Articles | Volume 21, issue 9
https://doi.org/10.5194/hess-21-4433-2017
https://doi.org/10.5194/hess-21-4433-2017
Research article
 | 
07 Sep 2017
Research article |  | 07 Sep 2017

Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

Søren Thorndahl, Aske Korup Andersen, and Anders Badsberg Larsen

Related authors

The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020,https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary
Weather radar rainfall data in urban hydrology
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017,https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Stochastic approaches
Improving radar-based rainfall nowcasting by a nearest-neighbour approach – Part 1: Storm characteristics
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 26, 1631–1658, https://doi.org/10.5194/hess-26-1631-2022,https://doi.org/10.5194/hess-26-1631-2022, 2022
Short summary
The role of storm scale, position and movement in controlling urban flood response
Marie-Claire ten Veldhuis, Zhengzheng Zhou, Long Yang, Shuguang Liu, and James Smith
Hydrol. Earth Syst. Sci., 22, 417–436, https://doi.org/10.5194/hess-22-417-2018,https://doi.org/10.5194/hess-22-417-2018, 2018
Short summary
Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times
Marie-Claire ten Veldhuis and Marc Schleiss
Hydrol. Earth Syst. Sci., 21, 1991–2013, https://doi.org/10.5194/hess-21-1991-2017,https://doi.org/10.5194/hess-21-1991-2017, 2017
Short summary
Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017,https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?
Hossein Tabari, Rozemien De Troch, Olivier Giot, Rafiq Hamdi, Piet Termonia, Sajjad Saeed, Erwan Brisson, Nicole Van Lipzig, and Patrick Willems
Hydrol. Earth Syst. Sci., 20, 3843–3857, https://doi.org/10.5194/hess-20-3843-2016,https://doi.org/10.5194/hess-20-3843-2016, 2016

Cited articles

Arnbjerg-Nielsen, K.: Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design, Urban Water Journal, 9, 57–65, https://doi.org/10.1080/1573062X.2011.630091, 2012.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Boberg, F., Berg, P., Thejll, P., Gutowski, W. J., and Christensen, J. H.: Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models, Clim. Dynam., 35, 1509–1520, https://doi.org/10.1007/s00382-009-0683-8, 2010.
Burton, A., Kilsby, C. G., Fowler, H. J., Cowpertwait, P. S. P., and O'Connell, P. E.: RainSim: A spatial-temporal stochastic rainfall modelling system, Environ. Model. Softw., 23, 1356–1369, https://doi.org/10.1016/j.envsoft.2008.04.003, 2008.
Casanueva, A., Kotlarski, S., Herrera, S., Fernández, J., Gutiérrez, J. M., Boberg, F., Colette, A., Christensen, O. B., Goergen, K., Jacob, D., Keuler, K., Nikulin, G., Teichmann, C., and Vautard, R.: Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations, Clim. Dynam., 47, 719–737, https://doi.org/10.1007/s00382-015-2865-x, 2016.
Download
Short summary
Time series of rainfall are developed in order to represent future climate conditions. These series can be used in design of, for example, drainage systems where future rainfall loads are important to account for. The climate projections are evaluated on a number of key statistical parameters of rainfall such as yearly and seasonal precipitation amounts, number of extreme events and rainfall intensities, specific duration, and return periods.