Articles | Volume 21, issue 6
https://doi.org/10.5194/hess-21-2637-2017
https://doi.org/10.5194/hess-21-2637-2017
Research article
 | 
02 Jun 2017
Research article |  | 02 Jun 2017

Role of forcing uncertainty and background model error characterization in snow data assimilation

Sujay V. Kumar, Jiarui Dong, Christa D. Peters-Lidard, David Mocko, and Breogán Gómez

Viewed

Total article views: 2,832 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,837 904 91 2,832 82 109
  • HTML: 1,837
  • PDF: 904
  • XML: 91
  • Total: 2,832
  • BibTeX: 82
  • EndNote: 109
Views and downloads (calculated since 22 Nov 2016)
Cumulative views and downloads (calculated since 22 Nov 2016)

Viewed (geographical distribution)

Total article views: 2,832 (including HTML, PDF, and XML) Thereof 2,703 with geography defined and 129 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 01 Jan 2025
Download
Short summary
Data assimilation deals with the blending of model forecasts and observations based on their relative errors. This paper addresses the importance of accurately representing the errors in the model forecasts for skillful data assimilation performance.