Christensen, O. B., Yang, S., Boberg, F., Maule, C. F., Thejll, P., Olesen, M., Drews, M., Sørup, H. J. D., and Christensen, J. H.: Scalability of regional climate change in Europe for high-end scenarios, Climate Res., 64, 25–38, https://doi.org/10.3354/cr01286, 2015.
Cowpertwait, P. S. P.: Further developments of the neyman-scott clustered point process for modeling rainfall, Water Resour. Res., 27, 1431–1438, https://doi.org/10.1029/91WR00479, 1991.
Cowpertwait, P. S. P.: A spatial-temporal point process model with a continuous distribution of storm types, Water Resour. Res., 46, 1–12, https://doi.org/10.1029/2010WR009728, 2010.
Cowpertwait, P. S. P., O'Connell, P. E., Metcalfe, A. V., and Mawdsley, J. A.: Stochastic point process modelling of rainfall. I. Single-site fitting and validation, J. Hydrol., 175, 17–46, https://doi.org/10.1016/S0022-1694(96)80004-7, 1996.
Cowpertwait, P. S. P., Kilsby, C. G., and O'Connell, P. E.: A space-time Neyman-Scott model of rainfall: Empirical analysis of extremes, Water Resour. Res., 38, 6-1–6-14, https://doi.org/10.1029/2001WR000709, 2002.
Danish Meteorological Institute (DMI): The rain gauge network of the Danish Water Pollution Committee of the Society of Danish Engineers, available at: https://www.dmi.dk/erhverv/anvendelse-af-vejrdata/spildevandskomiteens-regnmaalersystem/, last access: 31 August 2017.
DMI: Drift af Spildevandskomitéens Regnmålersystem, Technical report 15-03, Rikke Sjølin Thomsen (ed.), Danish Meteorological Institute, Copenhagen, Denmark, 2014.
Entekhabi, D., Rodriguez-Iturbe, I., and Eagleson, P. S.: Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott Rectangular Pulses Model: Parameter estimation and validation, Water Resour. Res., 25, 295–302, https://doi.org/10.1029/WR025i002p00295, 1989.
Fowler, H. J., Kilsby, C. G., O'Connell, P. E., and Burton, A.: A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change, J. Hydrol., 308, 50–66, https://doi.org/10.1016/j.jhydrol.2004.10.021, 2005.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007.
Furrer, E. M. and Katz, R. W.: Improving the simulation of extreme precipitation events by stochastic weather generators, Water Resour. Res., 44, 1–13, https://doi.org/10.1029/2008WR007316, 2008.
Gregersen, I. B., Madsen, H., Rosbjerg, D., and Arnbjerg-Nielsen, K.: Long term variations of extreme rainfall in Denmark and southern Sweden, Clim. Dynam., 44, 3155–3169, https://doi.org/10.1007/s00382-014-2276-4, 2014a.
Gregersen, I. B., Sunyer, M. A. P., Madsen, H., Funder, S., Luchner, J., Rosbjerg, D., and Arnbjerg-Nielsen, K.: Past, present, and future variations of extreme precipitation in Denmark, DTU Environment, Kgs. Lyngby, Denmark, 2014b.
IPCC: Climate change 2007: the physical science basis summary for policymakers, Energ. Environ., 18, 433–440, https://doi.org/10.1260/095830507781076194, 2007.
IPCC: Climate Change 2013: The Physical Science Basis. Summary for Policymakers, IPCC, 1–29, https://doi.org/10.1017/CBO9781107415324, 2013.
Kilsby, C. G., Jones, P. D., Burton, A., Ford, A. C., Fowler, H. J., Harpham, C., James, P., Smith, A., and Wilby, R. L.: A daily weather generator for use in climate change studies, Environ. Model. Softw., 22, 1705–1719, https://doi.org/10.1016/j.envsoft.2007.02.005, 2007.
Kossieris, P., Makropoulos, C., Onof, C., and Koutsoyiannis, D.: A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2016.07.015, in press, 2016.
Koutsoyiannis, D. and Onof, C.: Rainfall disaggregation using adjusting procedures on a Poisson cluster model, J. Hydrol., 246, 109–122, https://doi.org/10.1016/S0022-1694(01)00363-8, 2001.
Larsen, A. N., Gregersen, I. B., Christensen, O. B., Linde, J. J., and Mikkelsen, P. S.: Potential future increase in extreme one-hour precipitation events over Europe due to climate change, Water Sci. Technol., 60, 2205–2216, https://doi.org/10.2166/wst.2009.650, 2009.
Madsen, H., Arnbjerg-Nielsen, K., and Mikkelsen, P. S.: Update of regional intensity-duration-frequency curves in Denmark: Tendency towards increased storm intensities, Atmos. Res., 92, 343–349, https://doi.org/10.1016/j.atmosres.2009.01.013, 2009.
Mailhot, A., Duchesne, S., Caya, D., and Talbot, G.: Assessment of future change in intensity-duration-frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model (CRCM), J. Hydrol., 347, 197–210, https://doi.org/10.1016/j.jhydrol.2007.09.019, 2007.
Marani, M. and Zanetti, S.: Downscaling rainfall temporal variability, Water Resour. Res., 43, 1–7, https://doi.org/10.1029/2006WR005505, 2007.
Maule, C. F., Thejll, P., Christensen, J. H., Svendsen, S. H., and Hannaford, J.: Improved confidence in regional climate model simulations of precipitation evaluated using drought statistics from the ENSEMBLES models, Clim. Dynam., 40, 155–173, https://doi.org/10.1007/s00382-012-1355-7, 2013.
Mikkelsen, P. S., Madsen, H., Arnbjerg-Nielsen, K., Jorgensen, H. K., Rosbjerg, D., and Harremoes, P.: A rationale for using local and regional point rainfall data for design and analysis of urban storm drainage systems, Water Sci. Technol., 37, 7–14, https://doi.org/10.1016/S0273-1223(98)00310-2, 1998.
Molini, A., La Barbera, P., Lanza, L. G., and Stagi, L.: Rainfall intermittency and the sampling error of tipping-bucket rain gauges, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26, 737–742, https://doi.org/10.1016/S1464-1917(01)95018-4, 2001.
Nguyen, V. T. V., Nguyen, T. D., and Cung, A.: A statistical approach to downscaling of sub-daily extreme rainfall processes for climate-related impact studies in urban areas, in: Water Science and Technology: Water Supply, vol. 7, pp. 183–192, 2007.
Nguyen, V.-T.-V., Desramaut, N., and Nguyen, T.-D.: Estimation of urban design storms in consideration of GCM-based climate change scenarios, in Water and Urban Development Paradigms: Towards an Integration of Engineering, Design and Management Approaches – Proceedings of the International Urban Water Conference, 347–356, 2009.
Nguyen, V. T. V., Desramaut, N., and Nguyen, T. D.: Optimal rainfall temporal patterns for urban drainage design in the context of climate change, Water Sci. Technol., 62, 1170–1176, https://doi.org/10.2166/wst.2010.295, 2010.
NRCS: Urban Hydrology for Small Watersheds TR-55, USDA Natural Resource Conservation Service Conservation Engeneering Division Technical Release 55, 164, Technical Release 55, 1986.
Ntegeka, V. and Willems, P.: Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium, Water Resour. Res., 44, 1–15, https://doi.org/10.1029/2007WR006471, 2008.
Ntegeka, V., Baguis, P., Roulin, E., and Willems, P.: Developing tailored climate change scenarios for hydrological impact assessments, J. Hydrol., 508, 307–321, https://doi.org/10.1016/j.jhydrol.2013.11.001, 2014.
Olsson, J., Berggren, K., Olofsson, M., and Viklander, M.: Applying climate model precipitation scenarios for urban hydrological assessment: A case study in Kalmar City, Sweden, Atmos. Res., 92, 364–375, https://doi.org/10.1016/j.atmosres.2009.01.015, 2009.
Olsson, J., Willen, U., and Kawamura, A.: Downscaling extreme short-term regional climate model precipitation for urban hydrological applications, Hydrol. Res., 43, 341–351, https://doi.org/10.2166/nh.2012.135, 2012.
Onof, C. and Arnbjerg-Nielsen, K.: Quantification of anticipated future changes in high resolution design rainfall for urban areas, Atmos. Res., 92, 350–363, https://doi.org/10.1016/j.atmosres.2009.01.014, 2009.
Onof, C. and Wheater, H. S.: Modelling of British rainfall using a random parameter Bartlett-Lewis Rectangular Pulse Model, J. Hydrol., 149, 67–95, https://doi.org/10.1016/0022-1694(93)90100-N, 1993.
Onof, C. and Wheater, H. S.: Improvements to the modelling of British rainfall using a modified Random Parameter Bartlett-Lewis Rectangular Pulse Model, J. Hydrol., 15, 177–195, https://doi.org/10.1016/0022-1694(94)90104-X, 1994.
Paschalis, A., Molnar, P., Fatichi, S., and Burlando, P.: On temporal stochastic modeling of precipitation, nesting models across scales, Adv. Water Resour., 63, 152–166, https://doi.org/10.1016/j.advwatres.2013.11.006, 2014.
Prein, A. F., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann, C., Fox Maule, C., van Meijgaard, E., Déqué, M., Nikulin, G., Vautard, R., Colette, A., Kjellström, E., and Jacob, D.: Precipitation in the EURO-CORDEX 0.11 and 0.44 simulations: high resolution, high benefits?, Clim. Dynam., 46, https://doi.org/10.1007/s00382-015-2589-y, 2016.
Rossi, F., Fiorentino, M., and Versace, P.: Two-Component Extreme Value Distribution for Flood Frequency Analysis, Water Resour. Res., 20, 847–856, https://doi.org/10.1029/WR020i007p00847, 1984.
Schaarup-Jensen, K., Rasmussen, M. R., and Thorndahl, S.: To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?, Water Sci. Technol., 60, 87–95, https://doi.org/10.2166/wst.2009.290, 2009.
Schilling, W.: Rainfall data for urban hydrology: what do we need?, Atmos. Res., 27, 5–21, https://doi.org/10.1016/0169-8095(91)90003-F, 1991.
Schleiss, M., Jaffrain, J., and Berne, A.: Statistical analysis of rainfall intermittency at small spatial and temporal scales, Geophys. Res. Lett., 38, L18403, https://doi.org/10.1029/2011GL049000, 2011.
Segond, M.-L., Neokleous, N., Makropoulos, C., Onof, C., and Maksimovic, C.: Simulation and spatio-temporal disaggregation of multi-site rainfall data for urban drainage applications, Hydrol. Sci. J., 52, 917–935, https://doi.org/10.1623/hysj.52.5.917, 2007.
Semadeni-Davies, A., Hernebring, C., Svensson, G., and Gustafsson, L. G.: The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system, J. Hydrol., 350, 100–113, https://doi.org/10.1016/j.jhydrol.2007.05.028, 2008.
Shahabul Alam, M. and Elshorbagy, A.: Quantification of the climate change-induced variations in Intensity–Duration–Frequency curves in the Canadian Prairies, J. Hydrol., 527, 990–1005, https://doi.org/10.1016/j.jhydrol.2015.05.059, 2015.
Sherman: Streamflow from rainfall by the unit-graph method, Engineering News Record, 108, 1932.
Sørup, H. J. D., Christensen, O. B., Arnbjerg-Nielsen, K., and Mikkelsen, P. S.: Downscaling future precipitation extremes to urban hydrology scales using a spatio-temporal Neyman-Scott weather generator, Hydrol. Earth Syst. Sci., 20, 1387–1403, https://doi.org/10.5194/hess-20-1387-2016, 2016.
Sunyer, M. A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Bürger, G., Hanel, M., Kriauciuniene, J., Loukas, A., Osuch, M., and Yücel, I.: Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe, Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, 2015.
Thorndahl, S.: Stochastic long term modelling of a drainage system with estimation of return period uncertainty, Water Sci. Technol., 59, 2331–2339, https://doi.org/10.2166/wst.2009.305, 2009.
Thorndahl, S., Beven, K. J., Jensen, J. B., and Schaarup-Jensen, K.: Event based uncertainty assessment in urban drainage modelling, applying the GLUE methodology, J. Hydrol., 357, 421–437, https://doi.org/10.1016/j.jhydrol.2008.05.027, 2008.
Thorndahl, S., Schaarup-Jensen, K., and Rasmussen, M. R.: On hydraulic and pollution effects of converting combined sewer catchments to separate sewer catchments, Urban Water Journal, 12, 120–130, https://doi.org/10.1080/1573062X.2013.831915, 2015.
Thorndahl, S., Balling, J. D., and Larsen, U. B. B.: Analysis and integrated modelling of groundwater infiltration to sewer networks, Hydrol. Process., 30, 3228–3238, https://doi.org/10.1002/hyp.10847, 2016.
Thorndahl, S., Einfalt, T., Willems, P., Nielsen, J. E., ten Veldhuis, M.-C., Arnbjerg-Nielsen, K., Rasmussen, M. R., and Molnar, P.: Weather radar rainfall data in urban hydrology, Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, 2017.
Wilby, R. L. and Wigley, T. M. L.: Downscaling general circulation model output: a review of methods and limitations, Prog. Phys. Geogr., 21, 530–548, https://doi.org/10.1177/030913339702100403, 1997.
Wilby, R. L., Dawson, C. W., and Barrow, E. M.: SDSM – a decision support tool for the assessment of regional climate change impacts, Environ. Model. Softw., 17, 145–157, https://doi.org/10.1016/S1364-8152(01)00060-3, 2002.
Willems, P.: Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types, J. Hydrol., 233, 189–205, https://doi.org/10.1016/S0022-1694(00)00233-X, 2000a.
Willems, P.: Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types, J. Hydrol., 233, 189–205, https://doi.org/10.1016/S0022-1694(00)00233-X, 2000b.
Willems, P.: Multidecadal oscillatory behaviour of rainfall extremes in Europe, Climatic Change, 120, 931–944, https://doi.org/10.1007/s10584-013-0837-x, 2013a.
Willems, P.: Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium, J. Hydrol., 496, 166–177, https://doi.org/10.1016/j.jhydrol.2013.05.037, 2013b.
Willems, P. and Vrac, M.: Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change, J. Hydrol., 402, 193–205, https://doi.org/10.1016/j.jhydrol.2011.02.030, 2011.
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V. T. V: Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings, Atmos. Res., 103, 106–118, https://doi.org/10.1016/j.atmosres.2011.04.003, 2012a.
Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Gregersen, I. B., Madsen, H., and Nguyen, V. T. V.: Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems, IWA publishing, London, 2012b.
WPC: Forventede ændringer i ekstremregn som følge af klimaændringer, Skrift nr. 29 (Anticipated changes in extrem precipitation as a result of climate change, Guideline no. 29), The Water Pollution Committee of the Society of Danish Engineers, Copenhagen, Denmark, 2008 (in Danish).
WPC: Opdaterede klimafaktorer og dimensionsgivende regnintensiteter, Skrift nr. 30 (Updated climate factors and rain intensities for design, Guideline no. 30), The Water Pollution Committee of the Society of Danish Engineers, Copenhagen, Denmark, 2014 (in Danish).
Zorita, E. and Von Storch, H.: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods, J. Climate, 12, 2474–2489, https://doi.org/10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2, 1999.