Articles | Volume 22, issue 9
https://doi.org/10.5194/hess-22-4907-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-4907-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrological control of dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland: a water-table based modelling approach
Léonard Bernard-Jannin
CORRESPONDING AUTHOR
Université d'Orléans, ISTO, UMR 7327, 45071, Orléans,
France
CNRS, ISTO, UMR 7327, 45071, Orléans, France
BRGM, ISTO, UMR 7327, 45071, Orléans, France
Stéphane Binet
Université d'Orléans, ISTO, UMR 7327, 45071, Orléans,
France
CNRS, ISTO, UMR 7327, 45071, Orléans, France
BRGM, ISTO, UMR 7327, 45071, Orléans, France
ECOLAB, Université de Toulouse, CNRS, UPS, INPT – UMR 5245,
Toulouse, France
Sébastien Gogo
Université d'Orléans, ISTO, UMR 7327, 45071, Orléans,
France
CNRS, ISTO, UMR 7327, 45071, Orléans, France
BRGM, ISTO, UMR 7327, 45071, Orléans, France
Fabien Leroy
Université d'Orléans, ISTO, UMR 7327, 45071, Orléans,
France
CNRS, ISTO, UMR 7327, 45071, Orléans, France
BRGM, ISTO, UMR 7327, 45071, Orléans, France
Christian Défarge
Université d'Orléans, ISTO, UMR 7327, 45071, Orléans,
France
CNRS, ISTO, UMR 7327, 45071, Orléans, France
BRGM, ISTO, UMR 7327, 45071, Orléans, France
CETRAHE, Université d'Orléans, 45072, Orléans, France
Nevila Jozja
CETRAHE, Université d'Orléans, 45072, Orléans, France
Renata Zocatelli
CETRAHE, Université d'Orléans, 45072, Orléans, France
Laurent Perdereau
Université d'Orléans, ISTO, UMR 7327, 45071, Orléans,
France
CNRS, ISTO, UMR 7327, 45071, Orléans, France
BRGM, ISTO, UMR 7327, 45071, Orléans, France
Fatima Laggoun-Défarge
Université d'Orléans, ISTO, UMR 7327, 45071, Orléans,
France
CNRS, ISTO, UMR 7327, 45071, Orléans, France
BRGM, ISTO, UMR 7327, 45071, Orléans, France
Related authors
No articles found.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Thomas Rosset, Stéphane Binet, Jean-Marc Antoine, Emilie Lerigoleur, François Rigal, and Laure Gandois
Biogeosciences, 17, 3705–3722, https://doi.org/10.5194/bg-17-3705-2020, https://doi.org/10.5194/bg-17-3705-2020, 2020
Short summary
Short summary
Peatlands export a large amount of DOC through inland waters. This study aims at identifying the mechanisms controlling the DOC concentration at the outlet of two mountainous peatlands in the French Pyrenees. Peat water temperature and water table dynamics are shown to drive seasonal- and event-scale DOC concentration variation. According to water recession times, peatlands appear as complexes of different hydrological and biogeochemical units supplying inland waters at different rates.
Fabien Leroy, Sébastien Gogo, Christophe Guimbaud, Léonard Bernard-Jannin, Xiaole Yin, Guillaume Belot, Wang Shuguang, and Fatima Laggoun-Défarge
Biogeosciences, 16, 4085–4095, https://doi.org/10.5194/bg-16-4085-2019, https://doi.org/10.5194/bg-16-4085-2019, 2019
Short summary
Short summary
This study demonstrates the implications of Molinia caerulea colonization in Sphagnum peatland on the C fluxes by enhancing the CO2 uptake by photosynthesis (but which led to higher CO2 and CH4 emissions) and also on the parameters controlling it (by increasing the temperature sensitivity of the CH4 emissions). Furthermore, roots and litter of Molinia caerulea could provide additional substrates for C emissions and should be taken into account in further works.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Fabien Leroy, Sébastien Gogo, Christophe Guimbaud, Léonard Bernard-Jannin, Xiaole Yin, Guillaume Belot, Wang Shuguang, and Fatima Laggoun-Défarge
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-423, https://doi.org/10.5194/bg-2017-423, 2017
Revised manuscript has not been submitted
Related subject area
Subject: Biogeochemical processes | Techniques and Approaches: Modelling approaches
Groundwater flow paths drive longitudinal patterns of stream dissolved organic carbon (DOC) concentrations in boreal landscapes
Water level variation at a beaver pond significantly impacts net CO2 uptake of a continental bog
A method for predicting hydrogen and oxygen isotope distributions across a region's river network using reach-scale environmental attributes
A new large-scale suspended sediment model and its application over the United States
A systematic examination of the relationships between CDOM and DOC in inland waters in China
Effects of mountain tea plantations on nutrient cycling at upstream watersheds
Technical Note: Alternative in-stream denitrification equation for the INCA-N model
A generalized Damköhler number for classifying material processing in hydrological systems
A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation
Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem
Soil weathering rates in 21 catchments of the Canadian Shield
Parameterization of a coupled CO2 and H2O gas exchange model at the leaf scale of Populus euphratica
Anna Lupon, Stefan Willem Ploum, Jason Andrew Leach, Lenka Kuglerová, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 27, 613–625, https://doi.org/10.5194/hess-27-613-2023, https://doi.org/10.5194/hess-27-613-2023, 2023
Short summary
Short summary
Discrete riparian inflow points (DRIPs) transport dissolved organic carbon (DOC) from large areas to discrete sections of streams, yet the mechanisms by which DRIPs affect stream DOC concentration, cycling, and export are still unknown. Here, we tested four models that account for different hydrologic and biological representations to show that DRIPs generally reduce DOC exports by either diluting stream DOC (snowmelt period) or promoting aquatic metabolism (summer).
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Bruce D. Dudley, Jing Yang, Ude Shankar, and Scott L. Graham
Hydrol. Earth Syst. Sci., 26, 4933–4951, https://doi.org/10.5194/hess-26-4933-2022, https://doi.org/10.5194/hess-26-4933-2022, 2022
Short summary
Short summary
Stable isotope ratios (isotope values) of surface water reflect hydrological pathways, mixing processes, and atmospheric exchange within catchments. We used a water-balance-based mapping method, which represents patterns of surface flow and mixing, and added a regression-based correction step using catchment environmental characteristics to map water isotope ratios across all the rivers of New Zealand.
Hong-Yi Li, Zeli Tan, Hongbo Ma, Zhenduo Zhu, Guta Wakbulcho Abeshu, Senlin Zhu, Sagy Cohen, Tian Zhou, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 665–688, https://doi.org/10.5194/hess-26-665-2022, https://doi.org/10.5194/hess-26-665-2022, 2022
Short summary
Short summary
We introduce a new multi-process river sediment module for Earth system models. Application and validation over the contiguous US indicate a satisfactory model performance over large river systems, including those heavily regulated by reservoirs. This new sediment module enables future modeling of the transportation and transformation of carbon and nutrients carried by the fine sediment along the river–ocean continuum to close the global carbon and nutrient cycles.
Kaishan Song, Ying Zhao, Zhidan Wen, Chong Fang, and Yingxin Shang
Hydrol. Earth Syst. Sci., 21, 5127–5141, https://doi.org/10.5194/hess-21-5127-2017, https://doi.org/10.5194/hess-21-5127-2017, 2017
T.-C. Lin, P.-J. L. Shaner, L.-J. Wang, Y.-T. Shih, C.-P. Wang, G.-H. Huang, and J.-C. Huang
Hydrol. Earth Syst. Sci., 19, 4493–4504, https://doi.org/10.5194/hess-19-4493-2015, https://doi.org/10.5194/hess-19-4493-2015, 2015
Short summary
Short summary
We summarize our findings as follows: (1) the mountain watersheds are vulnerable to agriculture expansion; (2) proper spatial configuration of agricultural lands in mountain watersheds can mitigate the impact of agriculture on NO3- output by 70%; and (3) the reconstructed element fluxes for the watersheds indicate excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, which likely resulted from excessive fertilizer use.
J. R. Etheridge, F. Birgand, M. R. Burchell II, A. Lepistö, K. Rankinen, and K. Granlund
Hydrol. Earth Syst. Sci., 18, 1467–1473, https://doi.org/10.5194/hess-18-1467-2014, https://doi.org/10.5194/hess-18-1467-2014, 2014
C. E. Oldham, D. E. Farrow, and S. Peiffer
Hydrol. Earth Syst. Sci., 17, 1133–1148, https://doi.org/10.5194/hess-17-1133-2013, https://doi.org/10.5194/hess-17-1133-2013, 2013
J. Y. Tang and W. J. Riley
Hydrol. Earth Syst. Sci., 17, 873–893, https://doi.org/10.5194/hess-17-873-2013, https://doi.org/10.5194/hess-17-873-2013, 2013
S. H. Wu and P.-E. Jansson
Hydrol. Earth Syst. Sci., 17, 735–749, https://doi.org/10.5194/hess-17-735-2013, https://doi.org/10.5194/hess-17-735-2013, 2013
D. Houle, P. Lamoureux, N. Bélanger, M. Bouchard, C. Gagnon, S. Couture, and A. Bouffard
Hydrol. Earth Syst. Sci., 16, 685–697, https://doi.org/10.5194/hess-16-685-2012, https://doi.org/10.5194/hess-16-685-2012, 2012
G. F. Zhu, X. Li, Y. H. Su, and C. L. Huang
Hydrol. Earth Syst. Sci., 14, 419–431, https://doi.org/10.5194/hess-14-419-2010, https://doi.org/10.5194/hess-14-419-2010, 2010
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration: Guidelines for computing crop water requirements, in: FAO, p. 300, 1998.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty
estimation in mechanistic modelling of complex environmental systems using
the GLUE methodology, J. Hydrol., 249, 11–29,
https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Billett, M. F. F., Palmer, S. M. M., Hope, D., Deacon, C., Storeton-West,
R., Hargreaves, K. J. J., Flechard, C., and Fowler, D.: Linking
land-atmosphere-stream carbon fluxes in a lowland peatland system, Global Biogeochem. Cy., 18, GB1024, https://doi.org/10.1029/2003GB002058, 2004.
Binet, S., Gogo, S., and Laggoun-Défarge, F.: A water-table dependent
reservoir model to investigate the effect of drought and vascular plant
invasion on peatland hydrology, J. Hydrol., 499, 132–139,
https://doi.org/10.1016/j.jhydrol.2013.06.035, 2013.
Birkel, C., Soulsby, C., and Tetzlaff, D.: Integrating parsimonious models of
hydrological connectivity and soil biogeochemistry to simulate stream DOC
dynamics, J. Geophys. Res.-Biogeo., 119, 1030–1047,
https://doi.org/10.1002/2013JG002551, 2014.
Birkel, C., Broder, T., and Biester, H.: Nonlinear and threshold-dominated
runoff generation controls DOC export in a small peat catchment, J. Geophys. Res.-Biogeo., 122, 498–513, https://doi.org/10.1002/2016JG003621, 2017.
Bourgault, M.-A., Larocque, M., and Garneau, M.: Quantification of peatland
water storage capacity using the water table fluctuation method, Hydrol. Process., 31, 1184–1195, https://doi.org/10.1002/hyp.11116, 2017.
Clark, J. M., Ashley, D., Wagner, M., Chapman, P. J., Lane, S. N., Evans, C.
D., and Heathwaite, A. L.: Increased temperature sensitivity of net DOC
production from ombrotrophic peat due to water table draw-down, Glob. Change Biol., 15, 794–807, https://doi.org/10.1111/j.1365-2486.2008.01683.x, 2009.
Evans, C. D., Monteith, D. T., and Cooper, D. M.: Long-term increases in
surface water dissolved organic carbon: Observations, possible causes and
environmental impacts, Environ. Pollut., 137, 55–71,
https://doi.org/10.1016/j.envpol.2004.12.031, 2005.
Fellman, J. B., Hood, E., and Spencer, R. G. M.: Fluorescence spectroscopy
opens new windows into dissolved organic matter dynamics in freshwater
ecosystems: A review, Limnol. Oceanogr., 55, 2452–2462,
https://doi.org/10.4319/lo.2010.55.6.2452, 2010.
Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., and Fenner, N.:
Export of organic carbon from peat soils, Nature, 412, p. 785, https://doi.org/10.1038/35090628,
2001.
Futter, M. N., Butterfield, D., Cosby, B. J., Dillon, P. J., Wade, A. J., and
Whitehead, P. G.: Modeling the mechanisms that control in-stream dissolved
organic carbon dynamics in upland and forested catchments, Water Resour.
Res., 43, W02424, https://doi.org/10.1029/2006WR004960, 2007.
Glatzel, S., Kalbitz, K., Dalva, M., and Moore, T.: Dissolved organic matter
properties and their relationship to carbon dioxide efflux from restored
peat bogs, Geoderma, 113, 397–411, 2003.
Gogo, S., Laggoun-Défarge, F., Delarue, F., and Lottier, N.: Invasion of
a Sphagnum-peatland by Betula spp and Molinia caerulea impacts organic
matter biochemistry. Implications for carbon and nutrient cycling,
Biogeochemistry, 106, 53–69, https://doi.org/10.1007/s10533-010-9433-6, 2011.
Gorham, E.: Northern peatlands: Role in the carbon cycle and probably
responses to climate warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991.
Grybos, M., Davranche, M., Gruau, G., Petitjean, P., and Pédrot, M.:
Increasing pH drives organic matter solubilization from wetland soils under
reducing conditions, Geoderma, 154, 13–19,
https://doi.org/10.1016/j.geoderma.2009.09.001, 2009.
Höll, B. S., Fiedler, S., Jungkunst, H. F., Kalbitz, K., Freibauer, A.,
Drösler, M., and Stahr, K.: Characteristics of dissolved organic matter
following 20 years of peatland restoration, Sci. Total Environ., 408,
78–83, https://doi.org/10.1016/j.scitotenv.2009.08.046, 2009.
Hribljan, J. A., Kane, E. S., Pypker, T. G., and Chimner, R. A.: The effect
of long-term water table manipulations on dissolved organic carbon dynamics
in a poor fen peatland, J. Geophys. Res.-Biogeo., 119, 577–595,
https://doi.org/10.1002/2013JG002527, 2014.
Jager, D. F., Wilmking, M., and Kukkonen, J. V. K.: The influence of summer
seasonal extremes on dissolved organic carbon export from a boreal peatland
catchment: evidence from one dry and one wet growing season, Sci. Total
Environ., 407, 1373–1382, https://doi.org/10.1016/j.scitotenv.2008.10.005, 2009.
Kalbitz, K., Solinger, S., Park, J.-H, Michalzik, B., and Matzner,
E.: Controls on the dynamics of dissolved organic matter in soils: a
review, Soil Sci., 165, 277–304, https://doi.org/10.1097/00010694-200004000-00001,
2000.
Knorr, K.-H.: DOC-dynamics in a small headwater catchment as driven by redox
fluctuations and hydrological flow paths – are DOC exports mediated by iron
reduction/oxidation cycles?, Biogeosciences, 10, 891–904,
https://doi.org/10.5194/bg-10-891-2013, 2013.
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency
criteria for hydrological model assessment, Adv. Geosci., 5, 89–97,
https://doi.org/10.5194/adgeo-5-89-2005, 2005.
Lessels, J. S., Tetzlaff, D., Carey, S. K., Smith, P., and Soulsby, C.: A
coupled hydrology–biogeochemistry model to simulate dissolved organic carbon
exports from a permafrost-influenced catchment, Hydrol. Process., 29,
5383–5396, https://doi.org/10.1002/hyp.10566, 2015.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T.,
and Andersen, D. T.: Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and aromaticity,
Limnol. Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038, 2001.
Menberu, M. W., Tahvanainen, T., Marttila, H., Irannezhad, M., Ronkanen, A.
K., Penttinen, J., and Kløve, B.: Water-table-dependent hydrological
changes following peatland forestry drainage and restoration: Analysis of
restoration success, Water Resour. Res., 52, 3742–3760,
https://doi.org/10.1002/2015WR018578, 2016.
Michalzik, B., Tipping, E., Mulder, J., Gallardo-Lancho, J. F., Matzner, E.,
Bryant, C. L., Clarke, N., Lofts, S., and Vicente-Esteban, M. A.: Modelling
the production and transport of Dissolved Organic Carbon in forest soils,
Biogeochemistry, 66, 241–264, https://doi.org/10.1023/B:BIOG.0000005329.68861.27, 2003.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence
spectroscopy and multi-way techniques. PARAFAC, Anal. Methods, 5, 6557–6566,
https://doi.org/10.1039/c3ay41160e, 2013.
Nash, J. and Sutcliffe, J. V: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Pastor, J., Solin, J., Bridgham, S. D., Updegraff, K., Harth, C., Weishampel,
P., and Dewey, B.: Global warming and the export of dissolved organic carbon
from boreal peatlands, Oikos, 100, 380–386,
https://doi.org/10.1034/j.1600-0706.2003.11774.x, 2003.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
http://www.r-project.org/ (last access: 17 September 2018), 2012.
Ritson, J. P., Bell, M., Graham, N. J. D., Templeton, M. R., Brazier, R. E.,
Verhoef, A., Freeman, C., and Clark, J. M.: Simulated climate change impact
on summer dissolved organic carbon release from peat and surface vegetation:
implications for drinking water treatment, Water Res., 67, 66–76,
https://doi.org/10.1016/j.watres.2014.09.015, 2014.
Seibert, J., Grabs, T., Köhler, S., Laudon, H., Winterdahl, M., and Bishop,
K.: Linking soil- and stream-water chemistry based on a Riparian
Flow-Concentration Integration Model, Hydrol. Earth Syst. Sci., 13,
2287–2297, https://doi.org/10.5194/hess-13-2287-2009, 2009.
Strack, M., Waddington, J. M., Bourbonniere, R. A., Buckton, E. L., Shaw,
K., Whittington, P., and Price, J. S.: Effect of water table drawdown on
peatland dissolved organic carbon export and dynamics, Hydrol. Process.,
22, 3373–3385, https://doi.org/10.1002/hyp.6931, 2008.
Strack, M., Zuback, Y., McCarter, C., and Price, J.: Changes in dissolved
organic carbon quality in soils and discharge 10 years after peatland
restoration, J. Hydrol., 527, 345–354, https://doi.org/10.1016/j.jhydrol.2015.04.061,
2015.
Tjoelker, M. G., Oleksyn, J., and Reich, P. B.: Modelling respiration of
vegetation: Evidence for a general temperature-dependent Q10, Glob. Change Biol., 7, 223–230, https://doi.org/10.1046/j.1365-2486.2001.00397.x, 2001.
Tunaley, C., Tetzlaff, D., Lessels, J., and Soulsby, C.: Linking
high-frequency DOC dynamics to the age of connected water sources, Water
Resour. Res., 52, 5232–5247, https://doi.org/10.1002/2015WR018419, 2016.
Varadhan, R., Borchers, H. W., and Varadhan, M. R.: Package “dfoptim”,
available at:
https://cran.r-project.org/web/packages/dfoptim/index.html (last access:
17 September 2018), 2016.
Wallage, Z. E., Holden, J., and McDonald, A. T.: Drain blocking: an effective
treatment for reducing dissolved organic carbon loss and water
discolouration in a drained peatland, Sci. Total Environ., 367,
811–21, https://doi.org/10.1016/j.scitotenv.2006.02.010, 2006.
Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A., and Morris,
M.: Recovery of water tables in Welsh blanket bog after drain blocking:
Discharge rates, time scales and the influence of local conditions, J.
Hydrol., 391, 377–386, https://doi.org/10.1016/j.jhydrol.2010.07.042, 2010.
Worrall, F., Gibson, H. S., and Burt, T. P.: Modelling the impact of drainage
and drain-blocking on dissolved organic carbon release from peatlands, J.
Hydrol., 338, 15–27, https://doi.org/10.1016/j.jhydrol.2007.02.016, 2007.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Zambrano-Bigiarini, M. and Rojas, R.: hydroPSO: Particle swarm optimisation,
with focus on environmental models, available at: https://cran.r-project.org/web/packages/hydroTSM/,
http://rforge.net/hydroTSM/ (last access: 17 September 2018), R Package, version 0.3-3,
2014.
Zsolnay, Á.: Dissolved organic matter: Artefacts, definitions, and
functions, Geoderma, 113, 187–209, 2003.
Short summary
Peatlands are a major stock of carbon that can be released as dissolved organic carbon (DOC), affecting carbon balance and downstream water quality. This study investigates the impact of peatland restoration on water balance and DOC exports using a simple modelling approach. The results suggest that the restoration can affect the water balance and the dynamics of DOC in the peatland. However, there is no major impact in the quantity of DOC released in a short-term period (3 years).
Peatlands are a major stock of carbon that can be released as dissolved organic carbon (DOC),...