant in order to focus on the ef-
fects of heterogeneity in P and PET. In the Supplement we
present a sensitivity analysis with values of n ranging from
2 to 5 (Fig. S1). That analysis shows that, as expected from
Eqs. (3) and (4), higher values of n lead to larger heterogene-
ity biases because higher values of n localize the curvature of
the Budyko function more strongly at the transition between
the energy and water limits (Fig. 1b), increasing the hetero-
geneity bias for P/PET values near this transition. Nonethe-
less, the spatial pattern shown in Fig. 3e remains largely un-
changed over the full range of n values that we analyzed, and
the Taylor approximation in Eqs. (3) and (4) yields realistic
estimates of the heterogeneity bias for all values of n that
were tested (Fig. S2). Thus while our numerical estimates of
heterogeneity bias depend somewhat on the value of n, our
conclusions do not.
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Figure 5. (a) Köppen–Geiger climate classification (Peel et al., 2007 in Beck et al. 2013) across the contiguous US; (b) the distribution
of calculated heterogeneity bias in ET estimates (Eq. 4) at a 1◦× 1◦ grid cell in individual climate zones, shown by boxplot (three data
points with heterogeneity biases of over 20 % are off-scale). The significance of differences between the pairs are presented in Table S1.
Panels (c) and (d) show the distribution of precipitation products (Prism and WorldClim) and potential evaporation products (MODIS and
WorldClim) at individual climate zones, respectively. The color-coded climate zones at the tops of panels (b–d) correspond to the climate
zones mapped in panel (a). Panel (e) compares the percentage variability of the two P and PET data products across climate zones, showing
that the percentage variability in P is markedly higher than in PET, and the percentage variability in Prism P is somewhat higher than in
WorldClim P, particularly in climate zones with dry summers. WClim: WorldClim.

One should keep in mind that the true mechanistic equa-
tions that determine point-scale ET as a function of point-
scale water availability and PET (if such data were avail-
able) may be much more nonlinear than Budyko’s empiri-
cal curves because these curves already average over signifi-
cant spatial and temporal heterogeneity. Thus, we expect that
the real-world effects of subgrid heterogeneity are probably

larger than those we have estimated in Sects. 3 and 4 of this
study. In addition, the 1 km P and PET values that are used
in our global analysis might be still too coarse to represent
small-scale heterogeneity that is important to evapotranspi-
ration processes.

Budyko curves are empirical relationships that function-
ally relate evaporation processes to the supply of water and
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Figure 6. Heterogeneity bias in ET estimates at various scales across Switzerland, estimated from 500 m climate data. ET is calculated using
the Budyko relationship (Eq. 1). Heterogeneity bias was estimated from 500 m precipitation (P ) and potential evapotranspiration (PET) and
their variances at each grid scale, using Eq. (4). At finer grid resolutions, the heterogeneity bias is more localized and smaller on average.

energy under steady-state conditions in closed catchments
with no changes in storage. Our analysis likewise assumes
no changes in storage nor any lateral transfer between the
model grid cells, although both lateral transfers and changes
in storage may be important, both in the real world and in
models. Unlike the Budyko framework, ET fluxes in most
ESMs are often physically based (not merely functions of P

and PET) and are calculated at much smaller time steps (sec-
onds to minutes). These models often represent more pro-
cesses that are important to evapotranspiration (such as stor-
age variations) and include their dynamics to the extent that
is computationally feasible. Because these relationships may
be much more nonlinear than Budyko curves, much larger
heterogeneity biases could result when complex physically
based models are used to estimate ET from spatially aggre-
gated data. Therefore, we are now working to quantify het-
erogeneity bias in ET fluxes using a more mechanistic land
surface model.

Data availability. The SRTM digital elevation database (Jarvis
et al., 2008) can be downloaded from http://www.cgiar-csi.

org/data/srtm-90m-digital-elevation-database-v4-1 (last access:
18 April 2017). The MODIS potential evapotranspiration dataset
(Mu et al., 2007) was downloaded from http://www.ntsg.umt.edu/
project/modis/mod16.php (last access: 9 May 2016). The World-
Clim precipitation and potential evapotranspiration data (Hijmans et
al., 2005) were downloaded from https://www.worldclim.org (last
access: 29 August 2016). PRISM precipitation data (PRISM Cli-
mate Group, 2016) were downloaded from http://prism.oregonstate.
edu (last access: 31 August 2016). Average precipitation and poten-
tial evapotranspiration over Switzerland at a 500 m resolution can
be retrieved from EnviDat at https://doi.org/10.16904/envidat.145
(Rouholahnejad Freund et al., 2020).
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