Articles | Volume 22, issue 8
https://doi.org/10.5194/hess-22-4473-2018
https://doi.org/10.5194/hess-22-4473-2018
Research article
 | Highlight paper
 | 
22 Aug 2018
Research article | Highlight paper |  | 22 Aug 2018

Estimating time-dependent vegetation biases in the SMAP soil moisture product

Simon Zwieback, Andreas Colliander, Michael H. Cosh, José Martínez-Fernández, Heather McNairn, Patrick J. Starks, Marc Thibeault, and Aaron Berg

Viewed

Total article views: 7,019 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
5,552 1,374 93 7,019 407 111 94
  • HTML: 5,552
  • PDF: 1,374
  • XML: 93
  • Total: 7,019
  • Supplement: 407
  • BibTeX: 111
  • EndNote: 94
Views and downloads (calculated since 07 Feb 2018)
Cumulative views and downloads (calculated since 07 Feb 2018)

Viewed (geographical distribution)

Total article views: 7,019 (including HTML, PDF, and XML) Thereof 6,386 with geography defined and 633 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 02 Apr 2025
Download
Short summary
Satellite soil moisture products can provide critical information on incipient droughts and the interplay between vegetation and water availability. However, time-variant systematic errors in the soil moisture products may impede their usefulness. Using a novel statistical approach, we detect such errors (associated with changing vegetation) in the SMAP soil moisture product. The vegetation-associated biases impede drought detection and the quantification of vegetation–water interactions.
Share