Articles | Volume 21, issue 8
https://doi.org/10.5194/hess-21-4053-2017
https://doi.org/10.5194/hess-21-4053-2017
Research article
 | 
14 Aug 2017
Research article |  | 14 Aug 2017

Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

Nander Wever, Francesco Comola, Mathias Bavay, and Michael Lehning

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (26 Jun 2017) by Matthias Bernhardt
AR by Nander Wever on behalf of the Authors (29 Jun 2017)  Author's response   Manuscript 
ED: Publish as is (14 Jul 2017) by Matthias Bernhardt
AR by Nander Wever on behalf of the Authors (14 Jul 2017)  Manuscript 
Download
Short summary
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Simulations of soil moisture and streamflow were performed and compared with observations. It was found that discharge at the catchment outlet during intense rainfall or snowmelt periods correlates positively with the initial soil moisture state, in both measurements and simulations.