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Abstract. New integral, finite-volume forms of the Saint-
Venant equations for one-dimensional (1-D) open-channel
flow are derived. The new equations are in the flux-gradient
conservation form and transfer portions of both the hydro-
static pressure force and the gravitational force from the
source term to the conservative flux term. This approach pre-
vents irregular channel topography from creating an inher-
ently non-smooth source term for momentum. The deriva-
tion introduces an analytical approximation of the free sur-
face across a finite-volume element (e.g., linear, parabolic)
with a weighting function for quadrature with bottom topog-
raphy. This new free-surface/topography approach provides
a single term that approximates the integrated piezometric
pressure over a control volume that can be split between the
source and the conservative flux terms without introducing
new variables within the discretization. The resulting conser-
vative finite-volume equations are written entirely in terms
of flow rates, cross-sectional areas, and water surface eleva-
tions — without using the bottom slope (Sp). The new Saint-
Venant equation form is (1) inherently conservative, as com-
pared to non-conservative finite-difference forms, and (2) in-
herently well-balanced for irregular topography, as compared
to conservative finite-volume forms using the Cunge—Liggett
approach that rely on two integrations of topography. It is
likely that this new equation form will be more tractable for
large-scale simulations of river networks and urban drainage
systems with highly variable topography as it ensures the
inhomogeneous source term of the momentum conservation
equation is Lipschitz smooth as long as the solution variables
are smooth.

1 Introduction

The one-dimensional (1-D) Saint-Venant equations (SVEs)
are the simplest equations that capture the full dynamics of
river and open-channel flow, and yet they are not univer-
sally used where river networks are explicitly represented
in hydrological and urban drainage models. Furthermore,
where the SVEs are used the numerical solution methods
typically employ a non-conservative form, which inherently
has greater numerical dissipation than the conservative form.
But even the undesirable non-conservative form of the SVEs
is rarely used for large systems — instead, reduced-physics
models are common. These approaches a priori neglect some
part of the flow dynamics for simpler computation (see
Sects. 2 and 3 for discussions of these issues). In their call
for “hyperresolution global land surface modeling”, Wood
et al. (2011) postulated that the principal issues that limit
SVE use in river networks could be resolved by application
of more computing power and more precise river geometry.
Hodges (2013) argued that there were wider challenges to
using the SVEs, but these are not sufficient reasons relying
on reduced-physics models that are calibrated to get the right
answer for the wrong reason. In the intervening years some
progress has been made toward improving applications of
the SVEs, but large-scale hydrological modeling of river net-
works with application of supercomputer power continues to
rely on reduced-physics methods (e.g., the US National Wa-
ter Model, Cohen et al., 2018). Arguably, the dynamics of
river flow are the most observable and should be the easiest
part of hydrology to model (or at least with lower uncertainty
in boundaries and forcing compared to overland or ground-
water flow), so it is unsatisfactory that more than a half cen-
tury after Preissmann (1961) we still are not universally using
the SVEs in hydrological modeling of river networks.
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The present work evolved out of a frustration with the slow
pace of improvement in SVE modeling. Taking a step back-
wards, we can ask the following: is there something fun-
damental in the common forms of the SVEs that hinders
progress? Motivated by an analysis of the equation forms
(Sect. 2) and a study of the wealth of past work in the SVEs
(Sect. 3), new insights were developed and are presented
herein. The fundamental theses of the present work are as
follows: (1) conservative formulation of equations should be
used for the next generation of river network models, and
(2) the appearance of the channel slope (Sp) in the SVEs for
channels with irregular topography is a principal cause of
instabilities and extended computational time. Neither the-
sis can be demonstrated herein — this work is merely a first
step that provides the theoretical foundations for a conser-
vative and inherently well-balanced approach that highlights
the minimal level of approximations needed for a SVE form
with irregular topography. It remains for future studies to
compare models built on these foundations to the existing
approaches to determine if the new forms provide significant
numerical advantages.

The new conservative form of the SVEs is developed
with a goal of addressing challenges associated with mod-
eling large-scale 1-D flow network systems. In the process
of developing the new form, we will encounter a philosoph-
ical question as to whether the primary vertical variable in
a large-scale network solution should be the depth (H) or
the water surface elevation (n). Despite this author’s prior
work with H primacy (Liu and Hodges, 2014), we shall
see that there are advantages to using n, which is identi-
cal to the piezometric pressure and hence uniform over a
channel cross-sectional area. The quadrature of the subgrid
piezometric pressure gradient and subgrid-scale topography
can be handled in a single new term that is derived herein.
Through this term interesting possibilities for analytically
including hyperresolution bathymetric knowledge while re-
taining larger computational elements for large-scale model-
ing arise. This idea is not fully exploited within the present
work, but the framework is developed for others to build
upon.

In the remainder of this paper, Sect. 2 provides motiva-
tion and context in the differential forms of the SVEs. Sec-
tion 3 provides a further overview of SVE modeling in the
wide range of conservative and non-conservative forms. A
new and complete derivation of the finite-volume form of the
conservative 1-D momentum equation with minimal approx-
imations is provided in Sect. 4. Approximate forms of the
1-D SVEs are presented in Sect. 5 and the final form of the
equations and a discussion of their potential use are provided
Sect. 6.
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2 Motivation

In reach-scale hydraulic studies, the Saint-Venant equations
are almost always solved in a conservative form (e.g., Karel-
sky et al., 2000; Lai et al., 2002; Papanicolaou et al., 2004;
Sanders, 2001) but usually in a non-conservative form when
used in river network hydrology and urban drainage networks
(e.g., Liu and Hodges, 2014; Pramanik et al., 2010; Ross-
man, 2017; Saleh et al., 2013). Arguably, the reasons are in
the difficulty in obtaining a well-balanced model for the con-
servative form and the inherent complexities/uncertainties
of channel geometry across a large network (see discus-
sion in Sect. 3). In general, conservative equation forms
are valued as they ensure (with careful discretization) that
transport modeling does not numerically create or destroy
the transported variable. Indeed, the use of the conservative
form for mass conservation is universal in models from hy-
draulics to hydrology — it is only for momentum that the non-
conservative form remains common.

To set the context for this paper, consider the non-
conservative form of the momentum equation that has been
used in large river network solutions (Liu and Hodges, 2014)

90 o (,0? OH
£+£(ﬁ7)+gAa_x=gA(So_Sf)’ (1)
where Q is the flow rate, A is the channel cross-sectional
area, 3 is the momentum coefficient (associated with nonuni-
form velocities integrated over A), g is gravity, H is the water
depth, Sy is the channel slope, and St is the friction slope. The
above equation has immediate physical appeal as each term
represents a clearly understood piece of physics; i.e., the rate
of change of the flow is affected by the gradient of nonlinear
advection, the hydrostatic pressure gradient (driven by water
depth), the gravitational force along the slope, and frictional
resistance. The equation includes a conservative form of non-
linear advection (all the variables inside the gradient), but
gAJH /dx is non-conservative (that is, A, which is a func-
tion of H, is outside the gradient). The terms to the right-
hand side (RHS) of the equal sign are considered source and
sink terms that reflect creation and destruction of momentum.
Thus, a conservative form of the above could be formally
written as

00 , o (,0? OH
E-Fa(ﬁj)—_gAa-i‘gA(SO_Sf)» 2
where the trivial act of moving the pressure gradient term to
the RHS is a recognition that it can cause non-conservation
(source and sink) of the conserved momentum fluxes from
the left-hand side (LHS). That is, any component on the RHS
is capable of creating or destroying momentum, whereas the
terms on the LHS (if properly discretized) cannot. The above
equations can be contrasted with an equivalent momentum
equation using the free-surface elevation:
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which is obtained by substitution of n = H 4z}, with z as the
bottom elevation and Sy = —0dz,/9x. The equation is again
conservative by virtue of including the gradient of the free-
surface elevation as a source term (Ying et al., 2004; Wu and
Wang, 2007; Ying and Wang, 2008). Comparison of Egs. (2)
and (3) shows how the introduction of Sy affects the equation
form. Of particular note is that we expect Sf = f(Q, A), so
the latter equation will have a smooth source term as long
as the solution variables themselves are smooth. In contrast,
the smoothness of the source term in Eq. (2) inherently de-
pends on the smoothness of the product ASy and compensa-
tion by the solution in AdH/dx and AS;. The key point is
that smoothness in the source term is a mathematical neces-
sity for the numerical solution of a partial differential equa-
tion to be well-posed (Iserles, 1996), but introduction of Sy
can place smoothness at the mercy of how well the numerical
scheme responds to non-smooth forcing.

In general, there is an advantage to having as much of the
physics as possible included on the flux-conservative side
of the equation, which helps reduce difficulties associated
with discretizations of the source terms (e.g., Pu et al., 2012;
Vazquez-Cendon, 1999). The standard form of the conser-
vative SVEs is arguably the form provided by Cunge et al.
(1980), based on a derivation of Liggett (1975):

9 2
ath ax (ﬂQ_J’gll):gIHgA(So—Sf), )

where 11 and I are integrated hydrostatic pressure forces
across the channel

I = / (H —z)Bdz 5)
H

and along the channel gradients

b :/(H —z)%dz, (6)
H

with H (x) as the water depth, B(x, z) as the channel breadth
as a function of elevation and along-stream location, and z as
a coordinate direction measured from a common horizon-
tal baseline in a direction opposite to gravitational acceler-
ation. This form is also used by others with slightly different
nomenclature but the same integral terms (e.g., Hernandez-
Duenas and Beljadid, 2016; Sanders, 2001; Saavedra et al.,
2003). It is convenient herein to call this the Cunge-Liggett
form of the SVEs. The key point for both these terms is that
they measure the interaction between the free surface and the
channel shape; e.g., I1 could also be written as
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where zp is the channel bottom.

By comparing Eq. (4) with Eq. (2), we see that the novelty
of Cunge-Liggett is in moving a portion of the gAdH /dx
from the RHS source term into the conservative flux on the
LHS. Indeed, with this idea we see that Eq. (2) can be used
with the product rule of differentiation to generate a slightly
different conservative form:

aQ 0’ AH—HaA A(So—S 8
S x(ﬁ—+g )—g §+g So—38p. ©®)

Similar to the Cunge-Liggett form, the above uses a math-
ematical trick to place one part of the hydrostatic pressure
force within the conservative flux gradient, while retaining
the remainder as a source term. Thus, we see that the Cunge—
Liggett form is not canonical, nor is it a form that necessar-
ily better represents the physics. It is merely a form that is
(sometimes) convenient for splitting the gradient of the to-
tal hydrostatic pressure force into conservative flux and non-
conservative source terms.

The above brings up a question: if it is good to shift a por-
tion of the hydrostatic pressure from the source to the conser-
vative term as in Egs. (4) and (8), then why not some or all
of the gravitational potential associated with gASp? Under-
lying the Cunge-Liggett form and much (but not all) of the
literature is the idea that gASy is a source term that creates
and destroys momentum. But this is also true of the hydro-
static pressure gradient and yet we commonly treat a portion
within the convective flux. Thus, if Cunge-Liggett Eq. (4) is
preferred over the baseline conservative form of Eq. (2) be-
cause a portion of the hydrostatic pressure is moved from the
source term to the conservative flux term, then an equation
that moves some (or all) of the gravitational potential from
the source to the flux term should be equally valued. If this
argument is accepted, then the preferred differential form for
natural channels with the SVEs is none of those presented
above, but perhaps an equation of the general form

2
fe o B2 | = G —eas, ©

where f1 and f> are some functions (as yet unspecified) of
the free-surface elevation rather than the depth. The free sur-
face (1) can be interpreted as the uniform piezometric pres-
sure over the cross-sectional area A, so the f; and f, func-
tions are a generic way of splitting the piezometric pres-
sure gradient between the source term and the conservative
flux term, similar to how Cunge-Liggett handles the hydro-
static pressure gradient. Note that this proposed general ap-
proach removes the need for specifying Sy, which is impor-
tant both in terms of source-term smoothness and producing
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well-balanced methods as discussed in detail in Sect. 3, be-
low.

In this paper, complete derivations are presented to show
that finite-volume formulations of the SVEs can be generated
that are consistent with the general conservative differential
form of Eq. (9). The new derivation is intended to bridge the
gap between approaches used in high-resolution hydraulic
models and those used in large-scale hydrology and urban
drainage networks. The derivation provides a form of the
SVEs that has mathematical rigor while preserving the sim-
plicity of the non-conservative finite-difference discretiza-
tions that are common in hydrological and urban drainage
literature. Herein, we focus only on the detailed presentation
of the new equation form, reserving demonstration in a nu-
merical model to future papers.

3 Background

3.1 Origination and use of the SVEs

The original equations of de Saint-Venant (de Saint-Venant,
1871) were written as

dA d(AU
da  ddav) _ (10)
det dx
dj 1dU UdU & F o
dx  gdr  gdx Apg’

where U is the velocity, £, is the wetted perimeter, and F is
the frictional force per unit bottom area along the channel,
and other terms are as previously noted. We have taken the
liberty of replacing Saint-Venant’s notation of w, ¢, x, s with
the more modern nomenclature of A, 5, £,, x, but other-
wise have retained the original form. The momentum equa-
tion of de Saint-Venant, Eq. (11), is identical to Eq. (1) if
we use O =AU, Sy=4{,F/(gpA), integrate over a Cross
section with the S coefficient, apply some calculus with
the continuity equation, and define n = H + z,, along with
So = —0dzp/dx. From a practical perspective, the only thing
that a hydrologist really needs to change from the original
equation set is to replace the zero on the right-hand side of
Eq. (10) with a source term representing the inflow/outflow
per unit length from/into the catchment and groundwater.
However, from a numerical modeling perspective, Eq. (11)
is fundamentally non-conservative and suitable only for dis-
cretization in finite-difference forms. Although the full equa-
tion set is sometimes called the SVEs, for convenience in ex-
position we will use SVE as a shorthand for the momentum
equation alone.

The SVEs are ubiquitous in the literature for a wide range
of work and have a foundational role in flow-routing schemes
in hydrological models and channel network models for ur-
ban drainage. However, there is an interesting gap between
the equation forms used in large-scale systems and those
used in shorter single-reach studies or modeling hydraulic
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features. For computational simplicity, large-scale network
flow models often use a reduced set of equations, such as
the Muskingum, kinematic wave, or the local inertia form
(e.g., Wang et al., 2006; David et al., 2011, 2013; Getirana
etal., 2017). Herein, we will follow the arguments of Hodges
(2013) that we should be using the full SVEs; i.e., reduced-
physics models should be seen as a stopgap measure as we
wrestle with obtaining satisfactory SVE solution methods.
As computational power has increased, our large-scale mod-
els have been moving towards the full SVEs but typically
in a non-conservative form (e.g., Paiva et al., 2013; Liu and
Hodges, 2014). For urban drainage networks, the US EPA
Storm Water Management Model (SWMM) and variants
built on this public domain model use a non-conservative
finite-difference form of the SVEs. This model is widely ap-
plied (e.g., Gulbaz and Kazezyilmaz-Alhan, 2013; Hsu et al.,
2000; Krebs et al., 2013); however deficiencies in conserva-
tion are a recognized problem (Rossman, 2017) and the SVE
solver is the critical computational expense in the modeling
system (Burger et al., 2014). Engineering river hydraulics
problems are often solved using the US Army Corps of En-
gineers HEC-RAS software, which has free model executa-
bles with a proprietary (closed-source) code base. HEC-RAS
uses a non-conservative finite-difference form of the SVEs
based on methods pioneered in last quarter of the 20th cen-
tury (Brunner, 2010). In contrast, more recent research mod-
els of the SVEs at short river-reach scales have typically used
the equations presented as hyperbolic conservation laws that
ensure both conservation and well-behaved solutions for sub-
critical, supercritical, and transcritical flows (e.g., Guinot,
2009; Ivanova et al., 2017; Papanicolaou et al., 2004; Sanders
et al., 2003).

There is also a vast gulf between the spatial discretiza-
tion of SVEs for large systems and smaller system stud-
ies in the hydraulics and applied mathematics literature (al-
though the gap is getting narrower). For example in 2003
the SVEs were solved at 1 to 4km spacing for 156 km of
river (Saavedra et al., 2003). Seven years later we find 4 km
cross-section spacing for 5 x 10° km of river (Pramanik et al.,
2010). By 2014 the state of the art was 100 m spacing for
15 x 10 km of river (Liu and Hodges, 2014). In contrast, hy-
draulic studies have typically focused on 1 to 10 m spacing
for 1 to 2km test cases (e.g., Gottardi and Venutelli, 2003;
Kesserwani et al., 2009; Sart et al., 2010; Venutelli, 2006).
Between these extremes, single-reach river models with nat-
ural geometry are typically modeled over river lengths less
than 20 km with grid cells on the order of 10 m to more than
100 m (Sanders et al., 2003; Catella et al., 2008; Castellarin
et al., 2009; Lai and Khan, 2012).

3.2 Preissmann vs. Godunov
Computational modeling of the SVEs is arguably a long-

running contest between the differential, finite-difference
governing equations pioneered by Preissmann (1961) and
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the integral, finite-volume formulations derived from Go-
dunov (1959). Clearly this is a simplification as there are
wide-ranging contributions across both numerical methods
and implementation schemes — but the literature is simply
too broad to discuss all developments in anything less than a
book. Nevertheless, using a dialectic of Preissmann vs. Go-
dunov is a useful way of thinking about the major develop-
ments and providing context for the equations derived herein.
Preissmann developed effective finite-difference methods ap-
plied to the non-conservative form of the equations, which is
the first basis for comparison of succeeding finite-difference
models. The introduction of Roe’s approximate Riemann
solver (Roe, 1981) and analyses of Harten et al. (1983) made
Godunov-like methods tractable and set off a multi-decadal
development of finite-volume methods. The literature with
these two methods is vast, but a reasonable cross section
is provided in Table 1. Beyond these two major families, a
variety of other schemes have been applied including finite-
element methods (e.g., Szymkiewicz, 1991; Venutelli, 2003),
finite-volume methods that do not use the Godunov ap-
proach (e.g., Audusse et al., 2004, 2016; Catella et al., 2008;
Katsaounis et al., 2004; Mohamed, 2014; Vazquez-Cendon,
1999; Xing and Shu, 2011; Ying et al., 2004), and finite-
difference methods that do not apply the Preissmann scheme
(e.g., Abbott and Ionescu, 1967; Arico and Tucciarelli, 2007,
Buntina and Ostapenko, 2008; Schippa and Pavan, 2008;
Tucciarelli, 2003; Wang et al., 2000). A recent development
is the introduction of discontinuous Galerkin (DG) methods,
which can be thought of as a higher-order Godunov method
(e.g., Kesserwani et al., 2008, 2009; Lai and Khan, 2012;
Xing, 2014; Xing and Zhang, 2013).

It is clear from the above that there is no consensus on
the best method for solving the SVEs. For high-resolution
modeling that correctly preserves shocks and transcritical
flows, it can be reasonably argued that finite-volume and DG
schemes are more successful than finite-difference schemes.
Beyond that broad observation, the question of whether a
finite-volume method with a Godunov-like approach is better
than a non-Godunov approach does not have a clear answer
either in terms of accuracy or computational run times. How-
ever, in terms of large-scale systems the Preissmann scheme
and finite-difference methods presently reign supreme with
the ability to solve more than 15 x 103 km of river on a desk-
top computer (Liu and Hodges, 2014). Nevertheless, we can
see that a conservative finite-volume approach for large-scale
systems would be preferred as the basis for simulating con-
tinental river dynamics (Hodges, 2013) as well as for the
challenges of urban drainage modeling for the megacities
that are growing across the earth. Being able to control nu-
merical dissipation of momentum and ensure conservative
fluxes will be increasingly important as advancing comput-
ing power pushes down the practical model grid scales.
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Table 1. Two decades of Preissman vs. Godunov.

Preissmann

Godunov

Canelon (2009)

Casas et al. (2010)
Castellarin et al. (2009)
Chau and Lee (1991)
Chen et al. (2005)
Gasiorowski (2013)
Islam et al. (2008)
Leandro and Martins (2016)
Liu and Hodges (2014)
Lyn and Altinakar (2002)
Paiva et al. (2011, 2013)
Paz et al. (2010)

Rosatti et al. (2011)
Saavedra et al. (2003)
Sart et al. (2010)

Saleh et al. (2013)

Sen and Garg (2002)
Venutelli (2002)

Wu et al. (2004)

Zeng and Beck (2003)
Zhu et al. (2011)

Bollermann et al. (2013)
Delis and Skeels (1998)
Delis et al. (2000b)

Delis et al. (2000a)

Ferreira et al. (2012)
Gottardi and Venutelli (2003)
Goutal and Maurel (2002)
Greenberg and Leroux (1996)
Guinot (2009)

Ivanova et al. (2017)
Kesserwani et al. (2010)
Kurganov and Petrova (2007)
Li and Chen (2006)

Liang and Marche (2009)
Monthe et al. (1999)

Pu et al. (2012)

Sanders (2001)

Sanders et al. (2003)
Venutelli (2006)

Wu and Wang (2007)

Ying and Wang (2008)

3.3 The well-balanced problem and S

That finite-volume solutions are not commonly used in large-
scale hydrologic and urban drainage models is a testament
to their complexity. The difficulties associated with finite-
volume solutions using the Cunge-Liggett conservative form
of the SVEs have engendered a broad literature on well-
balanced schemes — also known as schemes maintaining the
“C-property” — as derived in the study of Greenberg and Ler-
oux (1996). A principal feature of a well-balanced scheme
is that it provides exactly steady solutions for exactly steady
flows. The most trivial requirement (which is often not met
by unbalanced schemes) is that a flat free surface should
result in exactly zero velocities. This problem is readily il-
lustrated by considering Eq. (4) with Q = 0, which implies
St = 0. Achieving the simple result of a flat free surface for
0O = 0 with the Cunge-Liggett form requires

ol
8—1 = I+ ASy & H + zp = constant, (12)
X

which implies the Cunge-Liggett form is only well-balanced
if the geometry meets the following identity at every possible
water surface level:

ZR IR
0 0B
— / (zg —z) Bdz — / (zr —2) —dz
0x ax

Zp(x) Zp(x)

= AS0:2b < ZR = Nmax. 13)

where nmax is the maximum water surface elevation, zp(x) is
the local channel bottom elevation, and zg encompasses all
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possible water surface elevations. Clearly, designing a nu-
merical scheme that exactly preserves this relationship for
nonuniform channels is a challenge, as evidenced by the
breadth and complexities of studies focused on this issue
(e.g., Audusse et al., 2004; Bollermann et al., 2013; Bouchut
and Morales de Luna, 2010; Castro Diaz et al., 2007;
Crnkovié et al., 2009; Kesserwani et al., 2010; Kurganov
and Petrova, 2007; Li et al., 2017; Liang and Marche, 2009;
Perthame and Simeoni, 2001; Xing, 2014). Failure to satisfy
the well-balanced criteria results in models that generate spu-
rious velocities; i.e., a mismatch in Eq. (13) indicates that
the numerics provide momentum sources and sinks that are
functions of channel shape and discretization rather than flow
physics. An interesting approach to this problem was devel-
oped by Schippa and Pavan (2008), where Eq. (12) is used
to replace I + ASp in the source term with d/;/dx evaluated
for a horizontal surface. Their approach ensures that any dis-
cretization will be well-balanced for a zero-velocity flow.

The work of Schippa and Pavan (2008) and review of
other works on well-balanced schemes provide us with a
key insight: the principal challenge for obtaining a well-
balanced method is the channel bottom slope, Sy, which is
often sharply varying or even discontinuous in a natural sys-
tem. Furthermore, as a geometrical property, So should be
independent of the cross-sectional flow area (A), and yet is
forced to be discretely related through Eq. (12). If we take
this idea a step further, we can argue that the fundamen-
tal problem with the Cunge-Liggett form is that the physi-
cal forces that alter momentum (gravitational potential and
hydrostatic pressure) are arbitrarily separated so that one is
wholly within the source term and the other has an ad hoc
split between conservative flux and source terms. Thus, we
return to the idea put forward in the introduction that we
should consider the free-surface elevation (piezometric pres-
sure) instead of the water depth (hydrostatic pressure) as our
primary forcing gradient.

In the next section, we shall see how the idea of shifting
portions of the total piezometric pressure from source to flux
can be used to develop a rigorous, conservative, and well-
balanced finite-volume form of the SVEs that is simpler than
those based on the Cunge—Liggett form.

4 Finite-volume SVEs with minimal approximations
4.1 Continuity

Although we are focused on the momentum equation, for
completeness we will start with continuity. The general ar-
rangement of the control volume for an irregular channel and
the vectors used in the following discussion are illustrated in
Fig. 1. Applying only the incompressibility approximation
for a uniform-density fluid, the volume-integrated continuity
equation is
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av
E-F%uknde:SV, (14)
S

where the Einstein summation convention is applied on re-
peated subscripts, uj is a vector velocity, ny is a unit normal
vector defined as positive pointing outward from a control
volume V, and Sy is a volume source (Sy < O for a sink).

A semi-discrete finite-volume representation of continuity
can be directly written as

Ve
at

= Qu— Qd+¢elLe, (15)

where Q and L represent the flow rate and element length,
and subscripts “e”, “u”, and “d” denote characteristic val-
ues for the control-volume element, nominal upstream face,
and nominal downstream face, respectively. Here we use the
nominal flow direction as the global downhill direction of the
channel that is assigned at the network level. The average lat-
eral inflow per unit length is g, and a flow Q > 0 is from the
upstream to downstream direction. Reversals of flow from
the nominal flow direction are handled with Q < 0.

4.2 Momentum

The control-volume form of the Navier—Stokes momentum
equation in a direction defined by unit vector i in a Cartesian
frame is

0 1 N

—/de —i—}{muknde + —]{piknde

ot i i P
\%4 S S

3uj ~
= pv—ijmdA+ [ gdV, (16)
Xy !
S

Vv

where u; is a velocity vector component in the i direction
(i.e., the direction that is a priori of interest), u; represents
velocity components along Cartesian axes, the component of
the gravity vector in the i direction is g;, the kinematic vis-
cosity is v, and p represents the thermodynamic pressure.
Note that this formulation can be related to any arbitrary
Cartesian axes. In many common derivations, iis approxi-
mated as coincident with an x axis that is a horizontal vector
in the streamwise direction. In the following, we will show
that this approximation is not required. Instead, we treat this
as a simplification that can be applied to the final equation
form.

4.3 Advection terms

The i direction for momentum, Eq. (16), is a vector associ-
ated with the u; velocity, which is not necessarily coincident
with the normal vector n at a flux surface of a finite volume
(in contrast to the case where i is taken as horizontal). For a
gradually varying open-channel flow we can take the i vector

www.hydrol-earth-syst-sci.net/23/1281/2019/



B. R. Hodges: Finite-volume Saint-Venant equations

1287

Figure 1. General arrangement of control-volume element (Ve ) and its neighbors for the irregular channel. Unit normal vectors nj, are always
perpendicular to cross-sectional areas (Ay, Aq) and pointing outward from control volume. The element length (L¢) is measured along the
channel. Unit vectors fk are coincident with the free-surface slope in the streamwise direction and can be defined as local continuous
functions. The velocity vector uy is approximated as parallel to i k- The angle measured from nj to fk is ¥. The free-surface elevations 7y,
ne, and nq are cross-section uniform elevations at the upstream face, for the element center, and the downstream face, respectively. Note that
volume is V throughout the derivations with # and U used for continuous and spatially averaged velocities, respectively.

as the nominal downstream direction along the channel cen-
terline described by a vector that lies along the free surface,
as illustrated in Fig. 1. Thus, this vector is local (as opposed
to being forced into coincidence with a Cartesian axis) and
changes along the channel with the slope of the free surface.
It follows that a discrete control-volume formulation devel-
oped from Eq. (16) can be globally exact as V. — 0. In con-
trast, a derivation that takes i as a vector in the horizontal
direction has a momentum conservation error proportional
to cosr, where ¥ is an angle between the horizontal vector
and the free surface; such an error does not vanish as V, — 0
unless the free surface is flat across the length of the ele-
ment. This idea helps illustrate one of the subtle implications
of the Godunov approach in which the channel is imagined
as having a piecewise flat free surface: cosy = 1 is then an
identity within the approximation of the physics rather than
an approximation within the mathematics.

For Eq. (16), the upstream element face is required to be
vertical and normal to the smooth channel centerline in a hor-
izontal plane, as illustrated in Fig. 1. The free surface at the
centerline has an angle of 1/ (x) to the horizontal so that the
discrete nonlinear momentum term in the i direction across
the upstream face is formally

/ulcuknde = ('BQUf)u’ 17

Ay
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where Q is the flow rate, Ui is the average streamwise veloc-
ity over the cross-sectional area, the “u” subscript indicates
the upstream face (rather than vector components), and 8 is
the momentum coefficient for the streamwise velocity, de-
fined as

1 2
_ +)"dA. (18

Note that the only approximation in the convective term of
Eq. (17) is that the streamwise velocity is parallel to the free
surface. However, the interpretation of the u; and ugny terms
may not be obvious, so further explanation is provided in
Appendix A. For notational convenience, it is useful to let
U = U;. However, since Q = A fuknde, strictly speaking
this requires an unconventional Q = AU cos . If the chan-
nel is straight and the free surface is linear so that the up-
stream face is parallel to the downstream face and there is a
single value of 1, it follows that an exact finite-volume inte-
gration of the nonlinear advection term is

fuguknde =—PuQuUu+ BaQaUa — M., (19)
S

where M. represents any integrated sources (4) and
sinks (—) of momentum per unit mass in the finite-volume

element associated with the g L. lateral fluxes of Eq. (15).
Note that M, terms are typically neglected in SVE solvers.
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For the more general case where the channel is curved be-
tween the upstream and downstream faces and the free-
surface gradient changes (as in Fig. 1), the above integra-
tion becomes an approximation that is only exactly satisfied
in the limit as the control-volume length goes to zero. For
present purposes, the use of a gradually varying streamwise i
direction implies that pressure is perfectly redirecting mo-
mentum through bends and aligning the momentum with the
free surface. These are (generally) unstated approximations
used in common 1-D SVE formulations. However, it should
be noted that this perfect momentum redirection is not pre-
cisely correct; e.g., secondary circulation in bends affects bed
shear, velocity distribution, and frictional losses (Blanckaert
and Graf, 2004). Arguably, losses associated with flow redi-
rection in channel bends and/or rapid changes in the free-
surface gradient should be built into the frictional term in any
model. Unfortunately, this remains a relatively poorly studied
area at the interface of hydrology and hydraulics. The curva-
ture effects on the equations can be written as perturbation
terms that relate the channel width to the radius of curvature
(Hodges and Imberger, 2001; Hodges and Liu, 2014), but
these ideas have yet to be exploited in developing curvature
effects in SVE numerical models.

4.4 Pressure decomposition

For the pressure term in Eq. (16) we follow the traditional
approach for incompressible flows of defining a modified
pressure (P) that includes the gravity term, which requires
P = p+ pgz. More formally we define

1 [ =4 1 A
—j{Piknde = —j{piknde — /glch. (20)
P P

S S

1

The surface integral for the modified pressure decomposes
into integrations over the upstream cross section (A,), the
downstream cross section (Aq), the channel bottom (Ap), and
the free surface (A,) as

1 [ = 1 ~n ~
—j{Piknde:— /Piknde+/Piknde
P P
S Ay Ad
+/ﬁ§knde+/i52knde . Q2D
AB Ay

Note that Ap includes both the bottom and side walls (if any).
The above is an exact pressure term without imagining the
geometry to be rectilinear or that the free surface has any
simplified shape. The only geometric requirement of the vol-
ume is that faces A, and A4 must be vertical planes that cut
across the channel, which is necessary for consistency with
the convective term. The first simplification we can introduce
is to approximate the free surface as uniform at any cross sec-
tion. The slope of the free surface is then coincident with the
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i (x) vector everywhere, which is aligned with the free sur-
face at the channel centerline. With the free surface aligned
with i (x), the modified pressure is normal to the free surface
everywhere and cannot contribute to the streamwise momen-
tum (which we have defined as parallel toz (x) in deriving the
advection terms, above). It follows that Pi ki 1s identically
zero at the free surface and the last term in Eq. (21) vanishes.

4.5 Piezometric and non-hydrostatic pressure

It is convenient to introduce a decomposition of the modi-
fied pressure (P) into a piezometric pressure (P) and non-
hydrostatic pressure (f’), where only the latter is nonuni-
form over a cross section. The non-hydrostatic pressure is
defined by the difference between the modified pressure and
the piezometric pressure:

P(x,y,2) = P(x,y,z) — P(x). (22)

The piezometric pressure is formally the sum of the hydro-
static pressure and the gravitational potential at any point z
for zp <z <n, which provides P(x, y, z) = pgln(x, y) —
z]1+ pgz = pgn(x, y). For the SVEs, the free-surface eleva-
tion can be considered uniform over the channel breadth (i.e.,
neglecting cross-channel tilt in channel bends). It follows that
the piezometric pressure is

P(x) = pgn(x), (23)

which is uniform over a vertical cross section. The non-
hydrostatic pressure was neglected by de Saint-Venant and
arguably should be neglected in any 1-D momentum equa-
tion bearing his name. However, for completeness we retain
the non-hydrostatic pressure terms in the derivation below
but neglect them in discrete forms of the piezometric pres-
sure terms in Sect. 5.

4.6 Pressure on flow faces

To further simplify the first two pressure terms in Eq. (21),
we define ¥ (x) as the angle between a horizontal line and
the free surface, n(x), measured clockwise positive from the
horizontal line pointing downstream. Thus, the i vector is
generally at an angle v (x) and pointing in the nominal
downstream direction, as shown in Fig. 1. At the upstream
cross section the pressure force without approximations is

/ﬁfknde = —(cos wu)/ﬁ(x, y,7)dA, (24)

Ay Ay

where subscript “u” indicates values at the upstream cross
section. Similarly, the downstream cross section provides

/kande = +(cos wd)/ﬁ'(x, y,7)dA, (25)

Ad Ad
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Figure 2. Pressure decomposition to obtain streamwise contribu-
tion.

where subscript “d” indicates values at the downstream cross
section. Note that, in the above and in the following deriva-
tions, the ubiquitous 1/p coefficient of all pressure terms
are omitted for clarity. Introducing the piezometric and non-
hydrostatic pressure split of Eq. (22) provides

/ﬁfknde = —PyAycosyry — (coswu)/ﬁ(x, v,z)dA, (26)

Ay Ay
/ﬁiknde = +PgAqcos g + (coswd)/ﬁ(x,y,z)dA. 27)
Aq Ad

Note that using the piezometric pressure instead of the hy-
drostatic pressure ensures that the only term requiring dis-
crete integration at the upstream and downstream surfaces is
the non-hydrostatic pressure. That is, P A cos is not an ap-
proximate integral whose adequacy depends on simplifying
assumptions in geometry (as is the case for integrals of hy-
drostatic pressure in the Cunge-Liggett form) but is instead
an exact integration of piezometric pressure for any cross-
section shape.

4.7 Pressure on bottom topography

The third pressure term in Eq. (21) is more challenging than
the pressure on the flow faces as the bottom surface nor-
mal (ny) varies with irregular topography. Hence, the local
piezometric pressure contribution in the streamwise direc-
tion (i) at any position (x, y) depends not only on the local
water surface elevation but on the local irregularities in to-
pography. It follows that integrating this term over a control
volume requires some approximation of the subgrid topog-
raphy. To arrive at a simpler formulation we note that the
pressure acting normal to an arbitrary topography element at
position (x, y) with surface normal n; will have force compo-
nents that can be resolved along a set of local Cartesian axes.
One axis is taken along a topography slope angle of 6 that
lies in the same vertical plane as the streamwise direction i ,
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Figure 3. Stair-step approximation for pressure along the bottom
where tread is parallel to the free surface and riser is perpendicular
for linear slopes of both the bottom and free surface.

as illustrated in Fig. 2. We can imagine Fig. 2 as an infinites-
imal slice across a channel of irregular topography such that
a series of these slices (with different ) can represent any
cross-section shape. The second local Cartesian axis is taken
within the same vertical plane but perpendicular to the axis
defined by 6. The third axis, perpendicular to the other two,
is necessarily horizontal and in the cross-channel direction
(out of the page in Fig. 2). We are interested only in how
the topography contributes to pressure in the streamwise i
direction, so by definition the cross-channel pressure compo-
nent is irrelevant. This approach is entirely consistent with
changes in depth across the channel and changes in breadth
along the channel — both merely alter the surface normal vec-
tor ny that is resolved into the local Cartesian system based
on the local slope direction of 6. A

To isolate the pressure forces acting in the i streamwise
direction, as a conceptual model we can imagine the to-
pography in the infinitesimal slice of Fig. 2 replaced with
a set of m=1... N stair steps, where the treads are lo-
cally parallel to the free surface and the risers are normal to
the free surface, as illustrated in Fig. 3. Clearly, as N — oo
we will recover a continuous approximation so there is no
need to actually consider the discrete stair steps in a solution
method — the steps are merely to illustrate what is otherwise
a mathematical abstraction in vector calculus. As illustrated
in Fig. 4, we can imagine the stair-step risers as thin pla-
nar strips across the entire wetted perimeter that provide a
discrete representation of the irregular channel cross-section
structure. The only requirements for this conceptual model
are that the free surface at longitudinal position x is uniform
over the cross section and the slope is aligned with i (x). This
conceptual model could also be envisioned in 3-D as discrete
rectilinear bricks that approximate the topography: the up-
per surface of the brick is always aligned parallel with the
free surface, the side face is across the channel, and only the
front (or back) face is perpendicular to i and contributes a

Hydrol. Earth Syst. Sci., 23, 1281-1304, 2019



1290

\
\\

\
s

Figure 4. Three-dimensional conceptual model of stair-step riser
(gray) as a 2-D planar area of ARy, separating two tread areas
(blue, red).

Figure 5. Conceptual model of piecewise linear approximation of
nonlinear free surface and stair-step approximation of nonlinear to-
pography with the cross-sectional area monotonically increasing.
Pressure on the discrete riser area ARy, is locally aligned with the
free-surface slope directly above. The vertical scale and thus the tilt
of AR(n) are exaggerated for illustrative purposes.

topographic pressure force in the streamwise direction. As
the brick dimensions go to zero the continuous topography is
obtained.

Since the stair-step treads are (by definition) normal to the
modified pressure above, it follows that the onl)A/ pressure
contributions to the momentum in the streamwise i direction
are on the risers, with individual areas Agr(,) form =1... N
stair steps. Because the pressure contribution for increasing
cross-sectional area (i.e., steps down as in Fig. 3) will be
opposite of the pressure contribution for decreasing cross-
sectional area (i.e., steps upward), it is convenient to intro-
duce a function y,;,) = %1 to account for the change in sign
needed for the direction of the pressure force. We can for-
mally define y(,) = i kjk at step m where fk is the normal unit
vector (pointing outwards) from the Ay riser, as shown in
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Figure 6. Conceptual model of piecewise linear approximation of
nonlinear free surface and stair-step approximation of nonlinear bot-
tom with cross-sectional area increasing from Ay to the center and
then decreasing from the center to Ag. Pressure on the discrete riser
area AR(y) is locally aligned with the free-surface slope directly
above. The vertical scale and thus the tilt of Ag(,,) are exagger-
ated for illustrative purposes. Note that the topography is identical
to Fig. 5 but the stair steps are different due to the alteration of the
free surface.

Figs. 5 and 6 for two different nonlinear water surface pro-
files over identical bottom topography. It follows that

N
/Piknde A — Z Yom) / P(x,y,z)dA. (28)

Ap m=1 AR(m)
The above summation can be written as an integral over the
length L of the finite-volume element as N — oco.

/ﬁiknde = —/y(x) / P(x,y,z)dAdx, (29)

AB L AR(x)

where y (x) = i kfk is the continuous counterpart to the dis-
crete (). Note that this conceptual model is valid even for
non-monotonic behavior of the riser area (e.g., Fig. 6) as
long as the Ag(n)’s are continuous and smooth as N — oo.
However as discussed in Sect. 5, below, extremes of non-
monotonic behavior can make it difficult to create a consis-
tent discrete equation for the topographic pressure for a con-
trol volume of finite size.

For further simplification, it is convenient to introduce the
piezometric/non-hydrostatic splitting of Eq. (22) where, by
definition, the piezometric pressure is uniform over a vertical
cross section (e.g., a stair-step riser). Let P(,) represent the
piezometric pressure at the m stair-step riser with area ARy)
so that over a control volume for stepsm = 1... N. It follows
that
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N N
> / PimydA =" Pi) / dA
m=1

m=1
AR(m) AR(m)

= /P(x)AR(x)dx for N — oo, (30)
L

where the continuous Agr(x) represents the effective bot-
tom area contributing to the piezometric pressure force
in the streamwise i(x) direction. Applying this continu-
ous AR (x) form and the hydrostatic/non-hydrostatic splitting
to Eq. (29), we obtain

/ﬁgknde = —/V(X)P(X)AR(x)dx

Ap L

—/y(x)/ﬁ(x,y,z)dAdx, 31

L AR

which is a complete representation of the topographic pres-
sure contribution to streamwise momentum in terms of the
effective riser areas —i.e., the contribution based on the com-
ponent of the bottom normal projected in the streamwise di-
rection.

The stair-step conceptual model and AR allow us to con-
sider the pressure effects along the i direction due to the
changing cross-sectional area of the channel without intro-
ducing the separate force terms I; and I of the Cunge-—
Liggett form of the SVEs. An interesting part of this model is
that AR (x) over a control volume is a function of both the lo-
cal bottom topography and the local free-surface slope. That
is, comparing Figs. 5 and 6 we see that Ag(,,) riser areas are
different, despite the identical bottom topography. Returning
to our idea that 3-D topography can be represented by dis-
crete bricks, we can imagine each brick is pinned on an axis
that allows it to locally rotate to different angles so that the
upper surface is always parallel to the free surface. Again, the
continuous topography is recovered as the brick size goes to
zero, but the brick rotation allows the representation of the
different topography effects that are caused by the interac-
tion between the change in relationship between the down-
stream vector, i , and the bottom normal vector as the free-
surface profile evolves. Thus, AR is a dynamic representa-
tion of the interaction between the free-surface gradient and
bottom topography that controls the effective along-stream
pressure gradient of converging or diverging flow areas.

In theory, we might directly compute | P Ardx over a con-
trol volume; however, it seems likely that direct discretiza-
tion of subgrid topography could cause unbalanced momen-
tum source terms. In effect, computing f P Ardx has the
same complexity as computing the /1 or I, terms of the
Cunge-Liggett form and gains us little. Thus, it is useful to
consider limiting approximations that can be developed from
examining the geometry of Figs. 3 and 5. In the simplest case

www.hydrol-earth-syst-sci.net/23/1281/2019/

1291

where both the free surface and bottom have linear slopes
(Fig. 3), geometry for the infinitesimal slice requires that

N
Agcosy — Aycosy = D Arem). (32)
m=1

where Aqcos i represents the cross-sectional area normal to
the free surface at the downstream cross section and there is
only one value of i over the control volume for the linear
free-surface slope. Note that the above is an identity for any
discrete N stair steps for the linear case. The geometry is
somewhat more complex for the nonlinear system of Fig. 5,
but the m stair step with free-surface angle v,y must satisfy
a similar geometric identity:

Am—1/2)COS Y(m) — Am+1/2) COSV(m) = AR(m), (33)

where A(+1/2)Cc0os V() represents the areas normal to the
free surface on the upstream and downstream edges of the
m piecewise linear stair step. For the nonlinear free surface
and/or topography over adjacent linear stair steps there is a
discontinuity of the treads for adjacent steps as cos ¥/, —1) #
cosVY(m), so the discrete summation of the stair-step areas
over a control volume provides an approximation rather than
an identity:

N
Agcos g — Aucosu ~ D~ Arn). (34)
m=1

However, in the limit as N — oo we have a single value
of cosy at any point along a smooth free surface so that the
continuous form provides an identity:

Agcosyrg — Aycosyry = /AR(x)dx. (35)
L

To generalize the above for Ay < Ay, we can use the y (x) =
=+1 that was introduced for the pressure direction in Eq. (29).
Values of y(x) = +1 indicate that the cross-section area is
increasing across location x in the streamwise direction (as
in Figs. 3 and 5), whereas y (x) = —1 indicates that the cross-
sectional area is decreasing (as in the latter portion of Fig. 6).
It follows that

Agcos g — Aycos iy = /J/(X)AR(X)dx (36)
L

is an identity that should be satisfied for any control volume
where the bottom topography and free surface are continuous
and smooth. Note that if Fig. 3 is imagined as one of many
infinitesimal slices (with varying 6) that make up a channel
cross section, it should be obvious that Eq. (36) also applies
for a finite volume with irregular (smooth) topography.

To handle the integration of Ar(x) in the piezometric
pressure term of Eq. (31), we introduce a quadrature func-
tion A(x), defined as

Y (x)AR(x)
Agcosg — Aycosyry

Ax) = 37
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Note that with Eq. (36), this implies the identity

/A(x)dx =1 (38)

L

Using the above in the first term on the RHS of Eq. (31), we
obtain

/V(X)P(X)AR(X)dx = (Aqgcos g — Aycos Yu)
L

X /P(x))\(x)dx. 39)

L

Thus, the introduction of A allows us to extract a multiplier
from the control-volume integral of the bottom pressure. As
a result, A(x) is merely a distribution, or weighting func-
tion, for integration of P(x). The full bottom pressure term,
Eq. (31), can be written as

/kande = — (Aqcos g — Ay cos wu)/P(x)A(x)dx
L

Ap

_/V(X)/P(X,y,z)dAdx. (40)

L AR

Note that A weighting cannot be readily applied to the non-
hydrostatic term because the non-hydrostatic pressure on the
bottom has spatial distributions in both the vertical and cross-
channel directions that cannot be assumed to be negligible;
hence we cannot pass P through the AR integration as was
done in Eq. (30) for P.

We can think of A(x) as a weighting function of the con-
ceptual stair-step riser areas over the control-volume length,
which controls where the piezometric pressure gradients
have their greatest effect. For example, in Fig. 3 the stair-step
risers are uniformly distributed such that we can use A(x) =
L~!, which meets the identity requirement of Eq. (38). In
contrast, Fig. 5 implies that A (x) is perhaps a quadratic func-
tion. Figure 6 presents a challenge as A(x) should reverse
in sign between the upstream and downstream faces. A key
point in the new finite-volume derivation is that A (x) controls
the representation of the free surface and bottom topography
within a volume. This can be contrasted to the Godunov ap-
proach that uses piecewise linear approximations for both the
bottom and free-surface elevations (see Sect. 3). Several dis-
crete approaches to the approximation of A(x) are examined
in Sect. 5, although the full consequences and utility of the
A approach will require more extensive investigation for both
theoretical limitations and practical discretization schemes.
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4.8 Combining pressure terms

In summary, the pressure terms of Eq. (21) can be written
using Egs. (26), (27), and (40), resulting in

1 [~ 1 1
—fPiknde = ——AyPycosyry + —AqPgcos g
Y ¢ p Y

— % (Agcosyrg — Ay cos wu)/P(x)A(x)dx
L

cos Yy

/ﬁ(x,y,z)dA

Ay

/ﬁ(x, v,z2)dA

Ad

— %/y(x)/]s(x,y,z)dAdx, 41)

L AR

COS
+ Y

where the last three terms are the non-hydrostatic pressure
effects that are typically neglected in the SVEs.

4.9 Viscous term

The remaining term in Eq. (16) is the viscous term, which
is treated as an empirical function in all but the most highly
resolved models of simple systems — note that Decoene et al.
(2009) provide a comprehensive and rigorous approach for
friction that has not yet been fully considered in SVE mod-
els. For the present purposes, we will retain the simple fric-
tion slope form with an assumption of uniform behavior over
space, i.e.,

ou; ~
fva—xiz,nde = —g/Sf(x)dV ~ —gVeSk(e) (42)
S Ve

where Sy is the average friction slope over the control vol-
ume Ve.

4.10 Finite volume for momentum

Putting together the above, Eq. (16) can be written in a finite-
volume form as
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0 1
E (UeVe) = BuQuUy — BaQaUq + ;AuPuCOSWU

1 1
— —AgPgcosyg + — (Agcosfg — Aycosyry)
0 o

x /P(x)k(x)dx - Coswu/ﬁ(x,y,z)dA

L Ay

cos o 1
+ I/’d/m,y,z)dA - —/y(x)

P P
Aq L

/ P(x,y,z)dAdx — gVeSie) + Me, (43)
AR

where Uk is the element velocity in the streamwise direction,
Ve is the element volume, and the relationship between U
and Q is given by

QO =AUcosy. (44)

Note that Q > 0 and U > 0 imply flow in the nominal down-
stream direction, whereas Q <0 and U < 0 imply flow in
the nominal upstream direction. At this point we have in-
troduced only four approximations: (1) uniform-density in-
compressibility, (2) the effect of channel curvature is either
negligible or handled in an empirical viscous term, (3) the
cross-channel variability in the free-surface slope is negligi-
ble, and (4) a friction-slope model can be used to represent
integrated viscous effects over a control volume. In addition
we have a geometric restriction that the upstream and down-
stream control-volume cross sections must be vertical planes
that are orthogonal (in the horizontal plane) to the mean flow
direction.

For convenience in exposition, for the remainder of this
paper we will apply the hydrostatic approximation (P=0)
along with approximations for the small slope (cosir =~ 1)
and uniform cross-section velocity (8 ~ 1). Furthermore,
we will limit our focus to flows without lateral momentum
sources (M, = 0). These simplifications allow us to focus at-
tention on the pressure source term, which is the primary new
contribution in this derivation. The resulting simplification
of Eq. (43) can be presented with conservative terms on the
LHS and source terms on the RHS as

2 2
Gy 8 _ gAunu +8Adnd

d
at(ee) A, A

=g(Aa— Au)/ﬂ(X)K(X)dx —8gVeSte),  (49)
L

where definition of piezometric pressure, Eq. (23), is used
to substitute P = pgn. A more formal finite-volume integral
presentation would be
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9 2 2
3 udV — [u“dA+ [u"dA—g [ndA+g [ ndA
v Ay Aqg Ay Aq
=g(Aqa— Au)/fl(x)k(x)dx - g/Sde. (46)
L 4

Equation (45) can be reduced to a differential equation using
V =AL as L — 0. Dividing through by L and taking the
limit as L — 0 provides

3 3 (02
g . (Q

A
— +gAn ) =gn— —gASr. 47
A dx

dt 0x

If we substitute geometric identities n = H 4z, and Sp =
—0dzp/0x, we see that the above becomes identical to Eq. (8).
Thus, our finite-volume derivation is exactly consistent with
the commonly used differential SVESs that is posed using Sp.
However, from Eqs. (45) and (47) we see that the free-surface
source term in the differential form, gndA/dx, is related to
the more interesting integral source term in the finite-volume
form:

g(Ag— Au)/n(x))»(x)dx.
L

This piezometric pressure term can be thought of as the in-
tegrated free-surface/topography effects over a control vol-
ume of finite size. It is clear that this term collapses to
gndA/dx as L — 0, but the integral form cannot be read-
ily inferred from the differential form. Through approxima-
tions of this integral term we can obtain a variety of different
finite-volume forms of the SVEs, as outlined in the following
section.

5 Approximate finite-volume forms of the SVEs
5.1 General form

We are interested in approximate forms of the finite-volume
SVEs that arise from discretization choices in the integral
pressure source term derived above, so for exposition it is
convenient to start from the approximate form in Eq. (45)
with Ve = A¢L. and Q. = A.U.. These approximations can
be readily reversed to provide a more complete equation, but
the simple form for further analysis is

0. QF  Qf
Le ° = +7d_gAunu+gAd77d=Te_gVeSf(e)a (48)
ot Ay Ay

where T, is the source term for integrated free-
surface/topography pressure effects obtained from the
RHS of Eq. (45):

To = g (Aq — Au) / n(OACOdx. 49)
L
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Note that the LHS of Eq. (48) is discretely conservative in
that a summation over all elements will cause all the LHS
terms to identically vanish except for the d/d¢ and boundary
conditions. Thus, the RHS shows the source terms; i.e., the
traditional friction term and a term representing nonlineari-
ties in the free surface interacting with topography can cre-
ate and destroy momentum. The system is inherently well-
balanced as discussed in Sect. 3, as long as T, identically
balances the spatially integrated piezometric pressure gradi-
ent gAgng — g Aunu for a flat free surface.

Equation (49) admits a wide variety of approximate equa-
tions, depending on the form chosen for the quadrature
of n(x) and A (x) over the length of a finite volume. Arguably,
a simple finite-volume discrete method will have three val-
ues of 7 that characterize a control volume: 1y, e, and 14, as
illustrated in Fig. 1. Different numerical methods can be con-
structed by using different approximations constructed from
these three values. Herein, we cannot exhaustively investi-
gate the variety of options and so will focus on the most obvi-
ous candidates, which are polynomials of orders 0 through 2.
The zero-order polynomial is an approximation of n(x) as
a uniform value over the element length (e.g., as in the Go-
dunov conceptual model, discussed in Sect. 3) — which could
be simply represented by 7(x) = 1. so that the face values
of nq and n, are ignored. Note that even this choice has
alternate forms — a slightly different scheme could be con-
structed using 7 (x) = (ny + nq)/2, which is also uniform but
ignores ne. A first-order polynomial for n(x) implies a linear
free-surface slope across the element, which might be rep-
resented by a slope from ng4 to 1y. A second-order polyno-
mial implies a quadratic curvature to the free surface that can
pass smoothly through 1y, ne, and n4. Clearly this idea could
be extended to cubic splines by including adjacent control-
volume values. Beyond these polynomials there are other
options that might be suitable. For example, we could use
the three discrete n values to provide piecewise linear slopes
from 7y to ne and 7. to ng. The open-ended nature of the
n(x) discretization should allow future development of a va-
riety of finite-volume forms that can be easily demonstrated
to be well-balanced and consistent with the above deriva-
tions.

By its definition in Eq. (37) with constraint Eq. (38), the
weighting function A(x) is an abstraction of the topographic
pressure distribution over a finite volume, which is affected
by both topography and the local slope of the free surface, as
illustrated in Figs. 3, 5, and 6. The A(x) is more complicated
and abstract than n(x) because the free-surface elevation is
approximated as uniform across the channel at any x loca-
tion, but A(x) represents the integrated effect of complex 3-D
topography, e.g., the Agy) stair step as illustrated in Fig. 4.
The key point is that the A(x) weighting function has an inte-
gral constraint of [ AdL = 1 because the change in the cross-
sectional area over the control-volume flux faces, Aq — Ay,
has already been extracted from the integral of P Ar through
Eq. (39). A comparison of Figs. 5 and 6 shows that A(x) is not

Hydrol. Earth Syst. Sci., 23, 1281-1304, 2019

B. R. Hodges: Finite-volume Saint-Venant equations

Figure 7. Non-monotonic stair steps of the cross-sectional area with
linear monotonic free surface. The dashed gray line is where the
cross-section area reverses from increasing to decreasing.

independent of 1(x) and hence arguably should be a moder-
ator between the static topography and the dynamics of the
free surface. However, the development of A(x, ¢) forms that
are dynamically dependent on 7 (x, ¢) is beyond the scope of
the present work. Herein, we appeal to Occam’s razor and
note that the simplest A(x) that satisfies the integral con-
straintis A(x) = L 1 where L. is the control-volume length,
illustrated in Fig. 1. This choice of A(x) is a zero-order poly-
nomial implying the stair steps are uniformly distributed over
the element, as illustrated in Fig. 3. Clearly, for the nonlinear
cases in Figs. 5 and 6, this form of A(x) is an approxima-
tion that reduces the nonlinear interaction between the free
surface and the topography. Arguably, this is consistent with
a discrete scheme using a single-valued geometry function
such as n. = f(V¢) that neglects the effect of the free-surface
slope on the relationship between volume and surface eleva-
tion. Note that because the Ag — A, area is already extracted
from the integral, using A(x) = L ! ensures that the T, term
is exact at the linear limit and a bounded approximation for
nonlinear interactions. That is, with A(x) = L it follows
that

Ag— Ay
- %/U(x)dx < g (Aqg — Ay) max (1(x)) .
L

(&

T.

Thus, the largest possible value for the T; term is based on
the maximum piezometric pressure over the control volume
acting on the difference between upstream and downstream
areas.

The simple form of A(x) = L~! is consistent with either
increasing cross-sectional area (y(x) > 0 over Le) or de-
creasing cross-sectional area (y (x) < 0 over L) but is ques-
tionable for a non-monotonic case (e.g., Fig. 6). To examine
this issue in more detail, consider the somewhat simpler case
of a linear free-surface slope with a cross-sectional area that
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Figure 8. Approximated finite-element cross-section characteristics
using A(x) =Lg ! for non-monotonic topography in Fig. 7. The
dashed gray line is where the cross-section area reverses from in-
creasing to decreasing.

increases along the streamwise direction in the upper sec-
tion and decreases in the lower section, as shown in Fig. 7.
The A(x) = L~! approach cannot represent the actual change
in cross-section area but instead provides a linear trend be-
tween Ay and Aq as shown in Fig. 8. In contrast, if the con-
trol volume in Fig. 7 were split into two separate volumes at
the centerline (i.e., the dashed gray line), then the stair steps
of Fig. 7 would be readily represented by the A(x) = L™!
approximation as both control volumes would be monotonic.
A comprehensive investigation of different forms for n(x)
and A(x) in the T¢ term is clearly needed and will take sig-
nificant future effort. For the present purposes, we exam-
ine the simplest polynomial forms for n(x) in combination
with the zeroth-order A(x) = L~!. To provide insight into
how a higher-order A(x) discretization adds complexity in
the derivation, we can derive a simple linear form of A(x) that
depends only on topography and couples with a linear form
of n(x). Such a A(x) is unlikely to be useful with a dynamic
free surface but is illustrative of the complexity that can be
developed with quadrature of even simple linear equations.
We will use the nomenclature T, ) to designate an m-order
polynomial for 7 (x) and an n-order polynomial for A(x).

5.2 The T¢(,0) approximation

The simplest approximations arise by assuming uniform val-
ues such that n(x) ~ 7 and A(x) ~ L ! where 7 is the aver-
age water surface elevation over the element, and we recall
that [, Adx = 1. It follows that

Te0,0) = g (Ag — A 7. (50)

If we let ne & 7, then Eq. (48) can be written as
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aQe_Q_ﬁ+Q_§_ Aunu+ gA
e a7 A, A, gAyuMu T &AdNd
=g (Aqd — Auw) e — & Ve St(e)- (51

Note that the RHS in the above equation is what we might
infer as a discrete finite-volume version of gndA/dx in the
differential source term of Eq. (47).

5.3 The T¢(1,0) approximation

If we represent the free surface by a first-order polynomial,
n(x) = ax + b, while retaining the zeroth-order A(x) = L L
we obtain

al
Te(1,0) Zg(Ad_Au)(7+b>~ (52)

A linear approximation is consistent with a free surface
where b = ny and a = —(ny — ng)/L, so we obtain a finite-
volume source term:

1
Teq.0) = 58 (Aa = Au) O+ 1) (53)

Note that the above implies products of Agngq and Ayn, in
the source term that can be moved to the LHS as part of the
conservative flux terms. Substituting Ty (1 ) for 7¢ in Eq. (48)
and redistributing terms provides

00, QF Qi |1 1
— =4+ —=——2gA —gA
Sy A, + A, 2g ulu + 28 dnd
1
= Eg (Adnu — Aund) — & VeSt(e)- (54)

Thus, the model of a linear free surface and uniform A(x)
serves to change the weighting of the g An terms (from unity
to 1/2) and provides a source term that contains only face
values of A and 5, which is unlike Eq. (51) which requires an
element approximation of ne. Interestingly, the above finite-
volume form does not have a differential representation as
L — 0. That is, the free-surface differential source term in
Eq. (47)is based on (Ag— Ay)/L — dA/dx as L — 0. How-
ever, once we have chosen relationships for n(x) and A(x)
and moved a portion of the source term into the fluxes, an at-
tempt to create a differential out of our source term encoun-
ters the form

. Adnu— Aung
hm _—
L—0 Le

’

which can only be reduced to a differential by making ad-
ditional approximations as to the behavior of A and 7 at the
faces of the finite volume. As a further insight, for the special
case of a rectangular channel with frictionless flow Eq. (54)
can be transformed by using A = B H, where B is the breadth
and H is the depth, so that we obtain a finite-volume form of
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3 _ 2 2 1 2 g2
Lo (HeUe) = HyU + HaU§ + 5 g ( H — H;
(Hq+ Hy)

2

As Le — 0, and Sy = —dz/0x, the above implies a conser-
vative differential form of

(zu—24) - (35)

Y 2 (HU2)+1 O _ ens (56)
or | ox 285 80

which is commonly used in studies of simplified conservative

forms (e.g., Bouchut et al., 2003; Hsu and Yeh, 2002). Thus

the Te(1,0) is also consistent with prior differential forms.

5.4 The T, ¢) approximation

We can take this approach further by approximating the free
surface as a parabola based on {1y, ne, ng}, where ne is a
characteristic free-surface height at the center of the finite
volume. Using n(x) = ax?+ bx +c¢ with x =0 at A, and
x = L at Aq provides

¢ =1y, (57
1

b= I (=3nu+4ne —na) (58)
2

a=13 (Mu — 21e +na) . (59)

Using A(x) = L~ ! results in
8
Te2,0) = 3 (Ad — Aw) (Mu +4ne +14) - (60)

It is useful to multiply through and regroup terms so that
Agnqg and Ayny are isolated. Where these terms are balanced,
they can be moved to the LHS as conservative terms. Re-
grouping provides

8
Te,0) = 3 {Adang — Aunu + Ad (nu + 41¢)

—Au(4ne +1n49)}. (61)

So our momentum equation can be written as

9 Q2 03 5 5
Le— —=Zu=d Zo4 ZgA
e (Qe) Au+Ad 8 unu+6g dnd
1
=358 {Ad (nu+4ne) — Ay (4ne +14)}
— 8 VeSte)- (62)

Once again, the specific representation of n(x)A(x) provides
a modification of the coefficient of the g An terms in the con-
servative fluxes and sets the form of the non-conservative
source term. This form does not appear to readily reduce to
any differential form that is previously seen in the literature
and thus provides an interesting new avenue for investiga-
tion.
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5.5 The T¢(1,1) approximation

The above forms used a uniform A(x) = L~!. We can readily
extend the concept to analytical forms of A(x), although it is
not clear that such increasing complexity will yield an advan-
tage in the design of a numerical model. The A(x) function is
a weighting function that reflects the distribution of the bot-
tom elevation stair steps, as described in Eq. (4). The only
restriction on A(x) is that it must integrate to unity over Le.
Physically, as illustrated in Figs. 3, 5, and 6, the A(x) should
be a function of n(x) as well as the topography. However,
we do not (as yet) have a good working framework for a dy-
namic representation of A(x, n). Thus, to illustrate the com-
plexities that arise with a nonuniform A(x), herein we will
simply analyze a somewhat arbitrary static linear relationship
where A(x) = az(x), where z is the bottom elevation and « is
a scaling constant to ensure [Adx = 1. We introduce linear

L
approximations of the bottom as z(x) = Ax + B and the free
surface as 1(x) = ax +b. We can write these approximations
as

z(x) = —% (Zu—2d) X + 24, (63)
1
n(x)=—z(nu—nd)x+nu- (64)

Using faz(x) = 1, it can be shown that
L

2

= Lt ()

Using Eq. (49), a quadrature problem can be presented as

L =a/z(X)n(X)dx =
g (Ag— Ay g L (zu+zq)
X/I:_%(Zu_zd)x+zui|
L
1
X [—Z(nu—nd)ernu]dx. (66)

After some algebra, we find

Teq1,1) _ 2NuZu + NuZd + NdZu + 2nd2d
g (Ag—Ay) 3(zu +za)

Unfortunately, for the above form we cannot use the redis-
tribution trick to split 7, and move a portion to the LHS
of Eq. (48). The problem is that any split term will have
Zu + z4 in the denominator, which will not be conservative
when used as a coefficient on a control-volume face. Thus,
the Te(1,1) form of momentum is

(67)
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0. Q2 03
—=u g =d_g4 Aang = ¢ (Ag — A
e 5, Au+Au 8Aunu + gAdnd = g (Ad w
2nuzu + Nuzd + Ndzu + 2ndZd)
— 2A:Ste). 68
( 3 (2o + 20) 8 Aedf(e) (68)

In general, it appears that only the uniform A(x) = L_ ! form

will allow us to shift part of the source term onto the flux

side. Any form that has a nonuniform A(x) must necessarily

have a dependency on z(x) in the cell to satisfy [Adx =1,
L

which creates terms that are inherently non-conservative.
Note that this particular Ty(; 1) form is for demonstration
purposes and is not recommended for use in any numerical
scheme. This T¢(1,1) is predicated on an assumed weighting
of A(x) = wz(x), which does not have a physical linkage to
specific cross-section geometry or expected flow conditions.

5.6 Summary of approximate forms

The Te(o,o), Te(l,O)s Te(Z,O), and Te(l,l) approximations all fol-
low a similar form

2 2
L 00 0L O

— —gA 1-6 A 1-34
Y Au+Ad 8Aunu ( w) + gAdnd ( d)

= Ke(m,n) - gVeSf(e)7 (69)

where 0 < §, and 83 < 1 are fixed coefficients and K¢ p) is
a time—space-varying topographic source term, whose exact
forms are determined by the approximations used for 7. This
form was suggested in Sect. 2 with Eq. (9) based on a philo-
sophical argument of moving as much of the RHS source
terms as possible to the conservative LHS flux terms. The
key point for future work is that these forms (with the ex-
ception of K¢(1,1)) are relatively straightforward in their rep-
resentation of values that are the natural elements of a SVE
computational model for river networks and urban drainage.
This approach eliminates the need for estimating or comput-
ing the I and I, of the Cunge-Liggett conservative form and
replaces them with the simple cross-sectional area term and
a K. that is computed from discrete values of  and A. Values
for 8y, 84, and K. for these forms are presented in Table 2.
Examination of the above leads to the conclusion that the use
of any polynomial representation of n(x) with A(x) = L~!
will produce a Ke(n,0) source term that will exactly balance
the piezometric pressure terms of the LHS when the free sur-
face is flat; e.g., ny = ne = ng. Thus, these schemes are in-
herently well-balanced as discussed in Sect. 3. Furthermore,
for these cases the source terms will be Lipschitz smooth as
long as the solution variables are smooth.

6 Summary and discussion

The conservative differential form of the non-hydrostatic
version of the Saint-Venant equations, simplified from the
derivation in Sect. 4, can be written as
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Table 2. Values for conservative Az coefficients and K¢y, ;) source
terms for finite-volume schemes with (m, n) polynomial approxi-
mations of Te. Note that forms using (m, n) = (m, 1) are not recom-
mended without further theoretical development and are provided
only for illustrative purposes.

(m,n)  Sugmny  Sdomn)  Kem,n)

0,0 0 0 g(Ag—Ae)ne

(1,0 1/2 172 g(Aqnu — Aung) /2

(2,0) 1/6 1/6  g{Aq(nu+4ne) — Au(ng +4ne)} /6
(L1 0 0 g(Ag— Ay (Fmatyzeticting)

AU 3 5 P
—— +—\ | BAU +gAn+ — [cosy
at ax o

JdA 1 o
ZgHECOSKﬁvL;/P(Z)dA—gAvaLme, (70)
AR

where m. is the source and sink of momentum from lateral
fluxes per unit length (i.e., McL™"). This equation is similar
to previous work but includes both non-hydrostatic terms and
effects of free-surface slope (cos y) that are often neglected.
The key contribution of the present work is the semi-discrete,
conservative, finite-volume form that corresponds to the dif-
ferential form above:

d
- We Ve)—BuAuUZ cos Yy + BaAaU; cos Yra — g Auny cos Yy

COs o COSs o
Yu AuPy + Ya AqPq

+ gAdndacos g —

= g (Agcos g — Aycos Yu) /n(x)?»(x)dx
L

1 .
+;/y(x)/P(x,y,z)dAdx—gVeSf(e) + M, (71)
L AR

where P, and Py are the average non-hydrostatic pressures
on the upstream and downstream cross-sectional areas. In
this finite-volume form, the only approximations introduced
are listed as follows: (1) uniform-density incompressibility,
(2) the effects of momentum redirection around bends is ei-
ther negligible or is handled in friction terms, (3) the cross-
channel variability in the free-surface slope is negligible, and
(4) a friction slope model can be used to represent integrated
viscous effects. In addition we have introduced a geometric
restriction that the upstream and downstream cross sections
must be vertical planes that are orthogonal (in the horizon-
tal plane) to the mean flow direction. The above form can be
used to analyze systems that include non-hydrostatic pres-
sure and slope gradients beyond the small-slope approxima-
tion of the traditional SVEs. As warning for future develop-
ment of non-hydrostatic methods, note that the fundamen-
tal 1-D derivation is effectively treating the non-hydrostatic
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pressure gradients in the horizontal as absorbing and redirect-
ing momentum along the curving channel. Thus a part of this
term is, in effect, encapsulated within the approximation that
allows A, and A4 to be cross sections that are not parallel.

The principal feature of the new finite-volume formula-
tion is the topographic source term f n(x)A(x)dx that can
be represented by analytical functions to approximate a
smoothly varying free surface and its interaction with to-
pography across the finite-volume element. Discrete poly-
nomial representations of f n(x)A(x)dx are evaluated in
Sect. 5, with the resulting topographic terms designated
as Tem,n) for an m-degree polynomial representing 1 and
an n-degree polynomial representing A. In an approximate
form, the Te(y,,) term is split into a 8y(n,n) factor applied
to gAyny and a 8q(m,») factor applied to g Agnq, which be-
come part of the conservative flux terms. The remainder of
the To(n,n) becomes a Ky ) source term in the approxi-
mate finite-volume form. Simpler conservative finite-volume
forms that use the common approximations of the hydrostatic
equations ( P~ 0) with small free-surface slope (cos ¥ =~ 1),
uniform cross-sectional velocity (8 & 1), and no momentum
sources (M. = 0) can be written as

0. 02 0F
— =4+ ==—9A 1-6
97 A, + Aq 8 AuNu ( u(m,n))

+gAdnd (1 — ad(m,n)) = Ke(m,n) - gLeAeSf(e)a (72)

e

where the discrete K. and & terms are shown in Table 2. It
is worthwhile to compare the above to a finite-volume form
derived using the Cunge-Liggett form of the SVEs, which
could be written (using the /7 and I, definitions) as

20 Q2 05
LeE—A—U—FA—d—g/(H—Z)B(Z)dz
Hu)
JdB
+8/(H—Z)B(z)dz:g//(H—z)a—xdx
H(d) L H
+g/A (So — Sp)dx. (73)

L

Performance of the traditional scheme depends on the spec-
ification for B(x, z) that defines the irregular bathymetry of
the channel. Although the B(x, z) term is developed with-
out any approximations, it is a nontrivial matter to simplify
these terms to create practical computational forms for irreg-
ular cross-section geometry. The source term on the RHS of
the Cunge-Liggett form is effectively an integration of both
variations in the channel topography and the water surface
elevation over the volume — similar to the new T, — but with-
out a limiting constraint (i.e., dB/dx is not inherently lim-
ited in magnitude for irregular topography). Furthermore, the
selection of B(x, z) for the RHS affects the integration on
the LHS hydrostatic pressure term — thus obtaining a well-
balanced source term that compensates for Sy will also affect
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the conservative flux terms. The A(x) used to develop the
K. term Eq. (72) serves a similar purpose to the source-term
integral in the Cunge-Liggett form, but it provides a simple
weighting function that can be analytically integrated with
an approximation for n(x) and is inherently constrained such
that [Adx =1 over a control volume. The other major dif-
ference between the two approaches is that Eq. (73) uses Sy
as a source term on the RHS of the equations, whereas in
the new approach Eq. (72) dispenses with this artifice so that
the source terms only include friction (which is guaranteed
to damp momentum) and the portion of the topographic ef-
fects that cannot be transferred into the conservative 8, and
84 terms.

There is a long history of the use of Sp in the source
term in the SVEs, and it is indeed part of the author’s prior
model (Liu and Hodges, 2014). However, the use of Sy with
irregular geometry brings the problems of creating a well-
balanced conservative scheme, as discussed in Sect. 3. Fur-
thermore, the use of Sy in the source term requires the pres-
sure term to be treated as the hydrostatic pressure rather than
the piezometric pressure, as shown in Sect. 4. Because the
hydrostatic pressure is a function of depth, its integration
over a cross-sectional area requires knowledge of the dis-
tribution of depth across the channel — a significant com-
putational complexity for irregular topography. In contrast,
the integration of the piezometric pressure over a cross sec-
tion is exactly PA and does not require knowledge of how
depth is distributed across the channel. Other authors have
noted similar problems: Schippa and Pavan (2008) derived a
conservative differential form that retained gI; in the flux
terms and removed Sp by showing that it could be com-
bined with the /> source term as d/;/dx for a uniform water
level. It seems that the Schippa and Pavan (2008) differen-
tial equation might be preferred to the approach proposed
herein for high-resolution topography with small grid spac-
ing (i.e., where we have confidence that the computation of I
is meaningful). However, at larger scales where geometric
cross sections are broadly spaced and the computation of /;
is questionable, the simplicity of using A and n for piezo-
metric pressure gradient terms is likely to be preferred. Other
authors, notably Rosatti et al. (2011), have simply accepted
gAdn/ox as an unavoidable source term rather than dealing
with the problems of obtaining a well-balanced method with
the hydrostatic pressure.

Since Sy was not in de Saint-Venant’s original paper, how
did it come to be commonly used in the Saint-Venant equa-
tions? Arguably there are two sources associated with differ-
ent simulation scales: (1) in hydrology the kinematic wave
model provides Sy = S¢, which leads to prioritization of Sy
as a hydraulic parameter; and (2) in mathematics the equa-
tion
oh  dhu

oo 74
ar | ax 74)
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is the canonical form of a 1-D inhomogeneous hyperbolic
advection equation for depth /& and velocity u, which leads
to a prioritization of the depth as a fundamental parameter
and requires that So(x) be relegated to the source term for
irregular geometry. However, for solution of the SVEs there
is no need to exactly mimic the hyperbolic advection equa-
tion to obtain a conservative form; thus there is no need to
introduce Sg. The above comparisons of the Cunge-Liggett
form and the new finite-volume form illustrate the addi-
tional complexity of introducing Sp. Beyond these issues is a
more fundamental problem: numerical methods for inhomo-
geneous partial differential equations are only well-posed if
the source terms are Lipschitz smooth (e.g., Iserles, 1996) —
otherwise one should not be surprised by numerical instabil-
ities and/or difficulties in convergence. Any river model that
uses raw data from surveyed cross sections will inherently
have a non-smooth Sp(x). As a result, much of the computa-
tional complexity is likely to be compensating for the lack of
Lipschitz smoothness in the boundary conditions of topogra-
phy. In contrast, when the free-surface elevation (piezometric
pressure) is used instead of depth (hydrostatic pressure), then
So(x) disappears from the SVEs and the smoothness of the
source term is assured (for smooth solution variables) by the
choice of smooth functions for A(x) and n(x) and the fric-
tion slope model Sz(x). In general, as long as the solutions
of n and Q remain smooth the source term of the SVEs, as
derived herein, should remain smooth. That is, the approach
herein cannot guarantee a smooth solution, but it can guar-
antee that any observed non-smoothness in the source terms
during a simulation is a result of non-smoothness in the so-
lution variables rather than direct forcing of boundary condi-
tions.

As a matter of pure speculation, the new form of the finite-
volume equations brings up some interesting possibilities for
large-scale modeling. Imagine that we would like to model
a river network or urban drainage network where we have
some high-resolution (1 x 1 m) data in some areas but not
in others. Let us also say our computer power limits us to a
SVE solution with a median cell length of about 20 m. Can
we use our high-resolution knowledge directly at the coarse
scale? Arguably, the A(x) approach could give us a means
of directly incorporating effects of subgrid-scale topography
into a single source term — however, significant theoretical
work is required to develop a consistent methodology that
retains the fundamental well-balanced and Lipschitz smooth
characteristics of the finite-volume equations.

Clearly, there remains much practical experimentation to
be done in comparing various forms of Te(y, ) and the ef-
fectiveness of different numerical solution methods with
different n(x) polynomial representations. There is also a
need to develop a firm theoretical relationship between A(x)
and 7n(x) to overcome the difficulties illustrated with Figs. 5
and 6 where nonlinear interactions between the free sur-
face and topography cannot be readily represented with the
uniform A(x) = L~! applied herein. Finally, there are sub-
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stantial questions on whether the new approach can be used
with methods designed to satisfy the entropy criterion (e.g.,
Greenberg and Leroux, 1996; Harten et al., 1983; Lax, 1973).
It is hoped that researchers will consider adapting their finite-
volume codes to the form of Eq. (72) and reporting their ex-
perience.

7 Conclusions

New finite-volume forms of integral momentum equations
for unsteady flow in open channels with varying cross sec-
tions are derived in this paper. These equations reduce to
the classic differential forms of the Saint-Venant equations
(under the Te(,0y and Te(1,0) approximations) and also pro-
vide new approximate finite-volume forms that are suitable
for analytical representations of topography and free-surface
elevation over a finite-volume element. The new forms use
the piezometric pressure (free-surface elevation) rather than
hydrostatic pressure (depth) as a fundamental variable and
thus do not include the channel slope, Sy. This approach pro-
vides a cleaner finite-volume form as the nonlinear interac-
tions of topography and the free surface are handled in a sin-
gle integral term, g(Aq— Ay) f nidx, where A is a quadrature
weighting function and Aq — A, is the downstream increase
in cross-sectional area of the control volume. The introduc-
tion of A(x) provides a potential avenue to convert practical
knowledge of fluid and/or geometry variations within a con-
trol volume into source and flux terms of the finite-volume
equations. The derivations herein can be used to generate a
variety of conservative, well-balanced, finite-volume forms
for the SVEs that could be employed with a wide range of nu-
merical discretization schemes. This work provides only the
theoretical development for the new finite-volume equations;
the practical implementation and numerical testing remains
a subject for future work.

Code availability. A demonstration code for discretized applica-
tion of the new SVE form is available on GitHub at https://github.
com/benrhodges/SvePy. This code is associated with a companion
paper (Hodges and Liu, 2019) that explains the discretized form.
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Appendix A

To elaborate on Eq. (19), the advection of some quantity ¢
through a control volume bounded by surface S can be rep-
resented as

j{q‘)uknde =jl§¢u;,dA, (A1)
N N

where u; is the local normal velocity across a flux surface.
For a flux surface of area A, we define the nonlinearity of
distribution across the surface as

1
= 7dA, A2
o ACDU;,/(W" (A2)
A

where @ is the average of ¢ over flux area A, and Uj; is the
average surface normal velocity. Note that because u; and
U}, are derived from projection of the velocity onto the sur-
face normal vector, they have positive signs for outflows and
negative sign for inflows. Consistency of u; and U} ensures
that o > 0; however, this introduces a nomenclature diffi-
culty because the sign does not depend solely on the nominal
upstream or downstream direction of the flow. To simplify
the nomenclature, we consider only upstream (#) and down-
stream (d) flux surfaces for a control volume and represent
the normal velocity by U such that a downstream velocity
on any face is U > 0 and an upstream velocity on any face
is U < 0. It follows that

7{ purnidA = —(@DU | A)y + (@DU | A)g, (A3)
s
where
1
= dA. A4
a AU, /¢>u¢ (A4)
A

Let Q = U, A with the same sign conventions as U | , so that

7{¢uknkdz4 =—(@®Q)u+ (@PQ)q. (AS5)
S
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Consider a channel with a linear free surface so that a ve-
locity parallel to the free surface (u;) has the same direction
over the entire control volume. Let ¢ = u; and ¢ = U; so we
obtain

fulcuknde = —(aU;Q)u—i— (aU;Q)d, (A6)
s
where U; is interpreted as the average velocity parallel to the

free surface with the same sign conventions as U | . For a free
surface at angle 1 from the horizontal it follows that

cosy = % (A7)

4

Using Eq. (A4) with & = U; and U | = U; cos y provides

1
o= —z/u;uldA. (A8)
A[U;] cosyr A

. . 71 .
Noting that u; = u cos™ ¢ we obtain

1 2
- T / [u:Pda. (A9)

Thus, o of Eq. (A4) for ® = U; is identical to 8 of Eq. (18).
It follows that

fu;uknde =—(8U;0),+ (BU; Q) ;» (A10)

S

which is Eq. (19). However, because Q = U A it follows
that 0 = U;A cos ¢. Thus, equivalent forms are

%u;uknde: —(ﬁUl?Acos W)u n (ﬂUl?Acosw)d, (All)

S
B 0? 0’
R I R G

which all reduce to conventional forms with Q = U A when
cosyr = 1.
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