Articles | Volume 22, issue 12
https://doi.org/10.5194/hess-22-6241-2018
https://doi.org/10.5194/hess-22-6241-2018
Research article
 | 
06 Dec 2018
Research article |  | 06 Dec 2018

Estimating long-term groundwater storage and its controlling factors in Alberta, Canada

Soumendra N. Bhanja, Xiaokun Zhang, and Junye Wang

Related authors

Importance of spatial and depth-dependent drivers in groundwater level modeling through machine learning
Pragnaditya Malakar, Abhijit Mukherjee, Soumendra N. Bhanja, Dipankar Saha, Ranjan Kumar Ray, Sudeshna Sarkar, and Anwar Zahid
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-208,https://doi.org/10.5194/hess-2020-208, 2020
Revised manuscript not accepted
Short summary
Long-term groundwater recharge rates across India by in situ measurements
Soumendra N. Bhanja, Abhijit Mukherjee, R. Rangarajan, Bridget R. Scanlon, Pragnaditya Malakar, and Shubha Verma
Hydrol. Earth Syst. Sci., 23, 711–722, https://doi.org/10.5194/hess-23-711-2019,https://doi.org/10.5194/hess-23-711-2019, 2019
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Remote Sensing and GIS
Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data
Pierre Seraphin, Julio Gonçalvès, Bruno Hamelin, Thomas Stieglitz, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 26, 5757–5771, https://doi.org/10.5194/hess-26-5757-2022,https://doi.org/10.5194/hess-26-5757-2022, 2022
Short summary
Evaluating downscaling methods of GRACE (Gravity Recovery and Climate Experiment) data: a case study over a fractured crystalline aquifer in southern India
Claire Pascal, Sylvain Ferrant, Adrien Selles, Jean-Christophe Maréchal, Abhilash Paswan, and Olivier Merlin
Hydrol. Earth Syst. Sci., 26, 4169–4186, https://doi.org/10.5194/hess-26-4169-2022,https://doi.org/10.5194/hess-26-4169-2022, 2022
Short summary
Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali
Víctor Gómez-Escalonilla, Pedro Martínez-Santos, and Miguel Martín-Loeches
Hydrol. Earth Syst. Sci., 26, 221–243, https://doi.org/10.5194/hess-26-221-2022,https://doi.org/10.5194/hess-26-221-2022, 2022
Short summary
Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin
Sònia Jou-Claus, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 25, 4789–4805, https://doi.org/10.5194/hess-25-4789-2021,https://doi.org/10.5194/hess-25-4789-2021, 2021
Short summary
Unsaturated zone model complexity for the assimilation of evapotranspiration rates in groundwater modelling
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021,https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary

Cited articles

Alberta Environment and Perk (AEP): Groundwater use, 5 pp., available at: http://aep.alberta.ca/about-us/documents/FocusOn-GroundwaterUse-2014.pdf (last access: 21 November 2017), 2011. 
Alberta Environment and Perk (AEP): http://aep.alberta.ca/water/programs-and-services/water-for-life/water-supply/water-allocation-management/water-quantity.aspx, last access 21 November 2017. 
Alley, W. M., Reilly, T. E., and Franke, O. L.: Sustainability of ground-water resources, US Department of the Interior, US Geological Survey, 1186, Denver, Colorado, US, 1999. 
Bhanja, S., Mukherjee, A., Rodell, M., Velicogna, I., Pangaluru, K., and Famiglietti, J. S.: Regional groundwater storage changes in the Indian Sub-Continent: the role of anthropogenic activities, American Geophysical Union, Fall Meeting, GC21B-0533, 2014. 
Bhanja, S. N., Mukherjee, A., Saha, D., Velicogna, I., and Famiglietti, J. S.: Validation of GRACE based groundwater storage anomaly using in situ groundwater level measurements in India, J. Hydrol., 543, 729–738, 2016. 
Download
Short summary
The paper presents groundwater storage conditions in all the major river basins across Alberta, Canada. We used remote-sensing data and investigate their performance using available ground-based data of groundwater level monitoring, storage coefficients, aquifer thickness, and surface water measurements. The water available for groundwater recharge has been studied in detail. Separate approaches have been followed for confined and unconfined aquifers for estimating groundwater storage.