Articles | Volume 21, issue 9
https://doi.org/10.5194/hess-21-4525-2017
https://doi.org/10.5194/hess-21-4525-2017
Research article
 | 
12 Sep 2017
Research article |  | 12 Sep 2017

Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds

Francesco Marra, Elisa Destro, Efthymios I. Nikolopoulos, Davide Zoccatelli, Jean Dominique Creutin, Fausto Guzzetti, and Marco Borga

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (15 Aug 2017) by Thom Bogaard
AR by Francesco Marra on behalf of the Authors (15 Aug 2017)  Author's response    Manuscript
ED: Publish subject to technical corrections (16 Aug 2017) by Thom Bogaard
AR by Francesco Marra on behalf of the Authors (17 Aug 2017)  Author's response    Manuscript
Download
Short summary
Previous studies have reported a systematic underestimation of debris flow occurrence thresholds, due to the use of sparse networks in non-stationary rain fields. We analysed high-resolution radar data to show that spatially aggregated estimates (e.g. satellite data) largely reduce this issue, in light of a reduced estimation variance. Our findings are transferable to other situations in which lower envelope curves are used to predict point-like events in the presence of non-stationary fields.